return

Celebratio Mathematica

Steve Armentrout


Works of Steve Armentrout

[1]S. Ar­men­trout: On spir­als in the plane. Ph.D. thesis, The Uni­versity of Texas at Aus­tin, 1956. Ad­vised by R. L. Moore. MR 2938799

[2]S. Ar­men­trout: “Con­cern­ing a cer­tain col­lec­tion of spir­als in the plane,” Duke Math. J. 26 (1959), pp. 243–​250. MR 0104208 Zbl 0089.​17704

[3]S. Ar­men­trout: “Sep­ar­a­tion the­or­ems for some plane-like spaces,” Trans. Amer. Math. Soc. 97 (1960), pp. 120–​130. MR 0117689 Zbl 0168.​20801

[4]S. Ar­men­trout: “A Moore space on which every real-val­ued con­tinu­ous func­tion is con­stant,” Proc. Amer. Math. Soc. 12 (1961), pp. 106–​109. MR 0120615 Zbl 0112.​37601

[5]S. Ar­men­trout: “Up­per semi-con­tinu­ous de­com­pos­i­tions of \( E^{3} \) with at most count­ably many non-de­gen­er­ate ele­ments,” Ann. of Math. (2) 78 (1963), pp. 605–​618. MR 0156331 Zbl 0115.​40702

[6]S. Ar­men­trout: “Re­cent pub­lic­a­tions and present­a­tions: In­tro­duc­tion to to­po­logy,” Amer. Math. Monthly 70 : 7 (1963), pp. 782. MR 1532287

[7]S. Ar­men­trout: “De­com­pos­tions of \( E^{3} \) with a com­pact 0-di­men­sion­al set of nonde­gen­er­ate ele­ments,” Trans. Amer. Math. Soc. 123 (1966), pp. 165–​177. MR 0195074

[8]S. Ar­men­trout: “Con­cern­ing a wild 3-cell de­scribed by Bing,” Duke Math. J. 33 (1966), pp. 689–​704. MR 0198446 Zbl 0144.​23101

[9]S. Ar­men­trout: “Mono­tone de­com­pos­i­tions of \( E^{3} \),” pp. 1–​25 in To­po­logy sem­in­ar (Wis­con­sin, 1965). Ann. of Math. Stud­ies, No. 60, Prin­ceton Univ. Press, Prin­ceton, N.J., 1966. MR 0222865 Zbl 0147.​23002

[10]S. Ar­men­trout and R. H. Bing: “A tor­oid­al de­com­pos­i­tion of \( E^3 \),” Fund. Math. 60 : 1 (1967), pp. 81–​87. MR 0206925 Zbl 0145.​19702 article

[11]S. Ar­men­trout: “On em­bed­ding de­com­pos­i­tion spaces of \( E^{n} \) in \( E^{n+1} \),” Fund. Math. 61 (1967), pp. 1–​21. MR 0224069 Zbl 0169.​25302

[12]S. Ar­men­trout: “Re­views: To­po­lo­gic­al ana­lys­is,” Amer. Math. Monthly 74 : 7 (1967), pp. 887–​888. MR 1534489

[13]S. Ar­men­trout: “Con­cern­ing cel­lu­lar de­com­pos­i­tions of 3-man­i­folds that yield 3-man­i­folds,” Trans. Amer. Math. Soc. 133 (1968), pp. 307–​332. MR 0230296 Zbl 0175.​20602

[14]S. Ar­men­trout, L. L. Lininger, and D. V. Mey­er: “Equi­val­ent de­com­pos­i­tion of \( R^{3} \),” Pa­cific J. Math. 24 (1968), pp. 205–​227. MR 0224070

[15]S. Ar­men­trout: “Com­plet­ing Moore spaces,” pp. 22–​35 in To­po­logy con­fer­ence (Ari­zona State Univ., Tempe, AZ, 1967). Ari­zona State Univ. (Tempe, Ar­iz.), 1968. MR 0240778

[16]S. Ar­men­trout: “Shrinkab­il­ity of cer­tain de­com­pos­i­tions of \( E^{3} \) that yield \( E^{3} \),” Illinois J. Math. 13 (1969), pp. 700–​706. MR 0246273 Zbl 0179.​28104

[17]S. Ar­men­trout: “Cel­lu­lar de­com­pos­i­tions of 3-man­i­folds that yield 3-man­i­folds,” Bull. Amer. Math. Soc. 75 (1969), pp. 453–​456. MR 0239578 Zbl 0184.​48703

[18]S. Ar­men­trout: “Con­cern­ing cel­lu­lar de­com­pos­i­tions of 3-man­i­folds with bound­ary,” Trans. Amer. Math. Soc. 137 (1969), pp. 231–​236. MR 0236931 Zbl 0175.​49901

[19]S. Ar­men­trout: “\( \mathrm{ UV} \) prop­er­ties of com­pact sets,” Trans. Amer. Math. Soc. 143 (1969), pp. 487–​498. MR 0273573 Zbl 0195.​25503

[20]S. Ar­men­trout: “Ho­mo­topy prop­er­ties of de­com­pos­i­tion spaces,” Trans. Amer. Math. Soc. 143 (1969), pp. 499–​507. MR 0273574 Zbl 0195.​25504

[21]S. Ar­men­trout and T. M. Price: “De­com­pos­i­tions in­to com­pact sets with \( UV \) prop­er­ties,” Trans. Amer. Math. Soc. 141 (1969), pp. 433–​442. MR 0244994 Zbl 0183.​27902

[22]S. Ar­men­trout: “Re­views: In­tro­duc­tion to gen­er­al to­po­logy,” Amer. Math. Monthly 76 : 7 (1969), pp. 841. MR 1535555

[23]S. Ar­men­trout: “On the sin­gu­lar­ity of Mazurkiewicz in ab­so­lute neigh­bor­hood re­tracts,” Fund. Math. 69 (1970), pp. 131–​145. MR 0283776 Zbl 0208.​25301

[24]S. Ar­men­trout: “A three-di­men­sion­al spher­oid­al space which is not a sphere,” Fund. Math. 68 (1970), pp. 183–​186. MR 0270350 Zbl 0205.​53402

[25]S. Ar­men­trout: “A de­com­pos­i­tion of \( E^{3} \) in­to straight arcs and singletons,” Dis­ser­ta­tiones Math. Roz­prawy Mat. 68 (1970), pp. 46. MR 0266177

[26]S. Ar­men­trout: “De­com­pos­i­tions and re­tracts,” pp. 1–​7 in To­po­logy con­fer­ence (Emory Univ., At­lanta, GA, 1970). Dept. Math., Emory Univ., 1970. MR 0348747 Zbl 0251.​54003

[27]S. Ar­men­trout: “On the strong loc­al simple con­nectiv­ity of the de­com­pos­i­tion spaces of tor­oid­al de­com­pos­i­tions,” Fund. Math. 69 (1970), pp. 15–​37. MR 0276941 Zbl 0209.​54802

[28]S. Ar­men­trout: “Con­cern­ing the uni­ons of ab­so­lute neigh­bor­hood re­tracts hav­ing brick de­com­pos­i­tions,” Fund. Math. 72 : 1 (1971), pp. 69–​78. MR 0296912 Zbl 0221.​54030

[29]S. Ar­men­trout: “Loc­al prop­er­ties of de­com­pos­i­tion spaces,” pp. 98–​111 in Proc. First Conf. on Mono­tone Map­pings and Open Map­pings (SUNY at Bing­hamton, NY, 1970). State Univ. of New York at Bing­hamton, 1971. MR 0276942 Zbl 0229.​54009

[30]S. Ar­men­trout: “Cel­lu­lar de­com­pos­i­tions of 3-man­i­folds that yield 3-man­i­folds,” Mem­oirs of the Amer­ic­an Math­em­at­ic­al So­ci­ety 107 (1971), pp. 72. MR 0413104 Zbl 0221.​57003

[31]S. Ar­men­trout: “A sur­vey of res­ults on de­com­pos­i­tions,” pp. 1–​12 in Pro­ceed­ings of the Uni­versity of Ok­lahoma To­po­logy Con­fer­ence (Nor­man, OK, 1972). Univ. of Ok­lahoma, 1972. MR 0365576 Zbl 0244.​54006

[32]S. Ar­men­trout: “A Bing–Bor­suk re­tract which con­tains a 2-di­men­sion­al ab­so­lute re­tract,” Dis­ser­ta­tiones Math. (Roz­prawy Mat.) 123 (1975), pp. 39. MR 0377889 Zbl 0305.​54019

[33]S. Ar­men­trout: “De­com­pos­i­tions and ab­so­lute neigh­bor­hood re­tracts,” pp. 1–​5 in Geo­met­ric to­po­logy (Park City, UT, 1974). Lec­ture Notes in Math. 438. Spring­er (Ber­lin), 1975. MR 0394600 Zbl 0306.​54015

[34]S. Ar­men­trout and S. Singh: “Shape prop­er­ties of com­pacta in gen­er­al­ized \( n \)-man­i­folds,” pp. 202–​220 in Con­tinua, de­com­pos­i­tions, man­i­folds (Aus­tin, TX, 1980). Univ. Texas Press (Aus­tin, TX), 1983. MR 711992

[35]S. Ar­men­trout: “Sat­ur­ated 2-sphere bound­ar­ies in Bing’s straight-line seg­ment ex­ample,” pp. 96–​110 in Con­tinua, de­com­pos­i­tions, man­i­folds (Aus­tin, TX, 1980). Univ. Texas Press (Aus­tin, Tex.), 1983. MR 711981

[36]S. Ar­men­trout: “Loc­al prop­er­ties of knot­ted dog­bone spaces,” To­po­logy Ap­pl. 24 : 1–​3 (1986), pp. 41–​52. Spe­cial volume in hon­or of R. H. Bing (1914–1986). MR 872477 Zbl 0612.​57011

[37]S. Ar­men­trout: “Book re­view: De­com­pos­i­tions of man­i­folds,” Bull. Amer. Math. Soc. (N.S.) 19 : 2 (1988), pp. 562–​565. MR 1567723

[38]J. A. Reg­gia, S. L. Ar­men­trout, H.-H. Chou, and Y. Peng: “Simple sys­tems that ex­hib­it self-dir­ec­ted rep­lic­a­tion,” Sci­ence 259 : 5099 (1993), pp. 1282–​1287. MR 1203997 Zbl 1226.​68046

[39]S. Ar­men­trout: “Links and non­shellable cell par­ti­tion­ings of \( S^3 \),” Proc. Amer. Math. Soc. 118 : 2 (1993), pp. 635–​639. MR 1132848 Zbl 0788.​57003

[40]S. Ar­men­trout: “Knots and shellable cell par­ti­tion­ings of \( S^3 \),” Illinois J. Math. 38 : 3 (1994), pp. 347–​365. MR 1269692 Zbl 0832.​57014

[41]S. Ar­men­trout: “Bing’s dog­bone space is not strongly loc­ally simply con­nec­ted,” pp. 33–​64 in Top­ics in low-di­men­sion­al to­po­logy (Uni­versity Park, PA, 1996). World Sci. Publ., 1999. MR 1883617 Zbl 1030.​57035