return

Celebratio Mathematica

Paul T. Bateman

Number theory  ·  UIUC

Character sums

[1]P. T. Bate­man and S. Chow­la: “Av­er­ages of char­ac­ter sums,” Proc. Am. Math. Soc. 1 : 6 (1950), pp. 781–​787. MR 0042445 Zbl 0041.​01904 article

[2]P. T. Bate­man, S. Chow­la, and P. Er­dős: “Re­marks on the size of \( L(1,\chi) \),” Publ. Math. Debre­cen 1 (1950), pp. 165–​182. MR 0037322 Zbl 0036.​30702 article

[3]P. T. Bate­man and S. Chow­la: “The equi­val­ence of two con­jec­tures in the the­ory of num­bers,” J. In­di­an Math. Soc. (N.S.) 17 (1953), pp. 177–​181. MR 0062176 Zbl 0055.​27503 article

[4]P. T. Bate­man: “The­or­ems im­ply­ing the non-van­ish­ing of \( \sum \chi(m)m^{-1} \) for real residue-char­ac­ters,” J. In­di­an Math. Soc. (N.S.) 23 (1959), pp. 101–​115. MR 0124299 Zbl 0228.​10021 article

[5]P. T. Bate­man: “Lower bounds for \( \sum h(m)/m \) for arith­met­ic­al func­tions \( h \) sim­il­ar to real residue-char­ac­ters,” J. Math. Anal. Ap­pl. 15 : 1 (July 1966), pp. 2–​20. Ded­ic­ated to H. S. Van­diver on his eighty-third birth­day. MR 0199164 Zbl 0144.​27803 article

[6]P. T. Bate­man, G. B. Purdy, and S. S. Wag­staff, Jr.: “Some nu­mer­ic­al res­ults on Fekete poly­no­mi­als,” Math. Com­put. Simul. 29 : 129 (January 1975), pp. 7–​23. MR 0480293 Zbl 0301.​10036 article