return

Celebratio Mathematica

David H. Blackwell

Statistics  ·  UC Berkeley

Measure & integration

[1]D. Black­well: “On a the­or­em of Lya­pun­ov,” Ann. Math. Stat. 22 : 1 (March 1951), pp. 112–​114. MR 0039033 Zbl 0042.​28502 article

[2]R. Bell­man and D. Black­well: “On mo­ment spaces,” Ann. Math. (2) 54 : 2 (September 1951), pp. 272–​274. MR 0043866 Zbl 0044.​12601 article

[3]D. Black­well: “The range of cer­tain vec­tor in­teg­rals,” Proc. Am. Math. Soc. 2 : 3 (September 1951), pp. 390–​395. MR 0041195 Zbl 0044.​27702 article

[4]D. Black­well: “A rep­res­ent­a­tion prob­lem,” Proc. Am. Math. Soc. 5 : 2 (1954), pp. 283–​287. MR 0061653 Zbl 0055.​28804 article

[5]D. Black­well: “On dis­crete vari­ables whose sum is ab­so­lutely con­tinu­ous,” Ann. Math. Stat. 28 : 2 (1957), pp. 520–​521. MR 0088091 Zbl 0078.​31602 article

[6]D. Black­well and L. E. Du­bins: “A con­verse to the dom­in­ated con­ver­gence the­or­em,” Illinois J. Math. 7 : 3 (1963), pp. 508–​514. MR 0151572 Zbl 0146.​37503 article

[7]D. Black­well and L. E. Du­bins: “Sharp bounds on the dis­tri­bu­tion of the Hardy–Lit­tle­wood max­im­al func­tion,” Proc. Am. Math. Soc. 14 : 3 (1963), pp. 450–​453. MR 0148842 Zbl 0118.​05401 article

[8]D. Black­well: “A Borel set not con­tain­ing a graph,” Ann. Math. Stat. 39 : 4 (1968), pp. 1345–​1347. MR 0229451 Zbl 0177.​48401 article

[9]D. Black­well: “Borel-pro­gram­mable func­tions,” Ann. Probab. 6 : 2 (1978), pp. 321–​324. MR 0460573 Zbl 0398.​28002 article

[10]D. Black­well: “There are no Borel SPLIFs,” Ann. Probab. 8 : 6 (1980), pp. 1189–​1190. MR 602393 Zbl 0451.​28001 article

[11]D. Black­well and A. Maitra: “Fac­tor­iz­a­tion of prob­ab­il­ity meas­ures and ab­so­lutely meas­ur­able sets,” Proc. Am. Math. Soc. 92 : 2 (1984), pp. 251–​254. MR 754713 Zbl 0554.​60001 article

[12]D. Black­well and P. Di­ac­onis: “A non-meas­ur­able tail set,” pp. 1–​5 in Stat­ist­ics, prob­ab­il­ity and game the­ory: Pa­pers in hon­or of Dav­id Black­well. Edi­ted by T. S. Fer­guson, L. S. Shap­ley, and J. B. Mac­Queen. IMS Lec­ture Notes–Mono­graph Series 30. In­sti­tute of Math­em­at­ic­al Stat­ist­ics (Hay­ward, CA), 1996. MR 1481768 incollection