return

Celebratio Mathematica

Michael H. Freedman

Topology in dimension 3

[1] incollection M. H. Freed­man: “Auto­morph­isms of circle bundles over sur­faces,” pp. 212–​214 in Geo­met­ric to­po­logy (Park City, UT, Feb­ru­ary 19–22, 1974). Edi­ted by L. C. Glaser and T. B. Rush­ing. Lec­ture Notes in Math­em­at­ics 438. Spring­er, 1975. MR 0391140 Zbl 0308.​55006

[2] incollection M. H. Freed­man: “A con­ser­vat­ive Dehn’s lemma,” pp. 121–​130 in Low di­men­sion­al to­po­logy (San Fran­cisco, CA, Janu­ary 7–11, 1981). Edi­ted by S. J. Lomonaco, Jr. Con­tem­por­ary Math­em­at­ics 20. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1983. MR 0718137 Zbl 0525.​57005

[3] article M. Freed­man, J. Hass, and P. Scott: “Least area in­com­press­ible sur­faces in 3-man­i­folds,” In­vent. Math. 71 : 3 (1983), pp. 609–​642. MR 0695910 Zbl 0482.​53045

[4] article M. Freed­man and S.-T. Yau: “Ho­mo­top­ic­ally trivi­al sym­met­ries of Haken man­i­folds are tor­al,” To­po­logy 22 : 2 (1983), pp. 179–​189. MR 0683759 Zbl 0515.​57004

[5]M. H. Freed­man and V. S. Krushkal: “Notes on ends of hy­per­bol­ic 3-man­i­folds” in Thir­teenth an­nu­al work­shop in geo­met­ric to­po­logy (Col­or­ado Springs, CO, June 13–15, 1996). The Col­or­ado Col­lege, 1997. In­form­al pub­lic­a­tion of The Col­or­ado Col­lege, 1997.

[6] article B. Freed­man and M. H. Freed­man: “Kneser–Haken fi­nite­ness for bounded 3-man­i­folds loc­ally free groups, and cyc­lic cov­ers,” To­po­logy 37 : 1 (1998), pp. 133–​147. MR 1480882 Zbl 0896.​57012

[7] article M. H. Freed­man and C. T. McMul­len: “Eld­er sib­lings and the tam­ing of hy­per­bol­ic 3-man­i­folds,” Ann. Acad. Sci. Fenn. Math. 23 : 2 (1998), pp. 415–​428. MR 1642126 Zbl 0918.​57004

[8] article M. Freed­man, H. Howards, and Y.-Q. Wu: “Ex­ten­sion of in­com­press­ible sur­faces on the bound­ar­ies of 3-man­i­folds,” Pa­cific J. Math. 194 : 2 (2000), pp. 335–​348. MR 1760785 Zbl 1015.​57010 ArXiv math/​9706222

[9] article M. H. Freed­man, K. Walk­er, and Z. Wang: “Quantum \( \mathit{SU}(2) \) faith­fully de­tects map­ping class groups mod­ulo cen­ter,” Geom. To­pol. 6 (2002), pp. 523–​539. MR 1943758 Zbl 1037.​57024 ArXiv math.​GT/​0209150

[10] article M. H. Freed­man, A. Kit­aev, C. Nayak, J. K. Slinger­land, K. Walk­er, and Z. Wang: “Uni­ver­sal man­i­fold pair­ings and pos­it­iv­ity,” Geom. To­pol. 9 (2005), pp. 2303–​2317. MR 2209373 Zbl 1129.​57035 ArXiv math/​0503054

[11] article M. Freed­man and V. Krushkal: “On the asymp­tot­ics of quantum \( \mathit{SU}(2) \) rep­res­ent­a­tions of map­ping class groups,” For­um Math. 18 : 2 (2006), pp. 293–​304. MR 2218422 Zbl 1120.​57014

[12] article M. H. Freed­man and D. Gabai: “Cov­er­ing a nontam­ing knot by the un­link,” Al­gebr. Geom. To­pol. 7 (2007), pp. 1561–​1578. MR 2366171 Zbl 1158.​57024

[13] article M. H. Freed­man: “Com­plex­ity classes as math­em­at­ic­al ax­ioms,” Ann. of Math. (2) 170 : 2 (2009), pp. 995–​1002. MR 2552117 Zbl 1178.​03069 ArXiv 0810.​0033

[14] techreport M. Freed­man: Quantum grav­ity via man­i­fold pos­it­iv­ity. Pre­print, August 2010. ArXiv 1008.​1045

[15] article D. Calegari, M. H. Freed­man, and K. Walk­er: “Pos­it­iv­ity of the uni­ver­sal pair­ing in 3 di­men­sions,” J. Amer. Math. Soc. 23 : 1 (2010), pp. 107–​188. MR 2552250 Zbl 1201.​57024 ArXiv 0802.​3208