Celebratio Mathematica

Michael H. Freedman

Topology; quantum computing  ·  UCSD & Microsoft

Works of Mike Freedman

Works connected to Zhenghan Wang

Filter the Bibliography List

clear

article S. Bryson, M. H. Freed­man, Z.-X. He, and Z. Wang: “Möbi­us in­vari­ance of knot en­ergy,” Bull. Amer. Math. Soc. (N.S.) 28 : 1 (1993), pp. 99–​103. MR 1168514 Zbl 0776.​57003 ArXiv math/​9301212

article M. H. Freed­man and Z. Wang: “\( \mathbf{C}P^ 2 \)-stable the­ory,” Math. Res. Lett. 1 : 1 (1994), pp. 45–​48. MR 1258488 Zbl 0849.​57016

article M. H. Freed­man, Z.-X. He, and Z. Wang: “Möbi­us en­ergy of knots and un­knots,” Ann. of Math. (2) 139 : 1 (1994), pp. 1–​50. MR 1259363 Zbl 0817.​57011

incollection M. H. Freed­man and Z. Wang: “Con­trolled lin­ear al­gebra,” pp. 138–​156 in Pro­spects in to­po­logy: Pro­ceed­ings of a con­fer­ence in hon­or of Wil­li­am Browder (Prin­ceton, NJ, March 1994). Edi­ted by F. Quinn. An­nals of Math­em­at­ics Stud­ies 138. Prin­ceton Uni­versity Press (Prin­ceton, NJ), 1995. MR 1368657 Zbl 0924.​19003

article M. H. Freed­man, M. J. Larsen, and Z. Wang: “The two-ei­gen­value prob­lem and dens­ity of Jones rep­res­ent­a­tion of braid groups,” Comm. Math. Phys. 228 : 1 (2002), pp. 177–​199. MR 1911253 Zbl 1045.​20027

article M. H. Freed­man, M. Larsen, and Z. Wang: “A mod­u­lar func­tor which is uni­ver­sal for quantum com­pu­ta­tion,” Comm. Math. Phys. 227 : 3 (2002), pp. 605–​622. MR 1910833 Zbl 1012.​81007 ArXiv quant-​ph/​0001108

article M. H. Freed­man, A. Kit­aev, and Z. Wang: “Sim­u­la­tion of to­po­lo­gic­al field the­or­ies by quantum com­puters,” Comm. Math. Phys. 227 : 3 (2002), pp. 587–​603. MR 1910832 Zbl 1014.​81006 ArXiv quant-​ph/​0001071

article M. H. Freed­man, K. Walk­er, and Z. Wang: “Quantum \( \mathit{SU}(2) \) faith­fully de­tects map­ping class groups mod­ulo cen­ter,” Geom. To­pol. 6 (2002), pp. 523–​539. MR 1943758 Zbl 1037.​57024 ArXiv math.​GT/​0209150

article M. H. Freed­man, A. Kit­aev, M. J. Larsen, and Z. Wang: “To­po­lo­gic­al quantum com­pu­ta­tion,” Bull. Amer. Math. Soc. (N.S.) 40 : 1 (2003), pp. 31–​38. MR 1943131 Zbl 1019.​81008 ArXiv quant-​ph/​0101025

article M. Freed­man, C. Nayak, K. Shten­gel, K. Walk­er, and Z. Wang: “A class of \( P,T \)-in­vari­ant to­po­lo­gic­al phases of in­ter­act­ing elec­trons,” Ann. Phys­ics 310 : 2 (2004), pp. 428–​492. MR 2044743 Zbl 1057.​81053

article M. H. Freed­man, A. Kit­aev, C. Nayak, J. K. Slinger­land, K. Walk­er, and Z. Wang: “Uni­ver­sal man­i­fold pair­ings and pos­it­iv­ity,” Geom. To­pol. 9 (2005), pp. 2303–​2317. MR 2209373 Zbl 1129.​57035 ArXiv math/​0503054

article M. Freed­man, A. Feiguin, S. Trebst, A. Lud­wig, M. Troy­er, A. Kit­aev, and Z. Wang: “In­ter­act­ing any­ons in to­po­lo­gic­al quantum li­quids: The golden chain,” Phys. Rev. Lett. 98 (2007), pp. 160409. ArXiv cond-​mat/​0612341

article M. H. Freed­man and Z. Wang: “Large quantum Four­i­er trans­forms are nev­er ex­actly real­ized by braid­ing con­form­al blocks,” Phys. Rev. A (3) 75 : 3 (2007), pp. 032322. MR 2312110 ArXiv cond-​mat/​0609411

incollection M. Freed­man: “Freed­man’s writ­ings on Lin,” pp. 430–​431 in To­po­logy and phys­ics (Tianjin, China, 27–31 Ju­ly 2007). Edi­ted by K. Lin, Z. Weng, and W. Zhang. Nankai Tracts in Math­em­at­ics 12. World Sci­entif­ic (Hack­en­sack, NJ), 2008. Sev­er­al let­ters writ­ten by Freed­man to Lin. MR 2489601

incollection M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang: “On pic­ture \( (2+1) \)-TQFTs,” pp. 19–​106 in To­po­logy and phys­ics (Tianjin, China, 27–31 Ju­ly 2007). Edi­ted by K. Lin, Z. Weng, and W. Zhang. Nankai Tracts in Math­em­at­ics 12. World Sci­entif­ic (Hack­en­sack, NJ), 2008. MR 2503392 Zbl 1168.​81024 ArXiv 0806.​1926

article L. Fidkowski, M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang: “From string nets to nona­beli­ons,” Comm. Math. Phys. 287 : 3 (2009), pp. 805–​827. MR 2486662 Zbl 1196.​82072 ArXiv cond-​mat/​0610583

article M. Freed­man, M. B. Hast­ings, C. Nayak, X.-L. Qi, K. Walk­er, and Z. Wang: “Pro­ject­ive rib­bon per­muta­tion stat­ist­ics: A rem­nant of non-Abeli­an braid­ing in high­er di­men­sions,” Phys. Rev. B 83 : 11 (2011), pp. 115132. ArXiv 1005.​0583