return

Celebratio Mathematica

V. Slava Krushkal


Bibliography

[1] article M. H. Freed­man, V. S. Krushkal, and P. Teich­ner: “Van Kampen’s em­bed­ding ob­struc­tion is in­com­plete for 2-com­plexes in \( \mathbf{R}^ 4 \),” Math. Res. Lett. 1 : 2 (March 1994), pp. 167–​176. MR 1266755 Zbl 0847.​57005

[2]V. S. Krushkal and P. Teich­ner: “Al­ex­an­der du­al­ity, gropes and link ho­mo­topy,” Geom. To­pol. 1 (1997), pp. 51–​69. MR 1475554 Zbl 0885.​55001

[3]V. S. Krushkal: “Ad­dit­iv­ity prop­er­ties of Mil­nor’s \( \overline\mu \)-in­vari­ants,” J. Knot The­ory Rami­fic­a­tions 7 : 5 (1998), pp. 625–​637. MR 1637589 Zbl 0931.​57005

[4]V. S. Krushkal: “On the re­l­at­ive slice prob­lem and four-di­men­sion­al to­po­lo­gic­al sur­gery,” Math. Ann. 315 : 3 (1999), pp. 363–​396. MR 1725988 Zbl 0935.​57016

[5]V. S. Krushkal and F. Quinn: “Subex­po­nen­tial groups in 4-man­i­fold to­po­logy,” Geom. To­pol. 4 (2000), pp. 407–​430. MR 1796498 Zbl 0954.​57005

[6]V. S. Krushkal: “Em­bed­ding ob­struc­tions and 4-di­men­sion­al thick­en­ings of 2-com­plexes,” Proc. Amer. Math. Soc. 128 : 12 (2000), pp. 3683–​3691. MR 1690995 Zbl 0957.​57016

[7]V. S. Krushkal: “Ex­po­nen­tial sep­ar­a­tion in 4-man­i­folds,” Geom. To­pol. 4 (2000), pp. 397–​405. MR 1796497 Zbl 0957.​57015

[8]V. S. Krushkal and R. Lee: “Sur­gery on closed 4-man­i­folds with free fun­da­ment­al group,” Math. Proc. Cam­bridge Philos. Soc. 133 : 2 (2002), pp. 305–​310. MR 1912403 Zbl 1012.​57047

[9]V. S. Krushkal: “Dwyer’s fil­tra­tion and to­po­logy of 4-man­i­folds,” Math. Res. Lett. 10 : 2–​3 (2003), pp. 247–​251. MR 1981901 Zbl 1047.​57013

[10]V. S. Krushkal: “Sur­faces in 4-man­i­folds and the sur­gery con­jec­ture,” pp. 137–​146 in Geo­metry and to­po­logy of man­i­folds. Fields Inst. Com­mun. 47. Amer. Math. Soc. (Provid­ence, RI), 2005. MR 2189930 Zbl 1094.​57023

[11]V. S. Krushkal: “Sur­gery and in­vol­u­tions on 4-man­i­folds,” Al­gebr. Geom. To­pol. 5 (2005), pp. 1719–​1732. MR 2186117 Zbl 1084.​57017

[12] article M. Freed­man and V. Krushkal: “On the asymp­tot­ics of quantum \( \mathit{SU}(2) \) rep­res­ent­a­tions of map­ping class groups,” For­um Math. 18 : 2 (2006), pp. 293–​304. MR 2218422 Zbl 1120.​57014

[13]V. S. Krushkal: “A counter­example to the strong ver­sion of Freed­man’s con­jec­ture,” Ann. of Math. (2) 168 : 2 (2008), pp. 675–​693. MR 2434888 Zbl 1176.​57025

[14]V. S. Krushkal: “Link groups and the \( A \)-\( B \) slice prob­lem,” pp. 220–​235 in To­po­logy and phys­ics. Nankai Tracts Math. 12. World Sci. Publ. (Hack­en­sack, NJ), 2008. MR 2503398 Zbl 1198.​57015

[15]P. Fend­ley and V. Krushkal: “Tutte chro­mat­ic iden­tit­ies from the Tem­per­ley–Lieb al­gebra,” Geom. To­pol. 13 : 2 (2009), pp. 709–​741. MR 2469528 Zbl 1184.​57002

[16]V. S. Krushkal: “Ro­bust four-man­i­folds and ro­bust em­bed­dings,” Pa­cific J. Math. 248 : 1 (2010), pp. 191–​202. MR 2734171 Zbl 1202.​57008

[17]P. Fend­ley and V. Krushkal: “Link in­vari­ants, the chro­mat­ic poly­no­mi­al and the Potts mod­el,” Adv. The­or. Math. Phys. 14 : 2 (2010), pp. 507–​540. MR 2721654 Zbl 1207.​82007

[18]V. Krushkal: “Graphs, links, and du­al­ity on sur­faces,” Com­bin. Probab. Com­put. 20 : 2 (2011), pp. 267–​287. MR 2769192 Zbl 1211.​05029