return

Celebratio Mathematica

Jeremy Quastel


Bibliography

[1]J. Quastel: “Dif­fu­sion in dis­ordered me­dia,” pp. 65–​79 in Non­lin­ear stochast­ic PDEs (Min­neapol­is, MN, 1994). IMA Vol. Math. Ap­pl. 77. Spring­er (New York), 1996. MR 1395893 Zbl 0840.​60093

[2]J. Quastel and S. R. S. Varadhan: “Dif­fu­sion semig­roups and dif­fu­sion pro­cesses cor­res­pond­ing to de­gen­er­ate di­ver­gence form op­er­at­ors,” Comm. Pure Ap­pl. Math. 50 : 7 (July 1997), pp. 667–​706. MR 1447057 Zbl 0907.​47040 article

[3]J. Quastel and H.-T. Yau: “Lat­tice gases, large de­vi­ations, and the in­com­press­ible Navi­er–Stokes equa­tions,” Ann. of Math. (2) 148 : 1 (1998), pp. 51–​108. MR 1652971

[4]J. Quastel, F. Reza­khan­lou, and S. R. S. Varadhan: “Large de­vi­ations for the sym­met­ric simple ex­clu­sion pro­cess in di­men­sions \( d\geq 3 \),” Probab. The­ory Re­lated Fields 113 : 1 (1999), pp. 1–​84. MR 1670733 Zbl 0928.​60087 article

[5]E. Jan­vresse, C. Land­im, J. Quastel, and H. T. Yau: “Re­lax­a­tion to equi­lib­ri­um of con­ser­vat­ive dy­nam­ics. I: Zero-range pro­cesses,” Ann. Probab. 27 : 1 (1999), pp. 325–​360. MR 1681098

[6]J. Quastel and H.-T. Yau: “Fluc­tu­ation-dis­sip­a­tion equa­tion and in­com­press­ible Navi­er-Stokes equa­tions,” pp. 120–​130 in XIIth In­ter­na­tion­al Con­gress of Math­em­at­ic­al Phys­ics: ICMP ’97 (Bris­bane). Int. Press (Cam­bridge, MA), 1999. MR 1697269

[7]J. Gravn­er and J. Quastel: “In­tern­al DLA and the Stefan prob­lem,” Ann. Probab. 28 : 4 (2000), pp. 1528–​1562. MR 1813833 Zbl 1108.​60318

[8]J. Quastel: “Free bound­ary prob­lem and hy­dro­dynam­ic lim­it,” pp. 109–​116 in Hy­dro­dynam­ic lim­its and re­lated top­ics (Toronto, ON, 1998). Fields Inst. Com­mun. 27. Amer. Math. Soc. (Provid­ence, RI), 2000. MR 1798647 Zbl 1139.​82330

[9]J. Quastel, H. Jankowski, and J. Sher­iff: “Cent­ral lim­it the­or­em for zero-range pro­cesses,” pp. 393–​406 in Spe­cial is­sue ded­ic­ated to Daniel W. Stroock and Srinivasa S. R. Varadhan on the oc­ca­sion of their 60th birth­day, published as Meth­ods Ap­pl. Anal. 9 : 3 (2002). MR 2023132 Zbl 1073.​60021

[10]J. Quastel: “Time re­versal of de­gen­er­ate dif­fu­sions,” pp. 249–​257 in In and out of equi­lib­ri­um (Mam­bu­caba, 2000). Pro­gr. Probab. 51. Birkhäuser (Bo­ston, MA), 2002. MR 1901956 Zbl 1017.​60088

[11]F. Gao and J. Quastel: “Ex­po­nen­tial de­cay of en­tropy in the ran­dom trans­pos­i­tion and Bernoulli–Laplace mod­els,” Ann. Ap­pl. Probab. 13 : 4 (2003), pp. 1591–​1600. MR 2023890 Zbl 1046.​60003

[12]G. Ben Arous, J. Quastel, and A. F. Ramírez: “In­tern­al DLA in a ran­dom en­vir­on­ment,” Ann. Inst. H. Poin­caré Probab. Stat­ist. 39 : 2 (2003), pp. 301–​324. MR 1962779 Zbl 1023.​60089

[13]F. Gao and J. Quastel: “Mod­er­ate de­vi­ations from the hy­dro­dynam­ic lim­it of the sym­met­ric ex­clu­sion pro­cess,” Sci. China Ser. A 46 : 5 (2003), pp. 577–​592. MR 2025926 Zbl 1084.​60556

[14]C. Land­im, J. Quastel, M. Salm­hofer, and H.-T. Yau: “Su­per­dif­fus­iv­ity of asym­met­ric ex­clu­sion pro­cess in di­men­sions one and two,” Comm. Math. Phys. 244 : 3 (2004), pp. 455–​481. MR 2034485 Zbl 1064.​60164

[15]S. Feng, I. Grigor­es­cu, and J. Quastel: “Dif­fus­ive scal­ing lim­its of mu­tu­ally in­ter­act­ing particle sys­tems,” SIAM J. Math. Anal. 35 : 6 (2004), pp. 1512–​1533. MR 2083788 Zbl 1059.​60097

[16]J. Quastel: “Bulk dif­fu­sion in a sys­tem with site dis­order,” Ann. Probab. 34 : 5 (2006), pp. 1990–​2036. MR 2271489 Zbl 1104.​60066

[17]K. Burdzy and J. Quastel: “An an­ni­hil­at­ing-branch­ing particle mod­el for the heat equa­tion with av­er­age tem­per­at­ure zero,” Ann. Probab. 34 : 6 (2006), pp. 2382–​2405. MR 2294987 Zbl 1122.​60085

[18]J. Quastel and B. Valko: “\( t^{1/3} \) Su­per­dif­fus­iv­ity of fi­nite-range asym­met­ric ex­clu­sion pro­cesses on \( \mathbb Z \),” Comm. Math. Phys. 273 : 2 (2007), pp. 379–​394. MR 2318311 Zbl 1127.​60091

[19]J. Quastel and B. Valkó: “A note on the dif­fus­iv­ity of fi­nite-range asym­met­ric ex­clu­sion pro­cesses on \( \mathbb Z \),” pp. 543–​549 in In and out of equi­lib­ri­um. 2. Pro­gr. Probab. 60. Birkhäuser (Basel), 2008. MR 2477398 Zbl 1173.​82341

[20]C. Mueller, L. Myt­nik, and J. Quastel: “Small noise asymp­tot­ics of trav­el­ing waves,” Markov Pro­cess. Re­lated Fields 14 : 3 (2008), pp. 333–​342. MR 2453698 Zbl 1155.​60325

[21]J. Quastel and B. Valkó: “KdV pre­serves white noise,” Comm. Math. Phys. 277 : 3 (2008), pp. 707–​714. MR 2365449 Zbl 1173.​35112

[22]F. Comets, J. Quastel, and A. F. Ramírez: “Fluc­tu­ations of the front in a one di­men­sion­al mod­el of \( X+Y\to2X \),” Trans. Amer. Math. Soc. 361 : 11 (2009), pp. 6165–​6189. MR 2529928 Zbl 1177.​82081

[23]J. Quastel: “KPZ uni­ver­sal­ity for KPZ,” pp. 401–​405 in XVIth In­ter­na­tion­al Con­gress on Math­em­at­ic­al Phys­ics. World Sci. Publ. (Hack­en­sack, NJ), 2010. MR 2730805 Zbl 1203.​80003

[24]M. Balázs, J. Quastel, and T. Seppäläin­en: “Fluc­tu­ation ex­po­nent of the KPZ/stochast­ic Bur­gers equa­tion,” J. Amer. Math. Soc. 24 : 3 (2011), pp. 683–​708. MR 2784327 Zbl 1227.​60083

[25]G. Amir, I. Cor­win, and J. Quastel: “Prob­ab­il­ity dis­tri­bu­tion of the free en­ergy of the con­tinuum dir­ec­ted ran­dom poly­mer in \( 1+1 \) di­men­sions,” Comm. Pure Ap­pl. Math. 64 : 4 (2011), pp. 466–​537. MR 2796514 Zbl 1222.​82070

[26]C. Mueller, L. Myt­nik, and J. Quastel: “Ef­fect of noise on front propaga­tion in re­ac­tion-dif­fu­sion equa­tions of KPP type,” In­vent. Math. 184 : 2 (2011), pp. 405–​453. MR 2793860 Zbl 1222.​35105