return

Celebratio Mathematica

Fraydoun Rezakhanlou


Bibliography

[1]S. Ei­len­berg and S. MacLane: “Co­homo­logy the­ory of Abeli­an groups and ho­mo­topy the­ory, III,” Proc. Natl. Acad. Sci. U.S.A. 37 : 5 (May 1951), pp. 307–​310. MR 0042706 Zbl 0042.​41406 article

[2]F. Reza­khan­lou and S. J. Taylor: “The pack­ing meas­ure of the graph of a stable pro­cess,” pp. 341–​362 in Col­loque Paul Lévy sur les pro­ces­sus stochastiques (Pal­aiseau, 1987). Astérisque 157–​158. 1988. MR 976226 Zbl 0677.​60082

[3]F. Reza­khan­lou: “The pack­ing meas­ure of the graphs and level sets of cer­tain con­tinu­ous func­tions,” Math. Proc. Cam­bridge Philos. Soc. 104 : 2 (1988), pp. 347–​360. MR 948919 Zbl 0657.​28006

[4]F. Reza­khan­lou: “Hy­dro­dynam­ic lim­it for a sys­tem with fi­nite range in­ter­ac­tions,” Comm. Math. Phys. 129 : 3 (1990), pp. 445–​480. MR 1051500

[5]F. Reza­khan­lou: “Hy­dro­dynam­ic lim­it for at­tract­ive particle sys­tems on \( \mathbf{ Z}^d \),” Comm. Math. Phys. 140 : 3 (1991), pp. 417–​448. MR 1130693

[6]F. Reza­khan­lou: “Evol­u­tion of tagged particles in non-re­vers­ible particle sys­tems,” Comm. Math. Phys. 165 : 1 (1994), pp. 1–​32. MR 1298939 Zbl 0811.​60094

[7]F. Reza­khan­lou: “Propaga­tion of chaos for sym­met­ric simple ex­clu­sions,” Comm. Pure Ap­pl. Math. 47 : 7 (1994), pp. 943–​957. MR 1283878 Zbl 0808.​60083

[8]F. Reza­khan­lou: “Mi­cro­scop­ic struc­ture of shocks in one con­ser­va­tion laws,” Ann. Inst. H. Poin­caré Anal. Non Linéaire 12 : 2 (1995), pp. 119–​153. MR 1326665 Zbl 0836.​76046

[9]F. Reza­khan­lou: “Propaga­tion of chaos for particle sys­tems as­so­ci­ated with dis­crete Boltzmann equa­tion,” Stochast­ic Pro­cess. Ap­pl. 64 : 1 (1996), pp. 55–​72. MR 1419492 Zbl 0881.​60087

[10]F. Reza­khan­lou and J. E. Tarv­er: “Boltzmann–Grad lim­it for a particle sys­tem in con­tinuum,” Ann. Inst. H. Poin­caré Probab. Stat­ist. 33 : 6 (1997), pp. 753–​796. MR 1484540 Zbl 0888.​60076

[11]P. Cov­ert and F. Reza­khan­lou: “Hy­dro­dynam­ic lim­it for particle sys­tems with non­con­stant speed para­met­er,” J. Stat­ist. Phys. 88 : 1–​2 (1997), pp. 383–​426. MR 1468390 Zbl 0939.​82032

[12]L. C. Evans and F. Reza­khan­lou: “A stochast­ic mod­el for grow­ing sand­piles and its con­tinuum lim­it,” Comm. Math. Phys. 197 : 2 (1998), pp. 325–​345. MR 1652722 Zbl 0924.​60099

[13]F. Reza­khan­lou: “Large de­vi­ations from a kin­et­ic lim­it,” Ann. Probab. 26 : 3 (1998), pp. 1259–​1340. MR 1640346 Zbl 0935.​60092

[14]F. Reza­khan­lou: “Equi­lib­ri­um fluc­tu­ations for the dis­crete Boltzmann equa­tion,” Duke Math. J. 93 : 2 (1998), pp. 257–​288. MR 1626003 Zbl 0976.​82039

[15]J. Quastel, F. Reza­khan­lou, and S. R. S. Varadhan: “Large de­vi­ations for the sym­met­ric simple ex­clu­sion pro­cess in di­men­sions \( d\geq 3 \),” Probab. The­ory Re­lated Fields 113 : 1 (1999), pp. 1–​84. MR 1670733 Zbl 0928.​60087 article

[16]F. Reza­khan­lou and J. E. Tarv­er: “Ho­mo­gen­iz­a­tion for stochast­ic Hamilton–Jac­obi equa­tions,” Arch. Ra­tion. Mech. Anal. 151 : 4 (2000), pp. 277–​309. MR 1756906 Zbl 0954.​35022

[17]F. Reza­khan­lou: “Cent­ral lim­it the­or­em for stochast­ic Hamilton–Jac­obi equa­tions,” Comm. Math. Phys. 211 : 2 (2000), pp. 413–​438. MR 1754523 Zbl 0972.​60054

[18]F. Reza­khan­lou: “Con­tinuum lim­it for some growth mod­els. II,” Ann. Probab. 29 : 3 (2001), pp. 1329–​1372. MR 1872745 Zbl 1081.​82016

[19]F. Reza­khan­lou: “Con­tinuum lim­it for some growth mod­els,” Stochast­ic Pro­cess. Ap­pl. 101 : 1 (2002), pp. 1–​41. MR 1921440 Zbl 1075.​82011

[20]F. Reza­khan­lou: “A cent­ral lim­it the­or­em for the asym­met­ric simple ex­clu­sion pro­cess,” Ann. Inst. H. Poin­caré Probab. Stat­ist. 38 : 4 (2002), pp. 437–​464. MR 1914935 Zbl 1001.​60031

[21]F. Reza­khan­lou: “A stochast­ic mod­el as­so­ci­ated with En­skog equa­tion and its kin­et­ic lim­it,” Comm. Math. Phys. 232 : 2 (2003), pp. 327–​375. MR 1953069 Zbl 1034.​82050

[22]F. Reza­khan­lou: “Boltzmann–Grad lim­its for stochast­ic hard sphere mod­els,” Comm. Math. Phys. 248 : 3 (2004), pp. 553–​637. MR 2076921

[23]E. Kosy­gina, F. Reza­khan­lou, and S. R. S. Varadhan: “Stochast­ic ho­mo­gen­iz­a­tion of Hamilton–Jac­obi–Bell­man equa­tions,” Comm. Pure Ap­pl. Math. 59 : 10 (2006), pp. 1489–​1521. MR 2248897 Zbl 1111.​60055 article

[24]A. Ham­mond and F. Reza­khan­lou: “Kin­et­ic lim­it for a sys­tem of co­agu­lat­ing planar Browni­an particles,” J. Stat. Phys. 124 : 2–​4 (2006), pp. 997–​1040. MR 2264632 Zbl 1134.​82020

[25]F. Reza­khan­lou: “The co­agu­lat­ing Browni­an particles and Smoluchow­ski’s equa­tion,” Markov Pro­cess. Re­lated Fields 12 : 2 (2006), pp. 425–​445. MR 2249642 Zbl 1134.​82022

[26]A. Ham­mond and F. Reza­khan­lou: “The kin­et­ic lim­it of a sys­tem of co­agu­lat­ing Browni­an particles,” Arch. Ra­tion. Mech. Anal. 185 : 1 (2007), pp. 1–​67. MR 2308858 Zbl 1115.​82021

[27]A. Ham­mond and F. Reza­khan­lou: “Mo­ment bounds for the Smoluchow­ski equa­tion and their con­sequences,” Comm. Math. Phys. 276 : 3 (2007), pp. 645–​670. MR 2350433 Zbl 1132.​35090

[28]F. Reza­khan­lou: “Kin­et­ic lim­its for in­ter­act­ing particle sys­tems,” pp. 71–​105 in En­tropy meth­ods for the Boltzmann equa­tion. Lec­ture Notes in Math. 1916. Spring­er (Ber­lin), 2008. MR 2409051 Zbl 1128.​76055

[29]F. Reza­khan­lou and C. Vil­lani: En­tropy meth­ods for the Boltzmann equa­tion: Lec­tures from a Spe­cial Semester on Hy­dro­dynam­ic Lim­its (Par­is VI, Par­is, 2001). Edi­ted by F. Golse and S. Olla. Lec­ture Notes in Math­em­at­ics 1916. Spring­er (Ber­lin), 2008. MR 2407976 Zbl 1125.​76001

[30]M. R. Yag­houti, F. Reza­khan­lou, and A. Ham­mond: “Co­agu­la­tion, dif­fu­sion and the con­tinu­ous Smoluchow­ski equa­tion,” Stochast­ic Pro­cess. Ap­pl. 119 : 9 (2009), pp. 3042–​3080. MR 2554038 Zbl 1170.​76053

[31]M. Ran­jbar and F. Reza­khan­lou: “Equi­lib­ri­um fluc­tu­ations for a mod­el of co­agu­lat­ing-frag­ment­ing planar Browni­an particles,” Comm. Math. Phys. 296 : 3 (2010), pp. 769–​826. MR 2628822 Zbl 1192.​82028

[32]F. Reza­khan­lou: “Mo­ment bounds for the solu­tions of the Smoluchow­ski equa­tion with co­agu­la­tion and frag­ment­a­tion,” Proc. Roy. Soc. Ed­in­burgh Sect. A 140 : 5 (2010), pp. 1041–​1059. MR 2726119 Zbl 1206.​35055