Celebratio Mathematica

J. Hyam Rubinstein

Topology

Complete Bibliography

Works connected to Nicholas Charles Wormald

Filter the Bibliography List

clear

J. H. Ru­bin­stein, D. Thomas, and N. Wormald: Al­gorithms for con­strained net­works, 1992. From un­pub­lished pro­ceed­ings of the sev­enth Aus­trali­an tele­traffic re­search sem­in­ar (Man­num, Aus­tralia, Novem­ber 1992). misc

M. Brazil, T. Cole, J. H. Ru­bin­stein, D. A. Thomas, J. F. Weng, and N. C. Wormald: “Min­im­al Stein­er trees for \( 2^k\times 2^k \) square lat­tices,” J. Comb. The­ory, Ser. A 73 : 1 (1996), pp. 91–​110. MR 1367609 Zbl 0844.​05036 article

M. Brazil, J. H. Ru­bin­stein, D. A. Thomas, J. F. Weng, and N. C. Wormald: “Full min­im­al Stein­er trees on lat­tice sets,” J. Com­bin. The­ory Ser. A 78 : 1 (April 1997), pp. 51–​91. MR 1439632 Zbl 0874.​05018 article

J. H. Ru­bin­stein, D. A. Thomas, and N. C. Wormald: “Stein­er trees for ter­min­als con­strained to curves,” SIAM J. Dis­crete Math. 10 : 1 (1997), pp. 1–​17. MR 1430542 Zbl 0869.​05023 article

M. Brazil, J. H. Ru­bin­stein, D. A. Thomas, J. F. Weng, and N. C. Wormald: “Min­im­al Stein­er trees for rect­an­gu­lar ar­rays of lat­tice points,” J. Comb. The­ory, Ser. A 79 : 2 (August 1997), pp. 181–​208. MR 1462554 Zbl 0883.​05038 article

M. Brazil, J. H. Ru­bin­stein, D. A. Thomas, J. F. Weng, and N. C. Wormald: “Shortest net­works on spheres,” pp. 453–​461 in Net­work design: Con­nectiv­ity and fa­cil­it­ies loc­a­tion (Prin­ceton, NJ, 28–30 April 1997). Edi­ted by P. M. Pardalos and D.-Z. Du. DIMACS Series in Dis­crete Math­em­at­ics and The­or­et­ic­al Com­puter Sci­ence 40. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1998. MR 1613017 Zbl 0915.​05043 incollection

J. H. Ru­bin­stein, D. A. Thomas, and N. C. Wormald: “A poly­no­mi­al al­gorithm for a con­strained trav­el­ing sales­man prob­lem,” Net­works 38 : 2 (September 2001), pp. 68–​75. MR 1852365 Zbl 0990.​90102 article

M. Brazil, J. H. Ru­bin­stein, D. A. Thomas, J. F. Weng, and N. C. Wormald: “Gradi­ent-con­strained min­im­um net­works, I: Fun­da­ment­als,” J. Glob. Op­tim. 21 : 2 (2001), pp. 139–​155. Part III was pub­lished in J. Op­tim. The­ory Ap­pl. 155:1 (2012). Ru­bin­stein was not a co-au­thor of part II. MR 1863330 Zbl 1068.​90605 article

M. Brazil, D. Lee, J. H. Ru­bin­stein, D. A. Thomas, J. F. Weng, and N. C. Wormald: “A net­work mod­el to op­tim­ise cost in un­der­ground mine design,” Trans. S. Afr. Inst. Elec­tr. Eng. 93 : 2 (2002), pp. 97–​103. article

M. Brazil, D. Lee, M. Van Leuven, J. H. Ru­bin­stein, D. A. Thomas, and N. C. Wormald: “Op­tim­ising de­clines in un­der­ground mines,” Min­ing Tech. 112 : 3 (2003), pp. 164–​170. article

M. Brazil, D. Lee, J. H. Ru­bin­stein, D. A. Thomas, J. F. Weng, and N. C. Wormald: “Op­tim­isa­tion in the design of un­der­ground mine ac­cess,” pp. 121–​124 in Orebody mod­el­ling and stra­tegic mine plan­ning: Un­cer­tainty and risk man­age­ment mod­els. Edi­ted by R. Di­mitrako­poulos. Spec­trum Series 14. Aus­tralasi­an In­sti­tute of Min­ing and Me­tal­lurgy (Mel­bourne), 2005. incollection

J. H. Ru­bin­stein, J. Weng, and N. Wormald: “Ap­prox­im­a­tions and lower bounds for the length of min­im­al Eu­c­lidean Stein­er trees,” J. Glob. Op­tim. 35 : 4 (2006), pp. 573–​592. MR 2249549 Zbl 1133.​90408 article

M. Brazil, P. A. Gross­man, D. H. Lee, J. H. Ru­bin­stein, D. A. Thomas, and N. C. Wormald: “De­cline design in un­der­ground mines us­ing con­strained path op­tim­isa­tion,” Min­ing Tech. 117 : 2 (2008), pp. 93–​99. article

M. Brazil, P. A. Gross­man, D. A. Thomas, J. H. Ru­bin­stein, D. Lee, and N. C. Wormald: “Con­strained path op­tim­isa­tion for un­der­ground mine lay­out,” pp. 856–​861 in Pro­ceed­ings of the World Con­gress on En­gin­eer­ing 2007 (Im­per­i­al Col­lege, Lon­don, 2–4 Ju­ly 2007), vol. II. Edi­ted by S. I. Ao, L. Gel­man, D. Hukins, A. Hunter, and A. M. Kor­sun­sky. Lec­ture Notes in En­gin­eer­ing and Com­puter Sci­ence 2166. News­wood Lim­ited (Hong Kong), 2008. incollection

M. Brazil, J. H. Ru­bin­stein, D. A. Thomas, J. F. Weng, and N. Wormald: “Gradi­ent-con­strained min­im­um net­works, III: Fixed to­po­logy,” J. Op­tim. The­ory Ap­pl. 155 : 1 (2012), pp. 336–​354. Part I was pub­lished in J. Glob. Op­tim. 21:2 (2001). Ru­bin­stein was not a co-au­thor of part II. MR 2983123 Zbl 1255.​90120 article