return

Celebratio Mathematica

Kevin Walker


Bibliography

[1]K. Walk­er: “An ex­ten­sion of Cas­son’s in­vari­ant to ra­tion­al ho­mo­logy spheres,” Bull. Amer. Math. Soc. (N.S.) 22 : 2 (1990), pp. 261–​267. MR 1016040 Zbl 0699.​57008

[2]K. Walk­er: An ex­ten­sion of Cas­son’s in­vari­ant. An­nals of Math­em­at­ics Stud­ies 126. Prin­ceton Uni­versity Press, 1992. MR 1154798 Zbl 0752.​57011

[3] article M. H. Freed­man, K. Walk­er, and Z. Wang: “Quantum \( \mathit{SU}(2) \) faith­fully de­tects map­ping class groups mod­ulo cen­ter,” Geom. To­pol. 6 (2002), pp. 523–​539. MR 1943758 Zbl 1037.​57024 ArXiv math.​GT/​0209150

[4] article M. Freed­man, C. Nayak, K. Shten­gel, K. Walk­er, and Z. Wang: “A class of \( P,T \)-in­vari­ant to­po­lo­gic­al phases of in­ter­act­ing elec­trons,” Ann. Phys­ics 310 : 2 (2004), pp. 428–​492. MR 2044743 Zbl 1057.​81053

[5] article M. H. Freed­man, A. Kit­aev, C. Nayak, J. K. Slinger­land, K. Walk­er, and Z. Wang: “Uni­ver­sal man­i­fold pair­ings and pos­it­iv­ity,” Geom. To­pol. 9 (2005), pp. 2303–​2317. MR 2209373 Zbl 1129.​57035 ArXiv math/​0503054

[6] incollection M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang: “On pic­ture \( (2+1) \)-TQFTs,” pp. 19–​106 in To­po­logy and phys­ics (Tianjin, China, 27–31 Ju­ly 2007). Edi­ted by K. Lin, Z. Weng, and W. Zhang. Nankai Tracts in Math­em­at­ics 12. World Sci­entif­ic (Hack­en­sack, NJ), 2008. MR 2503392 Zbl 1168.​81024 ArXiv 0806.​1926

[7] article L. Fidkowski, M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang: “From string nets to nona­beli­ons,” Comm. Math. Phys. 287 : 3 (2009), pp. 805–​827. MR 2486662 Zbl 1196.​82072 ArXiv cond-​mat/​0610583

[8]D. Clark, S. Mor­ris­on, and K. Walk­er: “Fix­ing the func­tori­al­ity of Khovan­ov ho­mo­logy,” Geom. To­pol. 13 : 3 (2009), pp. 1499–​1582. MR 2496052 Zbl 1169.​57012

[9] article D. Calegari, M. H. Freed­man, and K. Walk­er: “Pos­it­iv­ity of the uni­ver­sal pair­ing in 3 di­men­sions,” J. Amer. Math. Soc. 23 : 1 (2010), pp. 107–​188. MR 2552250 Zbl 1201.​57024 ArXiv 0802.​3208

[10] article M. Freed­man, R. Gom­pf, S. Mor­ris­on, and K. Walk­er: “Man and ma­chine think­ing about the smooth 4-di­men­sion­al Poin­caré con­jec­ture,” Quantum To­pol. 1 : 2 (2010), pp. 171–​208. MR 2657647 Zbl 1236.​57043

[11]V. Jones, D. Shlyakhten­ko, and K. Walk­er: “An or­tho­gon­al ap­proach to the sub­factor of a planar al­gebra,” Pa­cific J. Math. 246 : 1 (2010), pp. 187–​197. MR 2645882 Zbl 1195.​46067

[12]S. Mor­ris­on and K. Walk­er: “High­er cat­egor­ies, colim­its, and the blob com­plex,” Proc. Natl. Acad. Sci. USA 108 : 20 (2011), pp. 8139–​8145. MR 2806651