ON FUNDAMENTAL SYSTEMS OF PROBABILITIES OF A FINITE
NUMBER OF EVENTS

By Kar Lar CrunG
Tsing Hua University, Kunming, China

We consider a probability function P(E) defined over the Borel set of events
generated by the n arbitrary events E,, ---, E,, which will be denoted by
£a, .-, n).

We use the same notations as in the author’s former paper', with the following
abbreviations. We denote a combination (a; --- a,) simply by (), and use
the corresponding Latin letter a for its number of members. Similarly we write
@) for (B1 - - - By), but (») for (1, ---, n). We say that (8) belongs to («) and
write (8) € (a) when and only when the set (8, - - - 85) is a subset of (o - - - aa).
Then and then only we write (a) — (8) for the subset of elements of (a) that do
not belong to (8); thus we may write it as (y) with¢ = ¢ — b. When and only

when (a) and (8) have no common elements, we write (a) + (8) for the set of.

elements that belong either to () or to (8); thus we may write it as (y), with
¢c=a+ b = n Wenote the case for empty sets: (0) + (0) = (0). Now we
can write Py fOr Pra;..-aal » Pe(ay) fOr Pay...aq , Po((@)) for py(as - - - aa), ete.
Further we denote by pp;((@)) (1 < b < a < n) the probability of the occurrence
of exactly b events out of E,, , -+, E.,, and write

PPG) = 2 pal@), PMO) = 2 pwm@);
(a) € (») (a) e (»)

since a is fixed by the left-hand sides, the summations on the right-hand sides
are to be extended to all the (Z)—combinations of (»).

A sum written QE is to be extended to all combinations (8),b = 0,1, --- ;@
)e(a)

belonging to (), when b is not previously fixed; it is to be extended to all the
Z -combinations belonging to (a), when b is previously fixed.

DEerFINITION 1. A system of quantities is said to form a fundamental system of
probabilities for a set of events if and only if the probability of every event in the
set can be expressed in terms of these quantities.

DEFINITION 2. An event in £(1, - -+ , n) is said to be symmetrical if and only
if it is-identical with every event obtained by interchanging any pair of suffives
@, 7) (4,5 =1, -+, n) in the definition of it. The subset of symmetrical events
in £Q, ---, n) will be denoted by &(1, --- , n).

From the normal form® of every event in £(1, -- -, n) and the principle of

1 “On the probability of the occurrence of at least m events among n arbitrary events,”
Annals of Math. Stat., Vol. 12, 1941.
t See Hilbert-Ackermann, Grundzige der theoretischen Logik, Chap. 1.
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total probabilities, we can easily see the truth of the following theorems, which
may of course be made more precise.

THEOREM. The system of Py , (@) € (v), 2" in number, forms a fundamental
system for £(1, --- , n).

THEOREM. The system of pi((»)), 0 £ @ < n, n + 1 in number, forms a
Sfundamental system for (1, -+, n).

Next, a theorem of Broderick®, in a less precise form, may be stated:

The system of payy @0y = 1), () € (¥), 2" n number, forms a fundamental
system for L.

We may add in an easy way the following

THEOREM. The system of S.((v)) So((»)) = 1,0 < a < n, n + 1 in number,
forms a fundamental system for S.

In the present paper we shall prove, inter alia, the following four theorems
of the above type, stated in more precise forms.

TaEOREM 1. For any E in £, we havc

P(E) = ¢ + h;') cami((e)),
ayk0

where ¢o = 0 or 1 and the c,’s are integers; and they are unique'.
TrEOREM 2. For any E in 8, we have

PE) =c + 2, caPP®,
qm=1

where co = 0 or 1 and the c4’s are integers; and they are unique.
TrEOREM 3. For any E in £, we have

P(E) = do + (.?;z., de P (@),
apk0

where dy = 0 or 1 and the d.’s are rational numbers and they are unique.
TaEOREM 4. For any E in 8, we have

P(E) = do + 2, dapl",
a=1

where dy = 0 or 1 and the d,’s are rational numbers; and they are unique.

Less precisely, we may say that the system of p;((a)) or py;((a)) forms a
fundamental system for £; the system of ‘P,ﬁl’((v)) or P!"((a)) forms a funda-
mental system for S.

In fact however, we shall give much more than the mere proofs of

3 Fréchet, ‘““Compléments & un théordme de T. S. Broderick concernant les événements
dependants,”’ Proc. Edinburgh Math. Soc., Ser. 2, Vol. 6 (1939).

4 “Unique’’ in the sense that it is impossible to replace therein the coefficients ¢ by other
numbers which are independent of the Borel set of events and the probability function.
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these theorems. We shall establish the following explicit formulas for the
general parameter m.

@) Py = 1 — p((v)),
D G Pren = 2, (=1 'm(() — (a) + (8)),° 1<a<n.
kU
mm — 1 n  min(c,n—a) . n—2 -1
© Puan = (—1) e cgmd_m(om_u) (-1) _d(a +d— m)
Pm((v) — (8) + (8)), n>a>m>2°
SRR
% —n+a b 1
@1 (@) = 2 (1) (2 )PP 15esn
@ pa®) = X (D L,a b mPRG);  n2azm22,
where
( 0 , b<nm—a+m-—1,
(—1)"-“<m‘il)_ b=n—a+m—1,

L(n’a:b’m) =
W (=1)"*(m — 1)1 (b — m)!
‘(a—m)l{ab—n(m—1} b>n—a+m—1.
al(ln —a)la+b—n—-—m+ 1)

® © pon(@) =1- 23 (P 2]) A

n c=1

n min(c,n—a) _ — 1 -1
Pran=(-D)"" 3 3 (1) d(d -{7_& d— m)

ven N c=m d=max(0,c—a)
(ii)

0y B> P ((v) — (8) + (8)), n>a>m>1.
(1)1('5).(‘2.)

”

— __1\n—atb—m b—m a - [m]
@ )=, % 0 (C T (O RO, nzazm2l
A simpler derivation of (1) than that given in an earlier paper follows. Let
us write Poincaré’s formula as follows:
b

pul@ = 2 (=07 (& T 1) 840).

c=m

8 Obviously we mean ((v) — (a)) + (8) and ((v) — (8)) + () respectively; similarly in the
sequel.
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Then for a fixed b = m, summing over all (8) e (v), we get

> pu@) = 3 -0 (2 2 (2 2 ) son.

(B) e(») c=m
Hence
» _ 2 e — 1 2 _ n—c
2 (0T 2 (@) = X (,,, - 1) 80D & (-1 (b - c>
' X fe—1 1 if e=n
W =£(I)se{y § oot

= (22 )0 = (22 1) son.

A change of notation gives, fora + b = m,

_ a+d
(a M Ii 1 1) P+ = CZ,;. (=)™ 2 pm((¥).

m (r)e(a)+(B)
Hence
a+b—1
( m—1 ) E P+
B)e(r)—(a)

n—a—d

b—d )“).23,_(,) pa((7) — (3) + (3)).

a+b min (¢, n—a) <
(7)—(8) e(a)

=2 (-)™ X

cm=m d==max (0,c—a)

Substituting in the well-known formula, fora = 1

n—a
b
Pran = 2, (—1) 2 Du@+6
be=0 ®) e(r)—(a)

we got for n =2 a = m

min (¢,n—a)

n
Pran = 2, (1™
cu=m d==max (0,c-a)

_ Y _pfn—a—d\fa+b—-1\"
P o+ {g (7))

0y

Thus the problem reduces to the summation of the following series:
=, _pfrn—a—d\fa+b-1\"
CHE U (it

Case 1: m = 1. In this case the series reduces to

N _qpfrn—a—d\_[(-1)"" if d=n—agq,
Z ( D( b—d )‘{ 0 if d<n-—oa
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Hence for a = 1,

n

Pran= 2 (=17 X p() = (@) + ¥) = () = (@) (=)™

c=max (1, n—a) ()= () —(a)) e(a)
Writing (v) — ((») — (a)) = (B), we obtain
Pan = 2 (=1 3 () = (@ + ®).
bemax (1—n-+a,0) B) € (a)

This is equivalent to (1.1), (ii), while (i) is trivial.
Case 2: m = 2. We have, forc = 1,

Er()CT) -an (i)

which is easily proved by induction on a.
Hence for m = 2,

N Ul [
= Zi (—1)‘”‘"(""'; - d)(a+1l::-l-‘«f - 1)‘l

P ..i—a( 1)( l:—d)(a-!—;dn:ll-l-b')—x

= (-0 1(‘,1:_2 )

Substituting in (1) we get formula (1).
To derive formula (2.1) for a fixed @, 1 = a < n, we sum (1.1, ii), which gives

pa(@) = T pen= 3 (D7 T T ) - @ + 6).
(a) € () be=0 (@) e (») (B) ¢ (a)
n—a-+ b0
Letting () — (@) + (8) = (), we get

pa(®) = 35 (—1)“*"‘( ¢ ) T al),

c=max (1,n—a) n — (7) €« (»)

which is formula (2.1).
The following form of Poincaré’s formula is of assistance in deriving (2):

pa(®) = 35 (=1 (5) 80,
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Substituting from (1), we get

pae) = 5 0 () (£ 1) v (R D)) e

cwa m =m

G G Il e [C N

Thus the problem reduces to the summation of the following series:

snanm=_ % (OGN

First, we have, forz = 0,y 2 w,

s o ()etn @t
0 if y—w+1<z,

= =Dyl +1 — w)!
{.(z+w— Diy+1—w—2)!

which may be easily proved by induction on z.
Next, we have

Lin, a,b,m) = ™= D! 3 (_l)c—a<n - b) c(c — m)!

z=max (0,1—w)

if y—w+12e

a! c¢=max (a,b) c — b (C - a)!
_(m = 1! = _ cr+b_.,<n - b) (¢ +b)(c + b—m)!
- al c'-maxz(l),a—b) ( 1) C, (C, + b — a,)'
— (__1\be (m - 1)! = 1\
- ( 1) a! ¢’=max (0,a—b) ( 1)
'<n—b)(c'+b—m+l)!+(m— (¢ +b —m)!
¢ (" +b—a)!

= (0 P D16, 6, b,m) + (m = DTG, 0,5,m + D),

where

= cn—b)(c+b—m+l)!
2, ”( ¢ ©+b=a)t
0 if b<n—a+m-—1,
={(=D)""@a-—m+DIb-—m+1! . . _ _
mn—a)lla+b—n—m+1)! if bzn-—atm-—1,
by the preceding formula. Thus we get the explicit expression for L(n, a, b, m)
given in formula (2), which is thereby proved.

The derivations of formulas 3 and 4 are similar to the above and may be
omitted.

T(n, a, b, m) =

c=max (0,a—b)
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Now we can give the essential argument for Theorems 1-4. It is evident
that for any E in £, we have

P(E) = Zpyan,

where the summation extends to certain combinations (a) € (»). Substituting
from formula (1.1) we get Theorem 1; substituting from formula (3) we get
Theorem 3. Next, for any E in &, we have

P(E) = Zpia((»)),

where the summation extends to certain values of a. Substituting from formula
(1.1), (i) and formula (2) we get Theorem 2; substituting from formula (3), (i)
and formula (4) we get Theorem 4. We may note these proofs are “construc-
tive”’.

It remains to prove the uniqueness of the coefficients in The .rems 1-4. For
Broderick’s theorem this has been done by Fréchet®, by introducing “inde-
pendent events””. Our. proof will be based on the conditions of existence, also
initiated by Fréchet®, for the systems pi((@)), pm((a)), P& (), PM(()).

The conditions of existence of the system pi((e)) have been given by the.
author in the paper’, though the proof there is not quite complete.

1. Condilions of existence of the system P& ((»)). Given n quantities Q"
1 £ a = n; what are the necessary and sufficient conditions that they may be
the system of P’((»))’s, 1 £ a < n, of a probability function defined over
@(11 Tty n)?

From formula (1.1), (i) and formula (2) it is evident that necessary conditions
are, forl < a = n,

S (e e

3 o
1-Q¥ =0,
and
) =2 (! )Q;” +1-QP =1,
am=] b=n—a n-—a
)

The last condition can be re-written as

Zevee 3 eo(,l AES R

a=max(1,n—b)

which reduces to the identity 1 = 1.

¢ “Conditions d’existence de systéme d’événements associés & certaines probabilités,”’
Jour. de Math., 1940. However, our interpretation of the term would mean instead ‘‘con-
ditions of existence of a probability function defined over a Borel set of events, etc.”
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To show that the conditions (3) are sufficient, put

— 3 __1\b—ntae—1 b 1)
Pa = 2 (—1) (n—a)Q"’

bmp—g
P =1— QY.
By (3) and (4) we have, for0 < a < n,

P 20 and az;) P = 1.

Hence they are actually the p)((v))’s of a probability function. We want to
show that the P{’((»))’s of this probability function coincide with the given
Q"’s, so that this is the probability function we seek. We have,

PO = T p®) - Tow 3 6G:z y

=max (1,b—n+a)

n n min(a,b)
cz-(:) {a—m;x%.n-—c) ( ) n-—a h-mnx(l%—mt—a) h b—h

Now the series in curl brackets

- 5 corO)-03 )
+ 5o )0)

-2 (s )6)

n—b ¢
()07
a-mnx;l.n—c) ( ) n-—a b
If ¢ = n, the last

=()-Z e (2)(2)
0= E ()6 ko

«

If ¢ < n, we have

=04 (—1) O_Z—i (=)™ (n : a)(n b )
= (17 2 (-1 (;)(7:) ={(1) i o

P((0) = Q5.

Therefore
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2. Conditions of existence of the system pu((a)). Given 2" — 1 quantities
qu((a)), (a) € (¥), @ = 1, what are the necessary and sufficient conditions that
they may be the system of py((@))’s, of a probability function defined over
£4a, .-, n)?

From formula 3 it is evident that necessary conditions are

1 n  min(c,n—a)

I3 78 o (rol)
N ce=1 d=max (0,c—a) a+d—1

©) ® e%:)—(a) qu((y) — @) + (®) 20,
(7)—(8) ¢ (a)

-1y (” - 1)_1 = () 2 0;

c—1

N c=1 (7) € (»)
and
1 n min(c,n—a) omd1 n—1 -1
1+l > TR 1Y
(6) N (a)e(r) c=1 d=max(0,c—a) a -+ d—1

w @ an(@) — @)+ 6) =1

(n—-
Consider the sum
Z mm(cz.n—a) ] 4 n — 1 )—l Z
(a)e(y) d=max(0,c—a) (_ ) (a + d -1 (8) e(r)—(a) qu]((’Y) - (6) + (6)).
(7)—(8) e(a)
For a fixed (§), the number of ways of writing (y) = (v) — (8) + (8) is (;),

then since (y) — (8) € (a) but () — ((y) — () ¢ (») — (v), the number of
n—c
—c+ d/’

n min(c,n—a) -1
afc n—=c n—1
.}:; a-m;‘o.c.,) (=1) <d)(a —c+ d)(a +d-— 1)

_ n—1 —~1 n min(c,n—a) 4(6)(0 + d -1 .
- (C - 1) azo d-mnx%.c—a) (—1) d Cc — ]. - 0'
Therefore the condition (6) reduces to the identity 1 = 1.

To show that conditions (6) are sufficient, put the left-hand sides of (5) equal
t0 Py and pyey respectively. Then _

choices of (a) is Thus the coefficient of g(;((y)) in the sum is

Piua)y = Z Prar+®)
B)e(v)—(a)
L nia min(c.zn—-a—b) -1 -1 Z
== 1) =1
@ ch (=1) b=0 d=max (0,c—a—b) (= ) (a +d- ) ®B) e(r)—(a)

qm((v) — (@) + ().
() ¢ ()—ta)—(8)
(M= (B e(@)+8)
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Let (v) = (v) — (#) + (¢), where () € (), (v) — (¢) € (¥) — (a). Then the
sum in the curl brackets can be written, by a combinatorial ealculation, as

min(a,¢) (n—a min(c—f,n—a—b) . -1
v _ ac—f(n—a-—c+f)( n—1 )
/20 {bz-(:)d-mnx(oz.q—f—b)( 1) ( d ) b—c+d+f a+b+d—1
o qu((y) — () + (¢)).
(N=(8) ()= ()
The sum in the last curl brackets. is
n—1 —1 n—a min(c—f,n—a—b). afc —f)(a + b + d—1
<a+c—f—1) gd-m&x«%—f—b) (=1 ( d J\a+c—f-— 1).
Inverting the order of summations,
n— 1 -1 min(c—f,n—a) d(c "‘f) n—a—d (a + b + d _ 1)
(a‘l' c—f— 1) d:-max(O.cZ—f—n-l'a) =1 d b-;—f—d a+c—f—1
n — 1 -1 min(c—f,n—a) afc —j n
- (a + c _,f - l) d-max(o.;—f—»-i-a) (—1) ( d )(a + c — f)
_ ( n )( n—1 )'”Z_f(_l)d(c-f) 2 it r=o
- a+c——f a+c—f—l d=0 d -
0 if f#ec
Hence (7) reduces to
1 o—
Py = -2, (=1 2 qu((y)).
A c=1 (7 e(a?

Then
» 1 -1 [a — d
s = T par =3 = (-0 (5 2 9 aw@)

8)e(a)
dy0
pu((@) = 2 (=1 8i((@)

3 s-afa —d —
(‘.’;“E"’ {gl (—1) (b _ d)} qu((8)) = qu((a)).

The conditions of existence of the system P{((»)), 1 S a < n, are similarly

deduced from formula (3), (i) and formula (4) with m = 1.
Now we can prove the uniqueness of the coefficients in Theorems 1-4. Since

the proofs are all exactly similar, we take Theorem 2. Suppose, if possible,
there exists another system of coefficients c ,0 = a < nsothat

P(E) = o + 02_‘1 WPO(() = ¢ + ;l & PO ().
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Taking the difference, we get a linear polynomial in the variables P{"((»)),
1 £ a £ n which must vanish:

8) (e0 = @) + 25 (e = €)P"((2)) = 0,
for all “admissible” values of the variables. These values, say Q ", are precisely
those which satisfy the conditions (3).

It is evidently easy to construct a system of Q5,1 < a = n, which satisfy the
conditions (3) written with the sign of strict inequality “>”’. Hence in a suf-
ficiently small neighborhood of the point (", Q5”, ---, Q) in the n-dimen-
sional space these strict inequalities still hold. Hence the polynomial vanishes

in this neighborhood and so must vanish identically; that is,

ta—co=0 for 0Za<n. Q. E.D.



