Celebratio Mathematica

Paul Baum

Complete Bibliography

Works connected to Nigel David Higson

Filter the Bibliography List


P. Baum, N. Hig­son, and R. Ply­men: “Equivari­ant ho­mo­logy for \( \mathrm{SL}(2) \) of a \( p \)-ad­ic field,” pp. 1–​18 in In­dex the­ory and op­er­at­or al­geb­ras (Boulder, CO, 6–10 Au­gust 1991). Edi­ted by J. Fox and P. Haskell. Con­tem­por­ary Math­em­at­ics 148. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1993. MR 1228497 Zbl 0844.​46043 incollection

P. Baum, A. Connes, and N. Hig­son: “Clas­si­fy­ing space for prop­er ac­tions and \( K \)-the­ory of group \( C^* \)-al­geb­ras,” pp. 241–​291 in \( C^* \)-al­geb­ras: 1943–1993 (San Ant­o­nio, TX, 13–14 Janu­ary 1993). Edi­ted by R. S. Dor­an. Con­tem­por­ary Math­em­at­ics 167. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1994. MR 1292018 Zbl 0830.​46061 incollection

P. Baum, N. Hig­son, and R. Ply­men: Cosheaf ho­mo­logy and \( K \) the­ory for \( p \)-ad­ic groups. Pre­print, Pennsylvania State Uni­versity, 1995. techreport

P. Baum, N. Hig­son, and R. Ply­men: “A proof of the Baum–Connes con­jec­ture for \( p \)-ad­ic \( \mathrm{GL}(n) \),” C. R. Acad. Sci. Par­is Sér. I Math. 325 : 2 (July 1997), pp. 171–​176. MR 1467072 Zbl 0918.​46061 article

P. F. Baum, N. Hig­son, and R. J. Ply­men: “Rep­res­ent­a­tion the­ory of \( p \)-ad­ic groups: A view from op­er­at­or al­geb­ras,” pp. 111–​149 in The math­em­at­ic­al leg­acy of Har­ish-Chandra: A cel­eb­ra­tion of rep­res­ent­a­tion the­ory and har­mon­ic ana­lys­is (Bal­timore, MD, 9–10 Janu­ary 1998). Edi­ted by R. Dor­an and V. Varada­ra­jan. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 68. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2000. MR 1767895 Zbl 0982.​19006 incollection

P. Baum, N. Hig­son, and T. Schick: “On the equi­val­ence of geo­met­ric and ana­lyt­ic \( K \)-ho­mo­logy,” pp. 1–​24 in Spe­cial is­sue: In hon­or of Robert D. MacPh­er­son, Part 3, published as Pure Ap­pl. Math. Q. 3 : 1. In­ter­na­tion­al Press (Som­merville, MA), 2007. MR 2330153 Zbl 1146.​19004 incollection

P. Baum, N. Hig­son, and T. Schick: “A geo­met­ric de­scrip­tion of equivari­ant \( K \)-ho­mo­logy for prop­er ac­tions,” pp. 1–​22 in Quanta of maths: Pro­ceed­ings of meet­ing in hon­or of Alain Connes’ 60th birth­day. Edi­ted by E. Blan­chard, D. Ell­wood, M. Khalkhali, M. Mar­colli, H. Mo­scov­ici, and S. Popa. Clay Math­em­at­ics Pro­ceed­ings 11. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2010. MR 2732043 Zbl 1216.​19006 ArXiv 0907.​2066 incollection