ON MUTUALLY FAVORABLE EVENTS

By KAI-LAI CHUNG

Tsing Hua University, Kunming, China

Introduction. For a set of arbitrary events, E. J. Gumbel, M. Fréchet and the
author\(^1\) have recently obtained inequalities between sums of certain proba-

bility functions. One of the results of the author is the following:

Let \(E_1, \ldots, E_n\) be \(n\) arbitrary events and let \(p_m(v_1, \ldots, v_k)\) denote

the probability of the occurrence of at least \(m\) events out of the \(k\) events

\(E_{v_1}, \ldots, E_{v_k}\). Then, for \(k = 1, \ldots, n - 1\) and \(1 \leq m \leq k\) we have

\[
\binom{n-m}{k-m} \Sigma p_m(v_1, \ldots, v_{k+1}) \leq \binom{n-m}{k-m+1} \Sigma p_m(v_1, \ldots, v_k),
\]

where the summations extend respectively to all combinations of \(k + 1\) and \(k\)

indices out of the \(n\) indices \(1, \ldots, n\).

In course of proof of the above inequalities it appears that similar inequalities

between products instead of sums can be obtained under certain assumptions

regarding the nature of interdependence of the events. We shall first study the

nature of such assumptions, and then proceed to the proof of the said inequalities

(Theorems 1 and 2). It may be noted that the inductive method used here

serves equally well for the proof of the inequalities cited above, though some-

what longer, but apparently our former method is not applicable here.

That events satisfying our assumptions actually exist, is shown by an appli-

cation to the elementary theory of numbers. The author feels incompetent to
discuss other possible fields of application.

1. Let a set of events be given

\(E_1, E_2, \ldots, E_n, \ldots\)

and let \(E'_i\) denote the event non-\(E_i\). Let \(p(i)\) denote the probability of the
occurrence of \(E_i\), \(p(i')\) that of the occurrence of \(E'_i\). For convenience we
assume that for any \(i\) \(p_i(1 - p_i) \neq 0\); events with the exceptional probabilities
0 or 1 may evidently be left out of account.

Let \(p(v_1, \ldots, v_k)\) denote the probability of the occurrence of the conjunction
\(E_{v_1} \cdot \cdot \cdot E_{v_k}\) and let \(p(\mu_1, \ldots, \mu_k, v_1 \cdot \cdot \cdot v_k)\) denote the probability of the occurrence
of \(E_{\mu_1} \cdot \cdot \cdot E_{\mu_k}\), on the hypothesis that \(E_{\mu_1} \cdot \cdot \cdot E_{\mu_k}\) have occurred. The
\(\mu\)'s or \(v\)'s may be accented.

Definition 1: If \(p(v_1, v_2) > p(v_2)\), we say that the occurrence of the event \(E_{v_1}\)
is favorable to the occurrence of the event \(E_{v_2}\), or simply that \(E_{v_1}\) is favorable to \(E_{v_2}\).

338
If \(p(v_1, v_2) = p(v_2) \), we say that \(E_{v_1} \) is indifferent to \(E_{v_2} \). If \(p(v_1, v_2) < p(v_2) \), we say that \(E_{v_1} \) is unfavorable to \(E_{v_2} \).

Thus the relations “favorableness,” “indifference,” and “unfavorableness” are mutually exclusive and together exhaustive. We state the following immediate consequences:

(i) Reflexity: An event is favorable to itself; in fact, \(p(v, v) = 1 > p(v) \).

(ii) Symmetry: If \(E_1 \) is favorable (indifferent, unfavorable) to \(E_2 \), then \(E_2 \) is favorable (indifferent, unfavorable) to \(E_1 \). In fact, we have

\[
p(1)p(1, 2) = p(12) = p(2)p(2, 1),
\]

\[
\frac{p(1, 2)}{p(2)} = \frac{p(2, 1)}{p(1)}.
\]

Thus \(p(1, 2) \geq p(2) \) is equivalent to \(p(2, 1) \geq p(1) \).

In particular, if \(E_1 \) is indifferent to \(E_2 \), then so is \(E_2 \) to \(E_1 \). They are then usually said to be independent of each other.

(iii) If \(E_1 \) is favorable (indifferent, unfavorable) to \(E_2 \), then \(E'_1 \) is unfavorable (indifferent, favorable) to \(E'_2 \). For, we have

\[
p(1)p(1, 2) + p(1')p(1', 2) = p(12) + p(1'2) = p(2),
\]

whence

\[
p(1')p(1', 2) = p(2) - p(1)p(1, 2).
\]

On the other hand,

\[
p(1')p(2) = [1 - p(1)p(2) = p(2) - p(1)p(2).
\]

Since by assumption \(p(1')p(2) \neq 0 \), we have

\[
\frac{p(1', 2)}{p(2)} = \frac{p(2) - p(1)p(1, 2)}{p(2) - p(1)p(2)}.
\]

Thus

\[
p(1', 2) \leq p(2) \text{ according as } p(1, 2) \geq p(2).
\]

For the sake of brevity we introduce the following symbolic notation:

\[
E_1/E_2 = \begin{cases}
1, & \text{if } E_1 \text{ is favorable to } E_2 \\
0, & \text{if } E_1 \text{ is indifferent to } E_2 \\
-1, & \text{if } E_1 \text{ is unfavorable to } E_2.
\end{cases}
\]

Then by (ii) and (iii) we have

\[
E_1/E_2 = E_2/E_1,
\]

\[
E'_1/E_2 = E_2/E'_1 = E_1/E'_2 = E'_2/E_1 = -(E_1/E_2),
\]

\[
E'_1/E'_2 = E'_2/E'_1 = E_1/E_2,
\]

analogous to the rules of signs in the multiplication of integers.
(iv) Non-transitivity: If \(E_1 \) is favorable to \(E_2 \), and \(E_2 \) is favorable to \(E_3 \), it does not necessarily follow that \(E_1 \) is favorable to \(E_3 \); in fact, it may happen that \(E_1 \) is unfavorable to \(E_3 \). For instance, imagine 11 identical balls in a bag marked respectively with the numbers

\[-11, -10, -3, -2, -1, 2, 4, 6, 11, 13, 16.\]

Let a ball be drawn at random. Let

\[E_1 = \text{(the event of the number on the ball being positive)}\]
\[E_2 = \text{(the event of the number on the ball being even)}\]
\[E_3 = \text{(the event of the number on the ball being of 1 digit)}\]

We have

\[p(1, 2) = \frac{4}{11} > \frac{1}{11} = p(2),\]
\[p(2, 3) = \frac{4}{11} > \frac{1}{11} = p(3),\]
\[p(1, 3) = \frac{6}{11} < \frac{1}{11} = p(3).\]

(v) It may happen that \(E_1/E_3 = 1, E_2/E_3 = 1, \) but \(E_1E_2/E_3 = -1. \) In the example above,

\[p(2, 1) = \frac{4}{11} > \frac{1}{11} = p(1),\]
\[p(3', 1) = \frac{6}{11} > \frac{1}{11} = p(1),\]
\[p(23', 1) = \frac{1}{11} < \frac{1}{11} = p(1).\]

(vi) It may happen that \(E_1/E_2 = 1, E_1/E_3 = 1, \) but \(E_1E_2/E_3 = -1. \) Example:

\[p(1, 2) = \frac{4}{11} > \frac{1}{11} = p(2),\]
\[p(1, 3') = \frac{6}{11} > \frac{1}{11} = p(3'),\]
\[p(1, 23') = \frac{1}{11} < \frac{1}{11} = p(23').\]

(vii) It may happen that \(E_1/E_3 = 1, E_2/E_3 = 1, \) but the disjunction \((E_1 + E_2)/E_3 = -1. \) For, by (v) we know that there exist events \(E'_1, E'_2, E'_3 \) such that

\[E'_1/E'_3 = 1, \quad E'_2/E'_3 = 1, \quad E'_1E'_2/E'_3 = -1.\]

Hence by (iii) there exist events \(E_1, E_2, E_3 \) such that

\[E_1/E_3 = 1, \quad E_2/E_3 = 1, \quad (E'_1E'_2)/E_3 = -1.\]

But \((E'_1E'_2) = E_1 + E_2. \) Thus the last relation is \((E_1 + E_2)/E_3 = -1. \)

(viii) It may happen that \(E_1/E_2 = 1, E_1/E_3 = 1, \) but \(E_1/(E_2 + E_3) = -1. \)

This follows from (vi) as (vii) follows from (v).

After all these negative results in (iv)–(viii), we see that we cannot expect to go far without making stronger assumptions regarding the nature of inter-
dependence between the events in the set. Firstly, in view of (iv), we shall restrict ourselves to consideration of a set of events in which each event is favorable to every other. Secondly, in view of (v), we shall only consider the case where the “favorableness,” as defined above, shall be cumulative in its effect, that is to say, the more events favorable to a given event have been known to occur, the more probable this given event shall be esteemed. We formulate these two conditions in mathematical terms, as follows:

Definition 2: A set of events \(E_1, \ldots, E_n, \ldots \) is said to be strongly mutually favorable (in the first sense) if, for every integer \(h \) and every set of distinct indices (positive integers) \(\mu_1, \ldots, \mu_h \) and \(v \) we have

\[
p(\mu_1 \cdots \mu_h, v) > p(\mu_1 \cdots \mu_{h-1}, v).
\]

This definition requires that there exist no implication relation between any event and any conjunction of events in the set; in particular, that the events are all distinct. It would be more convenient to consider the relation “favorable or indifferent to.” This will be done later on. The present definitions have the advantage of being logically clear cut and also that of yielding unambiguous inequalities.

From Definition 2 we deduce the following consequences:

1. If the set \(\{\mu_1^*, \ldots, \mu_h^*\} \) is a sub-set of \(\{\mu_1, \ldots, \mu_h\} \), we have

\[
p(\mu_1 \cdots \mu_h, v) > p(\mu_1^* \cdots \mu_h^*, v).
\]

2. For any positive integer \(k \) and any two sets \(\{v_1, \ldots, v_k\} \) and \(\{\mu_1, \ldots, \mu_h\} \) where all the indices are distinct, we have

\[
p(\mu_1 \cdots \mu_h, v_1 \cdots v_k) > p(\mu_1 \cdots \mu_{h-1}, v_1 \cdots v_k).
\]

More generally, we have as in (1),

\[
p(\mu_1 \cdots \mu_h, v_1 \cdots v_k) > p(\mu_1^* \cdots \mu_h^*, v_1 \cdots v_k).
\]

Proof: We have only to prove the first inequality. For \(k = 1 \) this is the assumption in Definition 2. Suppose that the inequality holds for \(k - 1 \), we shall prove that it holds for \(k \), too:

\[
\frac{p(\mu_1 \cdots \mu_h, v_1 \cdots v_k)}{p(\mu_1 \cdots \mu_{h-1}, v_1 \cdots v_k)} = \frac{p(\mu_1 \cdots \mu_{h-1})p(\mu_1 \cdots \mu_h)\frac{p(\mu_1 \cdots \mu_h, v_1 \cdots v_k)}{p(\mu_1 \cdots \mu_h)p(\mu_1 \cdots \mu_{h-1})\frac{p(\mu_1 \cdots \mu_{h-1}, v_1 \cdots v_k)}}}{p(\mu_1 \cdots \mu_h)\frac{p(\mu_1 \cdots \mu_{h-1})p(\mu_1 \cdots \mu_h, v_1 \cdots v_k)}{p(\mu_1 \cdots \mu_{h-1})p(\mu_1 \cdots \mu_h, v_1 \cdots v_k)}}
\]

\[
= \frac{p(\mu_1 \cdots \mu_{h-1})p(\mu_1 \cdots \mu_h, v_1 \cdots v_k)}{p(\mu_1 \cdots \mu_{h-1})p(\mu_1 \cdots \mu_h, v_1 \cdots v_k)} > \frac{p(\mu_1 \cdots \mu_{h-1}, v_1 \cdots v_k)}{p(\mu_1 \cdots \mu_{h-1}, v_1 \cdots v_k)} > 1.
\]
Observe that none of the denominators vanish by our original assumption and by Definition 2.

Therefore we see that when the failure in (v) is remedied by our definition, the failure in (vi) is automatically remedied too.

2. THEOREM 1: Let \(n > 1 \) and let \(E_1, \ldots, E_n, \ldots \) be a set of strongly mutually favorable events (in the first sense). Then we have, for \(k = 1, \ldots, n - 1, \)

\[
\prod_{i=1}^{k+1} [p(v_1 \cdots v_{k+1})]^{(n+1-k)^{-1}} > \prod_{i=1}^{k} [p(v_1 \cdots v_k)]^{(n+1-k)^{-1}}
\]

where the products extend respectively to all combinations of \(k + 1 \) and \(k \) distinct indice out of the indices 1, \ldots, \(n \).

PROOF. We may assume that the indices are written so that

\(1 \leq v_1 < v_2 < \cdots < v_{k+1} \leq n. \)

Taking logarithms, we have

\[
\binom{n-1}{k-1} \sum_{v_1, \ldots, v_{k+1}} \log p(v_1 \cdots v_{k+1}) > \binom{n-1}{k} \sum_{v_1, \ldots, v_k} \log p(v_1 \cdots v_k).
\]

Substituting from the obvious formula

\(p(v_1 \cdots v_k) = p(v_1)p(v_2)p(v_1v_2, v_3) \cdots p(v_1 \cdots v_{k-1}, v_k), \)

and writing \(\log p(\cdots) = q(\cdots) \), the inequality becomes

\[
\binom{n-1}{k-1} \Sigma[q(v_1) + q(v_1, v_2) + \cdots + q(v_1 \cdots v_k, v_{k+1})]
\]

\[
> \binom{n-1}{k} \Sigma[q(v_1) + q(v_1, v_2) + \cdots + q(v_1 \cdots v_{k-1}, v_k)].
\]

Immediately we observe that the number of terms of the form

\(q(v_1 \cdots v_s, \mu)(0 \leq s \leq \mu - 1) \) with a fixed \(\mu \) after the comma in the bracket is the same on both sides, since

\[
\binom{n-1}{k-1} \binom{n-1}{k} = \binom{n-1}{k} \binom{n-1}{k-1}.
\]

Let the sums of such \(q \)'s on the left and right of (1) be \(\sigma^{(1)} = \sigma^{(1)}(\mu) \) and \(\sigma^{(2)} = \sigma^{(2)}(\mu) \) respectively. To prove our theorem it is sufficient to prove that \(\sigma^{(1)}(\mu) \geq \sigma^{(2)}(\mu) \) for every \(\mu \) and \(\sigma^{(1)}(\mu) > \sigma^{(2)}(\mu) \) for at least one \(\mu \).

Now the terms in \(\sigma^{(1)} \) (or \(\sigma^{(2)} \)) fall into classes according to the number \(s \) of the \(\mu_i \)'s before the comma in the bracket. Let those terms having \(s \mu_i \)'s before the comma belong to the \(s \)-th class. It is evident that the number of terms of the \(s \)-th class in \(\sigma^{(1)}(\mu) \) is equal to

\[
\binom{n-1}{k-1} \binom{\mu-1}{s} \binom{n-\mu}{k-s}.
\]
for $s = 0, 1, \ldots, \mu - 1$; where we make the convention that
\[
\binom{0}{0} = 1, \quad \binom{a}{b} = 0 \quad \text{if } a < b \text{ or if } b < 0.
\]

Thus for a fixed μ, when the terms in $\sigma^{(s)}(\mu)$ are classified in the above manner, its total number of terms may be written as the following sum, in which vanishing terms may occur:
\[
\binom{n - 1}{k - 1} \binom{n - 1}{k} = \binom{n - 1}{k - 1} \left\{ \binom{\mu - 1}{\mu - 1} \binom{n - \mu}{k - \mu + 1} + \binom{\mu - 1}{\mu - 2} \binom{n - \mu}{k - \mu + 2} + \cdots + \binom{\mu - 1}{s} \binom{n - \mu}{k - s} + \cdots + \binom{\mu - 1}{0} \binom{n - \mu}{k} \right\}.
\]

Similarly the total number of terms in $\sigma^{(s)}(\mu)$ may be written as the following sum:
\[
\binom{n - 1}{k} \binom{n - 1}{k - 1} = \binom{n - 1}{k} \left\{ \binom{\mu - 1}{\mu - 1} \binom{n - \mu}{k - \mu} + \binom{\mu - 1}{\mu - 2} \binom{n - \mu}{k - \mu + 1} + \cdots + \binom{\mu - 1}{s} \binom{n - \mu}{k - s - 1} + \cdots + \binom{\mu - 1}{0} \binom{n - \mu}{k - 1} \right\}.
\]

Lemma 1: For $0 \leq s \leq k$, we have, taking account of our conventions about the binomial coefficients,

(3) \(\binom{n - 1}{k - 1} \binom{n - \mu}{k - s} > \binom{n - 1}{k} \binom{n - \mu}{k - s - 1} \) for $s > (\mu - 1)k/n$;

(4) \(\binom{n - 1}{k - 1} \binom{n - \mu}{k - s} \leq \binom{n - 1}{k} \binom{n - \mu}{k - s - 1} \) for $s \leq (\mu - 1)k/n$.

Proof: Suppose $s \geq k - n + \mu$, then
\[
\binom{n - 1}{k - 1} \binom{n - \mu}{k - s} \sim \binom{n - 1}{k} \binom{n - \mu}{k - s - 1}
\]
according as
\[
\frac{k}{n - k} \overset{\sim}{\sim} \frac{k - s}{n - \mu - k + s + 1}.
\]
i.e. according as
\[
s \overset{\sim}{\sim} (\mu - 1)k/n.
\]
But, since $k < n$ and $\mu \leq n$, we have
\[
n - k - k/n + 1 > (n - k)\mu/n
\]
\[
(\mu - 1)k/n > k - n + \mu - 1
\]
so that

$$(\mu - 1)k/n + 1 \geq k - n + \mu.$$

Therefore if $s > (\mu - 1)k/n$, then $s \geq (\mu - 1)k/n + 1 \geq k - n + \mu$, and (3) holds.

Again, if $k - n + \mu \leq s \leq (\mu - 1)k/n$, then (4) holds; while if $s < k - n + \mu$, then the left-hand side of (4) vanishes while the right-hand side is non-negative, thus (4) holds for $s \leq (\mu - 1)k/n$. The lemma is proved.

If we put $(s = 0, 1, \ldots, k)$

$$\binom{n - 1}{k - 1} \binom{n - \mu}{k - s} - \binom{n - 1}{k} \binom{n - \mu}{k - s - 1} = d_s,$$

then by Lemma 1,

$$d_s \geq 0$$

accord as $s \geq (\mu - 1)k/n$.

This means that although the total number of terms of the form $p(\mu_1 \cdots \mu_i, \mu)$ is the same on both sides of (1), the left-hand side is more abundant in terms with larger s while the right-hand side is more abundant in terms with smaller s. Now we have

$$g(\mu_1 \cdots \mu_i, \mu) > g(\mu_1^* \cdots \mu_j^*, \mu)$$

if $i > j$ and if $(\mu_1^* \cdots \mu_j^*)$ is a subset of $(\mu_1 \cdots \mu_i)$. Hence it is natural to suppose that the left-hand side must be greater because it is more abundant in terms of larger values. Unfortunately even if $i > j$, the last inequality is in general not true if the set $(\mu_1^* \cdots \mu_j^*)$ is not a sub-set of $(\mu_1 \cdots \mu_i)$. Therefore we cannot as yet conclude that $\sigma^{(1)} \geq \sigma^{(2)}$.

To prove that actually we have $\sigma^{(1)} \geq \sigma^{(2)}$, we make the following “process of compensation”:

We have, by (2) and the definition of d_s, the following equality:

$$\left(\begin{array}{c} \mu - 1 \\ 0 \end{array}\right) d_0 + \left(\begin{array}{c} \mu - 1 \\ 1 \end{array}\right) d_1 + \cdots + \left(\begin{array}{c} \mu - 1 \\ \mu - 1 \end{array}\right) d_{\mu - 1} = 0.$$

where $d_j = 0$ if $j > k$. Thus

$$d_s \leq 0 \text{ for } s \leq k(\mu - 1)/n,$$

$$d_s \geq 0 \text{ for } s > k(\mu - 1)/n.$$

Hence

(5)

$$\left(\begin{array}{c} \mu - 1 \\ 0 \end{array}\right) d_0 + \left(\begin{array}{c} \mu - 1 \\ 1 \end{array}\right) d_1 + \cdots + \left(\begin{array}{c} \mu - 1 \\ \mu - 1 \end{array}\right) d_{\mu - 1} \leq 0$$

for $l = 0, 1, \ldots, \mu - 1$.
For the fixed \(\mu \), let

\[
\rho_i^{(1)} = \binom{n-1}{k-1} \binom{n-\mu}{k-1} q_\mu + \sum_{\mu_1 < \mu} q(\mu_1, \mu) + \cdots \\
+ \binom{n-\mu}{k-l} \sum_{\mu_1 < \mu} q(\mu_1 \cdots \mu_l, \mu)
\]

\[
\rho_i^{(2)} = \binom{n-1}{k-1} \binom{n-\mu}{k-1} q_\mu + \sum_{\mu_1 < \mu} q(\mu_1, \mu) + \cdots \\
+ \binom{n-\mu}{k-l-1} \sum_{\mu_1 < \mu} q(\mu_1 \cdots \mu_l, \mu)
\]

so that

\[
\rho_i^{(1)} = \sigma^{(1)}(\mu), \quad \rho_i^{(2)} = \sigma^{(2)}(\mu).
\]

For \(\mu = 1, l = 0 \), we have

\[
\sigma^{(1)}(1) = \rho_i^{(1)} = \rho_i^{(2)} = \sigma^{(2)}(1).
\]

Lemma 2: For \(\mu > 1 \) and \(0 \leq l < \mu - 1 \), we have

\[
\sum_{1 \leq \mu_1 < \cdots < \mu_l < \mu} q(\mu_1 \cdots \mu_l, \mu) < \frac{l + 1}{\mu - l - 1} \sum_{1 \leq \mu_1 < \cdots < \mu_{l+1} < \mu} q(\mu_1 \cdots \mu_{l+1}, \mu).
\]

Proof: We have, for any \(\nu < \mu \), \(\nu \neq \mu_i \) (\(i = 1, \cdots, l \))

\[
q(\mu_1 \cdots \mu_l \nu, \mu) > q(\mu_1 \cdots \mu_l, \mu).
\]

Summing with respect to all such \(\nu \)'s,

\[
\sum_{\nu} q(\mu_1 \cdots \mu_l \nu, \mu) > (\mu - l - 1)q(\mu_1 \cdots \mu_l, \mu).
\]

Summing with respect to all \(1 \leq \mu_1 < \cdots < \mu_l < \mu \),

\[
\sum_{1 \leq \mu_1 < \cdots < \mu_l < \mu} \sum_{\nu} q(\mu_1 \cdots \mu_l \nu, \mu) = (l + 1) \sum_{1 \leq \mu_1 < \cdots < \mu_{l+1} < \mu} q(\mu_1 \cdots \mu_{l+1}, \mu) \\
> (\mu - l - 1) \sum_{1 \leq \mu_1 < \cdots < \mu_l < \mu} q(\mu_1 \cdots \mu_l, \mu).
\]

The lemma is proved.

Now we use induction to prove that for \(\mu > 1 \) and \(l = 1, \cdots, \mu - 1 \)

\[
\rho_i^{(1)} - \rho_i^{(2)} > \frac{\binom{\mu - 1}{1} d_1 + \cdots + \binom{\mu - 1}{l} d_l}{\binom{\mu - 1}{l}} \\
\times \sum_{1 \leq \mu_1 < \cdots < \mu_l < \mu} q(\mu_1 \cdots \mu_l, \mu) \geq 0.
\]

This inequality holds for \(l = 1 \) by Lemma 2. Assume that it holds for \(l \), \(l < \mu - 1 \). Then we have, by (5) and the fact that each \(q < 0 \),
\[\rho_{i+1}^{(1)} - \rho_{i+1}^{(2)} = \rho_i^{(1)} - \rho_i^{(2)} + d_{i+1} \sum_{1 \leq \mu_1 < \cdots < \mu_{i+1} < \mu} q(\mu_1 \cdots \mu_{i+1}, \mu) \]

\[> d_0 + \left(\begin{array}{c} \mu - 1 \\ 1 \end{array} \right) d_1 + \cdots + \left(\begin{array}{c} \mu - 1 \\ l \end{array} \right) d_l \sum_{1 \leq \mu_1 < \cdots < \mu_{i+1} < \mu} q(\mu_1 \cdots \mu_{i+1}, \mu) + d_{i+1} \sum_{1 \leq \mu_1 < \cdots < \mu_{i+1} < \mu} q(\mu_1 \cdots \mu_{i+1}, \mu) \]

\[\geq \left(d_0 + \left(\begin{array}{c} \mu - 1 \\ 1 \end{array} \right) d_1 + \cdots + \left(\begin{array}{c} \mu - 1 \\ l \end{array} \right) d_l \right) \frac{l + 1}{\mu - l - 1} + d_{i+1} \sum_{1 \leq \mu_1 < \cdots < \mu_{i+1} < \mu} q(\mu_1 \cdots \mu_{i+1}, \mu) \]

\[= \frac{d_0 + \left(\begin{array}{c} \mu - 1 \\ 1 \end{array} \right) d_1 + \cdots + \left(\begin{array}{c} \mu - 1 \\ l \end{array} \right) d_l + \left(\begin{array}{c} \mu - 1 \\ l + 1 \end{array} \right) d_{i+1}}{\mu - 1} \sum_{1 \leq \mu_1 < \cdots < \mu_{i+1} < \mu} q(\mu_1 \cdots \mu_{i+1}, \mu) \geq 0. \]

Therefore, for \(\mu > 1 \), we have

\[\sigma^{(1)}(\mu) - \sigma^{(2)}(\mu) = \rho_{\mu-1}^{(1)} - \rho_{\mu-1}^{(2)} > 0. \]

Since \(n > 1 \) and \(1 \leq \mu \leq n \), there exists a \(\mu > 1 \). Hence

\[\sum_{\mu=1}^{n} \sigma^{(1)}(\mu) > \sum_{\mu=1}^{n} \sigma^{(2)}(\mu) \]

which is equivalent to the inequality (1).

3. Our next step will be to obtain a generalization of Theorem 1. Consider a derived event defined by a disjunction of a (finite) number of events in the set, as follows:

\[E_{r_1} + E_{r_2} + \cdots + E_{r_m}. \]

We call such a disjunction a disjunction of the \(m \)-th order.

Definition 3: A set of events is said to be strongly mutually favorable in the second sense if for every positive integer \(m \), the derived set of events consisting of all the disjunctions of the \(m \)-th order forms a strongly mutually favorable set of events (in the first sense).

Let \(D = D(m) \) denote in general a disjunction of the \(m \)-th order; let \(p(D_1 \cdots D_h, D) \) denote the probability of the occurrence of the disjunction \(D \), on the hypothesis that the conjunction of the \(h \) disjunctions \(D_1 \cdots D_h \) has occurred. Then Definition 3 says that for any positive integer \(h \) and any set of distinct \(D \)'s we have

\[p(D_1 \cdots D_h, D) > p(D_1 \cdots D_{h-1}, D). \]

Since a disjunction of the 1st order is an event \(E \), we see that Definition 3 includes Definition 2.
Let $D_m(v_1, \ldots, v_k), v_1 < \cdots < v_k$ denote the derived event
\[\prod_{\mu_1, \ldots, \mu_m} (E_{\mu_1} + \cdots + E_{\mu_m}) \]
where the product (conjunction) extends to all combinations of m indices out of the indices v_1, \ldots, v_k. Let $p_m^*(v_1, \ldots, v_k)$ denote the probability of the occurrence of $D_m(v_1, \ldots, v_k)$. It is seen that $p_1(v_1, \ldots, v_k) = p(v_1 \cdots v_k)$ in our previous notation.

We merely state Theorem 2, whose proof is analogous to that of Theorem 1 but requires more cumbersome expressions.

Theorem 2: Let $n > k \geq m \geq 1$ and let E_1, \ldots, E_n be a set of mutually strongly favorable events in the second sense. Then we have
\[\prod_{1 \leq r_1 < \cdots < r_{k+1} \leq n} [p_m^*(v_1, \ldots, v_{k+1})]^{\binom{n-m}{k-m+1}} > \prod_{1 \leq r_1 < \cdots < r_k \leq n} [p_m^*(v_1, \ldots, v_k)]^{\binom{n-m}{k-m}}. \]

To give an interpretation of $p_m^*(v_1, \ldots, v_k)$, we prove the symbolic equation between events:
\[D_m = \prod_{r_1 \leq \mu_1 < \cdots < \mu_m \leq r_k} (E_{\mu_1} + \cdots + E_{\mu_m}) = \sum_{r_1 \leq \mu_1 < \cdots < \mu_{k-m+1} \leq r_k} (E_{\mu_1} \cdots E_{\mu_{k-m+1}}) = C_{k-m+1}, \]
where product means conjunction and sum means disjunction.

To prove this, we write for a general event E, $E = 1$ when E occurs, $E = 0$ when E does not occur. Now if $C_{k-m+1} = 0$, then at most $k - m$ events among the k given events occur, so that there exist m events such that $E_{\lambda_1} = 0, E_{\lambda_2} = 0, E_{\lambda_m} = 0$, thus
\[E_{\lambda_1} + E_{\lambda_2} + \cdots + E_{\lambda_m} = 0. \]
Now the last disjunction is contained in D_m as a factor, therefore $D_m = 0$.

Conversely, if $D_m = 0$, at least one of its factors $= 0$, so that there exist m events, such that $E_{\lambda_1} = 0, E_{\lambda_2} = 0, \cdots, E_{\lambda_m} = 0$. Thus at most $k - m$ events out of the k given events occur and so by definition $C_{k-m+1} = 0$. Q.e.d.

From the above it immediately follows that
\[p_m^*(v_1, \ldots, v_k) = p_{k-m+1}(v_1, \ldots, v_k) \]
where $p_{k-m+1}(v_1, \ldots, v_k)$ is defined in the Introduction. Then Theorem 2 may be written as
\[\Pi[p_{k-m+1}(v_1, \ldots, v_{k+1})]^{\binom{n-m}{k-m+1}} > \Pi[p_{k-m+1}(v_1, \ldots, v_k)]^{\binom{n-m}{k-m}} \]
or again as
\[\Pi[w_{k-m+1}(v_1, \ldots, v_{k+1})]^{\binom{n-m}{k-m+1}} > \Pi[w_{k-m+1}(v_1, \ldots, v_k)]^{\binom{n-m}{k-m}} \]
where $w_{m-1}(v_1', \cdots, v_k')$ denotes the probability of the occurrence of at most $m - 1$ events out of the k events $E_{v_1}', \cdots, E_{v_k}'$.

Remark. If in our Definitions 2 and 3 we replace the sign "\(>\)" by the sign "\(\geq\)", then we obtain the inequalities in Theorems 1 and 2 with the sign "\(>\)" replaced by "\(\geq\)". The corresponding set of events thus newly defined will be said to be strongly mutually favorable or indifferent (in the first or second sense).

After this modification, we can include events with the probability 1 in our considerations. Also, the events need no longer be distinct and there may now exist implication relations between events or their conjunctions. This modification is useful for the following application.

4. Consider the divisibility of a random positive integer by the set of positive integers. To each positive integer there corresponds an event, namely the event that the random positive integer is divisible by it. The enumerable set of events

$$E_1, E_2, E_3, E_4, \cdots, E_n, \cdots$$

where $E_n =$ the event of divisibility by n, with the probabilities

$$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots, \frac{1}{n}, \cdots$$

evidently forms a set of strongly mutually favorable or indifferent events in the second sense.

Again, the enumerable set of events

$$E_1', E_2', E_3', E_4', \cdots, E_n', \cdots$$

where $E_n' =$ the event of non-divisibility by n, with the probabilities

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n-1}{n}, \cdots$$

evidently also forms a set of strongly mutually favorable or indifferent events in the second sense.

Hence our Theorem 2 can be applied to both sets and in this way we obtain results which belong properly to the elementary theory of numbers.

We shall content ourselves with indicating a few examples.

Let $\{a_1, \cdots, a_n\}$ denote the least common multiple of the natural numbers a_1, \cdots, a_n. Then Theorem 1, when applied to the two sets above, gives respectively

Theorem 1.1: Let a_1, \cdots, a_n be any positive integers, then we have, for $k = 1, \cdots, n - 1$

$$\left(\prod_{1 \leq r_1 < \cdots < r_{k+1} \leq n} \frac{1}{a_{r_1}, \cdots, a_{r_{k+1}}}\right)^{\binom{n-1}{k}-1}$$

$$= \left(\prod_{1 \leq r_1 < \cdots < r_k \leq n} \frac{1}{a_{r_1}, \cdots, a_{r_k}}\right)^{\binom{n-1}{k-1}-1}.$$
THEOREM 1.2: Also we have,
\[\prod_{1 \leq r_1 < \cdots < r_k + 1 \leq n} \left(1 - \sum_{r_1 \leq r_2 \leq r_3 \leq \cdots \leq r_k + 1} \frac{1}{a_{r_1}, a_{r_2}} \right) \]
\[= + \cdots + (-1)^{k+1} \frac{1}{\{a_{r_1}, \cdots, a_{r_k+1}\}} \left(\frac{n-1}{k} \right)^{-1} \]
\[\geq \prod_{1 \leq r_1 < \cdots < r_k \leq n} \left(1 - \sum_{r_1 \leq r_2 \leq \cdots \leq r_k} \frac{1}{a_{r_1}, a_{r_2}} \right) \]
\[= + \cdots + (-1)^k \frac{1}{\{a_{r_1}, \cdots, a_{r_k}\}} \left(\frac{n-1}{k-1} \right)^{-1} \]
A trivial corollary of Theorem 1 is
\[p(12 \cdots n) \geq p_1 p_2 \cdots p_n. \]
Correspondingly we have
\[1 - \sum_{1 \leq r_1 \leq n} \frac{1}{a_{r_1}} + \sum_{1 \leq r_1 < r_2 \leq n} \frac{1}{\{a_{r_1}, a_{r_2}\}} = + \cdots + (-1)^n \frac{1}{\{a_1, \cdots, a_n\}} \]
\[\geq \left(1 - \frac{1}{a_1} \right) \left(1 - \frac{1}{a_2} \right) \cdots \left(1 - \frac{1}{a_n} \right). \]
If we multiply by \(a_1 a_2 \cdots a_n \), we get
\[A(a_1, a_2, \cdots, a_n) \geq (a_1 - 1)(a_2 - 1) \cdots (a_n - 1), \]
where \(A(a_1, \cdots, a_n) \) denotes the number of positive integers \(\leq a_1 a_2 \cdots a_n \) that are not divisible by any of the \(a_i \) (\(i = 1, \cdots, n \)).

This last result, which is almost obvious here, was proved by H. Rohrbach and H. Heilbronn independently.\(^3\) See also my generalization\(^3\) (also obvious from the present point of view) of this result to higher dimensional sets of positive integers and to sets of ideals in any algebraic number field.
