with
\[W_i = \frac{1}{2} [(x_i - x_0)^2 f_x(x_i, y_i) + (x_i - x_0)^2 f_y(x_i, y_i) + 2(x_i - x_0)(y_i - y_0) f_{xy}(x_i, y_i)]. \]

Corresponding formulas can be derived in this way for any value of \(n; \) in fact, several alternatives may be obtained in each case. In all cases the error \(f(x_0, y_0) \) is given in terms of the derivatives of \(g \) alone if a polynomial of a certain type is used for the interpolating function. For equation (4), the suitable polynomial would be \(h(x, y) = a + bx + cy; \) for (5), \(h(x, y) = a + bx + cy + dx^2 + exy + fy^2; \) for (6), \(h(x, y) = a + bx + cy + dx^3. \) If the interpolating function \(h(x, y) \) is not so chosen, the formulas remain valid, but derivatives of \(h \) will appear.

The same procedure is applicable to functions of any number of independent variables.

ON A LEMA BY KOLMOGOROFF

BY KAI-LAI CHUNG

Princeton University

The following lemma was proved by Kolmogoroff [1]:

If \(e_1, e_2, \ldots, e_n \) are independent events and \(U \) an arbitrary event such that \(W(X) \) denoting the probability of \(X \) and \(W_e(X) \) the conditional probability of \(X \) under the hypothesis of \(e \)

\[W_{e_k}(U) \geq u, \quad W(e_1 + \cdots + e_n) \geq u. \]

Then

\[W(U) \geq \frac{1}{n} u^n. \]

This result seems of some interest in itself and may also have practical applications, for it is easily seen that [2] in general if \(e_1, e_2, \ldots, e_n \) are arbitrary no information about \(W_{e_1+\cdots+e_n}(U) \) can be obtained from that about \(W_{e_k}(U), \ k = 1, \cdots, n. \) From this point of view the constant 1/9 is interesting, though it is important in Kolmogoroff’s proof of the law of large numbers. Using his original method this constant can easily be improved to 1/8. However, the following method will give a better result. At the same time we shall put it into a more general form.

Let

\[W_{\alpha}(U) \geq \alpha, \quad \sum_{k=1}^{n} W(e_k) \geq \beta. \]
ON A LEMMA BY KOLMOGOROFF

Then we have for $1 \leq k \leq n$,

\[(1) \quad W(U) \geq W(U(e_1 + \cdots + e_k))) = W(Ue_1 + \cdots + Ue_k).\]

Now a simple case of certain inequalities due to Bonferroni and Frechet [3] states that for arbitrary events E_1, \cdots, E_k we have

\[(2) \quad W(E_1 + \cdots + E_k) \geq \sum_{i=1}^{k} W(E_i) - \sum_{1 \leq i < j \leq k} W(E_i E_j).\]

Applying this to (1), we obtain

\[
W(U) \geq \sum_{i=1}^{k} W(Ue_i) - \sum_{1 \leq i < j \leq k} W(Ue_i e_j)
\]

\[
\geq \sum_{i=1}^{k} W(e_i) W_{e_i}(U) - \sum_{1 \leq i < j \leq k} W(e_i) W(e_j),
\]

using the independence of e_1, \cdots, e_k. Hence

\[
W(U) \geq \alpha \sum_{i=1}^{k} W(e_i) - \frac{1}{2} \left(\sum_{i=1}^{k} W(e_i) \right)^2 + \frac{1}{2} \sum_{i=1}^{k} W^2(e_i).
\]

By Cauchy's inequality,

\[
\sum_{i=1}^{k} W^2(e_i) \geq \frac{1}{k} \left(\sum_{i=1}^{k} W(e_i) \right)^2.
\]

Writing $\sum_k = \sum_{i=1}^{k} W(e_i)$, we have

\[(3) \quad W(U) \geq \left[\alpha - \left(\frac{1}{2} - \frac{1}{2k} \right) \sum_k \right] \sum_k.
\]

Now let $0 < \gamma < \gamma_0 \leq 1$ where γ and γ_0 are to be determined later. If there is an e_i, $1 \leq i \leq n$ such that $W(e_i) \geq \gamma \beta$, then

\[(4) \quad W(U) \geq W(U e_i) = W(e_i) W_{e_i}(U) \geq \gamma \alpha \beta.
\]

If every $W(e_i) < \gamma \beta$, we determine $k(> 1)$ such that

\[\Sigma_{k-1} < \gamma_0 \beta \leq \Sigma_k;
\]

thus

\[\Sigma_k < \Sigma_{k-1} + \gamma \beta < (\gamma_0 + \gamma) \beta.
\]

And (3) yields

\[(5) \quad W(U) \geq \left[\alpha - \frac{1}{2} \left(1 - \frac{1}{k} \right) (\gamma_0 + \gamma) \beta \right] \gamma \beta.
\]
Now we choose γ so that the last terms in (4) and (5) be equal. This gives

$$\gamma = \frac{2\alpha - \left(1 - \frac{1}{k}\right) \gamma_0 \beta}{2\alpha + \left(1 - \frac{1}{k}\right) \gamma_0 \beta}.$$

To maximize γ, we put $\frac{d\gamma}{d\gamma_0} = 0$ and find

$$\gamma_0 = \frac{2(\sqrt{2} - 1)\alpha}{\beta}.$$

If $2(\sqrt{2} - 1)\alpha \leq \beta$, this choice of γ_0 is admissible, and we obtain

$$\gamma = \frac{2 - \sqrt{2} + \frac{1}{k} (\sqrt{2} - 1)}{\sqrt{2} - \frac{1}{k} (\sqrt{2} - 1)} \frac{2(\sqrt{2} - 1)\alpha}{\beta}.$$

Thus we get (the first inequality being retained for small values of n)

$$W(U) \geq \frac{2 - \sqrt{2} + \frac{1}{n} (\sqrt{2} - 1)}{\sqrt{2} - \frac{1}{n} (\sqrt{2} - 1)} \frac{2(\sqrt{2} - 1)\alpha^2}{\beta} \geq 2(\sqrt{2} - 1)^2 \alpha^2 > \frac{3\alpha}{100} \alpha^2.$$

In case $2(\sqrt{2} - 1)\alpha > \beta$, we choose $\gamma_0 = 1$, and we obtain

$$\gamma = \frac{2\alpha - \left(1 - \frac{1}{k}\right) \beta}{2\alpha + \left(1 - \frac{1}{k}\right) \beta}.$$

Thus we get

$$W(U) \geq \frac{2\alpha - \left(1 - \frac{1}{n}\right) \beta}{2\alpha + \left(1 - \frac{1}{n}\right) \beta} \alpha \beta \geq \frac{2\alpha - \beta}{2\alpha + \beta} \alpha \beta.$$

If we write $\beta = \eta \alpha$, we have

$$W(U) \geq \frac{2 - \eta}{2 + \eta} \eta \alpha^2.$$
We summarize (6) and (7) in the following table:

\[
\begin{array}{c|c|c}
\beta/\alpha & \geq 2(\sqrt{2} - 1) & = \eta < 2\sqrt{2} - 1 \\
W(U) & \geq 2(\sqrt{2} - 1)^2 \alpha^2 & = \frac{2 - \eta}{2 + \eta} \eta \alpha^2
\end{array}
\]

Thus for Kolmogoroff's case (\(\eta = 1\)) we have \(W(U) \geq \frac{1}{2} \alpha^2\).

REFERENCES

APPROXIMATE WEIGHTS

By John W. Tukey

Princeton University

1. Summary. The greatest fractional increase in variance when a weighted mean is calculated with approximate weights is, quite closely, the square of the largest fractional error in an individual weight. The average increase will be about one-half this amount.

The use of weights accurate to two significant figures, or even to the nearest number of the form: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95, that is to say, of the form 10(1/20(2)50(5)100 \times 10^0 can thus reduce efficiency by at most \(1/4\) percent, which is negligible in almost all applications.

2. Proof. Let the optimum weights be \(W_i, i = 1, 2, \ldots, n\), with \(W_i \geq 0\), where it is convenient to choose the normalization \(\Sigma W_i = 1\). Let \(\sigma^2\) be the variance of \(\Sigma W_i x_i\), then the variance of each \(x_i\) must be \(\sigma^2/W_i\), and since this is a weighted mean, the means of the \(x_i\) are the same.

Let the approximate weights be \(W_i(1 + \lambda \theta_i), \) where \(0 < \lambda < 1\) and \(|\theta_i| \leq 1, i = 1, 2, \ldots, n\). Thus \(\lambda\) is the largest fractional error which may be made in the situation considered. We need the weak requirement \(\lambda < 1\). The approximately weighted mean is

\[
\frac{\sum W_i(1 + \lambda \theta_i) x_i}{\sum W_i(1 + \lambda \theta_i)} = \sum W_i \frac{1 + \lambda \theta_i}{1 + \lambda \theta},
\]