one finds
\begin{equation}
\begin{aligned}
e^{ib\theta} \frac{\exp\left[-\frac{1}{2} \frac{(x_T - x_0)^2}{2T} \right]}{(2\pi T)^{1/2}} &= \int_0^T d\theta (2 - \theta)^{1/2} \exp\left[\frac{(x_0 + a)^2}{4(2 - \theta)} \right] \\
&\quad \cdot Q_\omega(\theta \mid x_0)^{1/2}.
\end{aligned}
\end{equation}

Integrate on x_T from $-\infty$ to a to obtain
\begin{equation}
\pi^{-1} e^{ib\theta} \int_{-\infty}^{(a-x_0)/(2\theta)^{1/2}} e^{-u^2} du = \int_0^T d\theta (2 - \theta)^{1/2} \exp\left[\frac{(x_0 + a)^2}{4(2 - \theta)} \right] Q_\omega(\theta \mid x_0)^{1/2}.
\end{equation}

Then $Q_\omega(T \mid x_0)$ can be obtained directly by differentiation with respect to T. A similar derivation can be carried out under the assumption $x_0 < a$. The combined result is
\begin{equation}
Q_\omega(T \mid x_0) = \frac{|x_0 - a| \exp \left\{ -\frac{1}{2} \frac{[x_0(1 - T) - a]^2}{T(2 - T)} \right\}}{T(2\pi T(2 - T))^{1/2}}, x_0 \neq a, \quad 0 < T \leq 1.
\end{equation}

The author has been unable to obtain an expression for $Q_\omega(T \mid x_0)$ valid for $T > 1$.

REFERENCES

A NOTE ON THE ERGODIC THEOREM OF INFORMATION THEORY

By K. L. Chung

Syracuse University

The purpose of this note is to extend the result of Breiman [1], [2] to an infinite alphabet, or equivalently, the result of Carleson [3] to convergence with probability one.

Let \(\{\cdots, x_{-1}, x_0, x_1, \cdots\}\) be a stationary stochastic process taking values in a countable "alphabet" \(\{a_i, \ i = 1, 2, \cdots\}\). Let
\begin{equation}
p(a_{i_1}, \cdots, a_{i_n}) = \theta | x_k = a_{i_k}, \ k = 1, \cdots, n|,
\end{equation}

Received October 22, 1960.

\(^1\) This research was supported in part by the Office of Scientific Research of the United States Air Force, under Contract No. AF 49 (638)-265.
and write \(p_i = p(a_i) \) for short. Denoting by \(\lg \) the logarithm to the base 2, we set

\[
g_0 = \lg \frac{1}{p(x_0)}, \quad g_k = \lg \frac{p(x_{-k}, \ldots, x_{-1})}{p(x_{-k}, \ldots, x_{-1}, x_0)},
\]

\[
g_0^{(i)} = \lg \frac{1}{p(a_i)}, \quad g_k^{(i)} = \lg \frac{p(x_{-k}, \ldots, x_{-1})}{p(x_{-k}, \ldots, x_{-1}, a_i)}.
\]

We have then

\[
g_k \geq \mathcal{E}\{g_{k+1} \mid x_0, \ldots, x_{-k}\}
\]

and

\[
\mathcal{E}\{g_k\} \leq -\mathcal{E}\{\lg p(x_0)\}.
\]

Hence \(\{g_k, k = 0, 1, 2, \cdots\} \) is a nonnegative lower semimartingale provided that the \(\text{"entropy"} \) is finite:

\[
H = -\mathcal{E}\{\lg p(x_0)\} = -\sum_{i=1}^{\infty} p_i \lg p_i < \infty.
\]

Hence by the martingale convergence theorem, \(g_k \) converges with probability one as \(k \to \infty \). To prove the ergodic theorem, namely that with probability one

\[
\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} p_i \lg p_i = -H,
\]

it is sufficient, following [1], to show that

\[
\mathcal{E}\{\sup_{0 \leq k < \infty} g_k\} < \infty.
\]

The inequality (3) implies also that the \(\{g_k, k = 0, 1, 2, \cdots\} \) is uniformly integrable, hence its convergence with probability one implies its convergence in mean (of order one). From this it follows (see [4]) that (2) holds also in mean. The last assertion has already been proved by Carleson [3]. We state our result as follows.

Theorem. (1) implies (3) and consequently (2) both in mean and with probability one.

Proof. Let \(\omega \) denote the sample point and define for each nonnegative integer \(m \)

\[
E_k(m) = \{\omega : \sup_{0 \leq i < k} g_j < m; g_k \geq m\},
\]

\[
E_k^{(i)}(m) = \{\omega : \sup_{0 \leq i < k} g_j^{(i)} < m; g_k^{(i)} \geq m\},
\]

\[
Z_i = \{\omega : x_0 = a_i\}.
\]

We may suppose that the sequence \(\{p_i, i = 1, 2, \cdots\} \) is nonincreasing since this can always be achieved by relabelling the alphabet. Let \(f(m) \geq 0 \) and write

\[
\phi[E_k(m)] = \sum_{i=1}^{\infty} \phi[E_k(m) \cap Z_i]
\]

\[
= \sum_{i \leq f(m)} \phi[E_k(m) \cap Z_i] + \sum_{i > f(m)} \phi[E_k(m) \cap Z_i].
\]
We have, since $g_k \geq m$ on $E_k(m)$,

$$\varphi\{E_k(m) \cap Z_i\} \leq 2^{-m} \varphi\{E_k^{(i)}(m)\};$$

(4) \[\sum_{k=0}^{\infty} \sum_{i \geq f(m)} \varphi\{E_k(m) \cap Z_i\} \leq 2^{-m} \sum_{i \geq f(m)} \sum_{k=0}^{\infty} \varphi\{E_k^{(i)}(m)\} \leq 2^{-m} \sum_{i \geq f(m)} 1 \leq \frac{f(m)}{2^m}. \]

On the other hand, it is plain that

(5) \[\sum_{k=0}^{\infty} \sum_{i \geq f(m)} \varphi\{E_k(m) \cap Z_i\} \leq \sum_{i \geq f(m)} \varphi\{Z_i\} = \sum_{i \geq f(m)} p_i. \]

Let $f^{-1}(i)$ be the number of m such that $f(m) < i$, then $f^{-1}(i) \leq 1 + \max \{m: f(m) < i\}$. Summing (4) and (5) over all m, we obtain

(6) \[\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \varphi\{E_k(m)\} \leq \sum_{m=0}^{\infty} \frac{f(m)}{2^m} + \sum_{i=1}^{\infty} f^{-1}(i)p_i. \]

Now choose $f(m) = 2^m/(m + 1)^2$; a simple computation shows that there exist two positive constants A and B such that $f^{-1}(i) \leq A \log i + B$ for all $i \geq 1$. Since $\{p_i\}$ is nonincreasing, we have $ip_i \leq 1$ so that

$$\sum_{i=1}^{\infty} f^{-1}(i)p_i \leq \sum_{i=1}^{\infty} \left(A \log \frac{1}{p_i} + B \right) p_i = AH + B.$$

Hence we have by (6),

$$\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \varphi\{E_k(m)\} \leq \frac{\pi^2}{6} + AH + B.$$

Finally,

$$\mathbb{E}\{\sup_{0 \leq k < \infty} g_k\} \leq \sum_{m=0}^{\infty} \varphi\{\sup_{0 \leq k < \infty} g_k \geq m\} = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \varphi\{E_k(m)\},$$

which completes the proof that (1) implies (3).

REFERENCES