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Communicated by Hélène Barcelo and Stephen Kennedy

Maryam Mirzakhani’s Harvard PhD dissertation under
Curt McMullen was widely acclaimed and contained al-
ready the seeds of what would become her first three
major papers. All three of these results—a new proof
of Witten’s conjecture, a computation of the volume of
the moduli space of curves, and an asymptotic count of
the number of simple closed geodesics on a hyperbolic
surface—were deep, beautiful, and unexpected. Subse-
quent papers revealed the geometry and dynamics of the
moduli space of hyperbolic surfaces, culminating in the
rigidity result achieved jointly with Alex Eskin. Her work
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exhibits great depth of insight, wide-ranging technical
mastery, and creativity and imagination of a very high
order. It earned her a Fields Medal in 2014.

Mirzakhani was born on May 12, 1977, in Tehran and
grew up in postrevolutionary Iran during the Iran–Iraq
War. One of four children, her father was an engineer, her
mother a homemaker. All three of her siblings became
engineers. It was in middle school that she discovered her
passion and talent for mathematics. In high school she
participated in the International Mathematical Olympiad,
winning gold medals in 1994 and 1995. She earned a
bachelor’s degree in mathematics from Sharif University
in Tehran and headed to Cambridge, Massachusetts, for
graduate study at Harvard.
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Mirzakhani spoke at the 2015 Clay Research
Conference at Oxford after receiving the Fields Medal
in 2014.

When Mirzakhani was awarded the Fields Medal in
2014 she had already been diagnosed with the cancer
that would eventually claim her life. Always a private and
humble person, she did not welcome the attention and
acclaim that accompanied the prize. Together with her
husband, Jan Vondrák, she wanted to raise their daughter,
live her life, and pursue mathematics.

Notices asked friends, collaborators, and students of
Mirzakhani to write brief reminiscences of her life. We
also sought expository work on her mathematical ac-
complishments from Ursula Hamenstädt, Scott Wolpert,
and, writing jointly, Alex Wright and Anton Zorich. The
portrait that emerges from these pieces is of a warm,
generous, and modest friend, teacher, and colleague—a
mathematician of great talent and imagination coupled
with grit and persistence to a very unusual degree.

Maryam Mirzakhani died, aged forty, on July 14, 2017.

The following videos provide more information and
testimonials on Maryam Mirzakhani’s life and work.
The Harvard and Stanford memorial services contain
personal reflections and reminiscences from friends,
colleagues, and family members who have asked that
their contribution to this article be via this medium.

McMullen’s Fields laudation: www.youtube.com
watch?v=VC7MZv1JH8w&t=3s.

The Stanfordmemorial service:www.youtube.com
/watch?v=IUfB2HadIBw.

The Harvard memorial service: www.youtube.com
/watch?v=HUBnzTTQ5jk.

Image Credits
Opening photo courtesy of Alex Wright and Anton Zorich.
Photo of Mirzakhani lecturing courtesy of Roya Beheshti.

Roya Beheshti
Maryam Mirzakhani in Iran
When we were teenagers, Maryam and I would often talk
about where in life we wanted to be at forty. In our minds,
forty was the peak of everything in life. What I could not
imagine was that one of us would be writing in memory
of the other at forty.

I met Maryam in 1988 when we were both eleven and
had just started middle school. We became close friends
almost instantly, and for the next seven years at school
we sat next to each other at a shared desk. My early
memories of her are that she was well read, had a passion
for writing, could easily get into heated debates over
social or political issues, and would get very bitter about
any kind of prejudice against women. Our friendship
did not have its genesis in math. In fact, math was the
only subject at which Maryam was not among the top
students in the sixth grade. A memory that I distinctly
recall is when our math teacher was returning our tests
to us toward the end of the academic year. Maryam had
received a score of sixteen out of twenty, and although
the test had been difficult, there were students who had
done better than that. Maryam was so frustrated by her
score that before putting the test in her bag, she tore it
apart, and announced that that was it for her and she was
not going to even try to do better at math! That did not
last long. After the summer break, Maryam came back
with her confidence regained and started to do very well.
Soon after that math became a shared passion between
us, and we started to spend a lot of time thinking and
talking about math.

The middle/high school that we went to was a special
school for gifted female students in Tehran. Each year
around one hundred students were admitted to that
school throughacompetitive entranceexam.Theprincipal
of the school, Ms. Haerizadeh, was a strong woman with
a vision who would always do anything to make sure that
the students in our school had the same opportunities
as the students in the equivalent boys’ school. We had
a strong team of teachers, and the overall environment
was very encouraging for students who were interested
in math or science.

When we entered middle school the Iran–Iraq War had
been over for a month, and the country was becoming
more stable.1 Around that time a few programs for
high school students were initiated that I think played
a big role in developing interest in mathematics for
several Iranian mathematicians of my generation. One of
themwas theMathOlympiad competitions. Another was a
summerworkshop runby Sharif University for high school

Roya Beheshti is associate professor ofmathematics atWashington
University in Saint Louis. Her email address is beheshti@wustl
.edu.
1After the Islamic Revolution in 1979, all the universities in Iran
were closed for almost three years as part of the Cultural Revo-
lution, the Islamization of education. When the colleges resumed
classes in 1983, the country was in the middle of a costly war that
made it difficult for the educational system to move forward.
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As eleventh-grade students in 1994 Mirzakhani and
Behesti became the first female students on the
Iranian Mathematical Olympiad team. Maryam
Mirzakhani (gold), Roya Beheshti (silver), Ali
Norumohammadi (bronze), Omid Naghshineh
(bronze), Maziyar Raminrad (gold), and Reza Sadeghi
(silver).

students to introduce them to college-level mathematics.
We participated in that workshop the summer after
ninth grade. That workshop had a major impact on
Maryam’s growing interest in math and resulted in her
first publication (joint with Professor E. Mahmoodian). We
participated in the Math Olympiad competitions in the
eleventh grade and made it to the national team as the
first female students on the team (see above).

From 1995 to 1999 we attended Sharif University,
the leading technical university in Iran, where we got
a lot of support from our professors and the chair
of the mathematics department, Y. Tabesh. By then
Maryam had become very ambitious about her future
in math, and her life was not imaginable without it.
Although the universities, unlike the high schools, are
coeducational in Iran, many forms of gender segregation
were imposed in the 1990s. The atmosphere within the
math department, however, was relaxed and friendly, and
there were various activities from workshops to math
competitions to reading seminars that kept us motivated
and stimulated an even stronger passion for mathematics.
There were six of us in our class who decided to apply
to graduate schools in the US during our junior year.
To increase the chances of all of us getting admitted to
top-tier schools, we decided to each choose a school to
which the others would not apply. Harvard and MIT were
natural choices for Maryam and me because we wanted
to stay close to each other. We all moved to universities
in the northeastern US in 1999.

Maryam and I continued to see each other very often
until 2003, when I left Boston. She was very generous with
her time when it came to discussing math and was always
happy to meet and talk about any problem I was thinking
about. I remember in fall 1999 I took a course thatMaryam
was auditing. The final was a take-home exam, which I
had planned to complete overnight. Maryam came to my

office for moral support in case I had to stay up late to
finish the exam. The last problem looked difficult, so I
discussed it with Maryam. She got interested in it, and
we thought on it for a while without success. After a few
hours I gave up, as I was too sleepy and decided that I
had done enough for the exam. But, as would always be
her pattern, Maryam persisted. She stayed up all night
working on it, and when I woke up early in the morning,
she had figured out how to do the problem and was
checking the last steps of her solution.

Maryam’s work was always driven by a certain pure
joy that did not change over the years by experience
or wisdom. She drew pleasure from doing advanced
mathematics in the same way as she did from solving
high school-level Math Olympiad problems. She was
driven by this joy and certainly not by a desire for fame
or influence, and she continued to be driven by it even
when fame and influence came within her reach. She
avoided public attention religiously and that helped her
stay focused on her research in the midst of the celebrity
she attained winning the Fields Medal while also dealing
with cancer.

I was at a workshop at MSRI in May 2013 when I received
a message from Maryam informing me of her diagnosis.
She had recently come back from a trip to Europe and Iran,
and I had planned to meet with her after the workshop.
When I saw her a couple of days later at Stanford, she was
worried about the effect of the illness on her daughter
and her career but was determined to stay hopeful and

Mirzakhani (right) and Beheshti (left) on Cape Cod in
2000.
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upbeat. In the four years that followed, she stubbornly
focused on the positive and refrained from complaining
about the problems she was dealing with in the same way
that she always avoided talking about her achievements.
Even after she was diagnosed with recurrent cancer and
the odds were not in her favor, she maintained hope and
handled the situation with grit and grace.

Maryam Mirzakhani’s parents heard the news of her
receiving the Fields Medal through public media. She
explained later that she did not think it was such a
big deal! This accords with what I remember from
my interactions with her when she was a student at
Harvard. While explaining her beautiful work in math,
Maryam made it sound as if what she was doing was
simple.

Her humanity was very pronounced and she was
kindhearted. I recall her helping disabled students
at Harvard in getting around. After receiving the
Fields Medal, the Iranian students in the Boston area
were hoping to celebrate her accomplishments by
organizing a big party for her. Maryam refused this,
instead opting for attending, unannounced, their small
monthly lunch gathering.

Maryam beautifully exemplified that the pursuit of
knowledge is a timeless, borderless, and, yes, gender-
less adventure. Her untimely passing has deprived the
world of math of a brilliant, yet humble talent at her
peak. Her legacy will live forever.

Cumrun Vafa is the Hollis Professor of Mathematicks
and Natural Philosophy, Harvard University. His email
address is vafa@physics.harvard.edu.

Mirzakhani with her daughter.

In her final month, the last time I met Maryam at her
home, I told her that I had just read how difficult and
painful one of her treatments was and expressed surprise
that she had never complained about it. She dismissed
that as something not worth focusing on and changed
the topic. We then talked about various audiobooks that
she planned to listen to. She was, as always, warm and

engaging and got radiant and happy when her daughter
interrupted us, jumping around Maryam and telling her
that she loved her new bike. This is how I am going to
always remember Maryam.

Photo Credits
Photo of Mirzakhani with daughter courtesy of Jan Vondrák.
All other section photos courtesy of Roya Beheshti.

Izzet Coskun, Laura DeMarco,
and David Dumas
Maryam Mirzakhani in Graduate School
We met in David’s office to talk about our memories of
Maryam in graduate school and to write some words that
might convey what she was like. But how do we even
begin to write about Maryam, one of our closest friends
in those years and an integral part of our development
as mathematicians, when the pain of her absence is so
fresh? We started with the present, when we first learned
about her illness, when each of us saw her last, the recent
interactions we had, whether talking with her about math
or talking about our children, and little by little the
memories and stories from graduate school started to
flow.

Some themes quickly emerged:Maryam’s determination
tofigure thingsout, her intense and insightful questioning,
her excitement about new ideas, and the gleam in those
brilliant blue eyes after making some absolutely hilarious
comment. We recalled her seminar lectures and her
struggles and also her jokes and her cooking, and we
recalled how easy it was to spend time with her—and the
countless hours we all spent together—though we never
truly knew her most personal or private thoughts and
feelings.

Wewerepart of a tight-knit groupof students atHarvard,
and we were all actively involved in Curt McMullen’s
informal geometry anddynamics seminar. Every semester,
each of us had to give a lecture in this seminar. In our
first couple of years, we gave expository talks about
research articles we were reading, and one of Maryam’s
first talks was on McShane’s identity for the punctured
torus. All three of us were there. Before the talk, she
was anxious about her presentation, which was partly her
apprehension about speaking in English, though, in fact,
she was perfectly fluent.

Maryam’s lecture style that day was unforgettable. She
would race ahead of herself at times, unable to contain her
excitement, and the barrage of words was accompanied
by large circular hand gestures. At the time, we were all
struggling with new mathematical ideas; we often felt

Izzet Coskun is professor of mathematics at the University of Illi-
nois at Chicago. His email address is coskun@math.uic.edu.
Laura DeMarco is professor of mathematics at Northwestern Uni-
versity. Her email address is demarco@northwestern.edu.
David Dumas is professor of mathematics at the University of
Illinois at Chicago. His email address is david@dumas.io.
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we were swimming through a mathematical soup as we
tried to find our thesis problems. Even then, however,
Maryam seemed to have a direction and purpose, and the
mathematical content of her lecture was potent and clear,
even if the presentation itself was amusing.

I met Maryam in 1993. I had an appointment to meet
Ebad Mahmoodian at IPM, the Institute for Research
in Fundamental Sciences in Tehran. When I got there,
Mahmoodian told me that he wanted to check some
math that a high school student had handed to him
and he asked if I’d be willing to help him. So, I
spent the morning with Mahmoodian going over the
arguments with him. Mahmoodian was teaching a
summer course on graph theory for gifted school
children at Sharif University. One of the topics he had
talked about was decomposing graphs into disjoint
unions of cycles, including the rather curious example
of decomposing a tripartite graph into a union of
5-cycles. This was considered the first difficult case
of the general problem. Mahmoodian had asked the
students to find examples of tripartite graphs that
were decomposable as unions of 5-cycles, offering
one dollar for each new example. By the time of the
next lecture, Maryam had found an infinite family of
examples. She had also found a number of necessary
and sufficient conditions for the decomposability.
These were the results that Mahmoodian and I checked
that day. Checking everything carefully took the whole
morning. At the time we joked that Maryam was
obviously smart, but not that smart; otherwise she
could have milked Mahmoodian for all he was worth
by revealing one example a day.

Those of us who knew Maryam in person probably
have a hard time thinking of her as “the genius”
that she has been portrayed as in the media. She
didn’t have any of the pretensions of the stereotypical
genius of children’s books. She had the same qualms
and worries as the rest of us: she too had wondered
at some point whom to work with, whether she would
finish her thesis, whether she would find a decent
academic job, whether she could balance the demands
of motherhood with being a professor, whether she’d
be tenured at some point in this century. And she was
a lovely person. We loved her for who she was, and we
would have loved her just the same even without her
honors and awards.

Ramin Takloo-Bighash is professor of mathematics at
the University of Illinois–Chicago. His email address is
rtakloo@math.uic.edu.

In later years, her lectures became much more pol-
ished, and she gave talks on enumerating simple closed
geodesics on surfaces and on the earthquake flow on
Teichmüller space. We still laugh about our own talks in
the McMullen seminar sometimes being all show and no
substance in contrast with hers that were all substance

and no show. She really understood the material deeply.
Looking back, it is remarkable that each of her talks in that
informal setting was later developed into a substantial
contribution to mathematics.

Maryam’s perseverance stands out in our minds. In
the early spring of her last year in graduate school, she
rushed into one of our offices close to tears. She was
holding what must have been the twentieth draft of her
thesis, covered in McMullen’s famous red ink. “I am not
sure I will ever graduate,” she moaned, and she joked
that the last ten pages did not have as much red only
because McMullen’s pen must have run out of ink. After
commiserating for half an hour, Maryam steeled herself
and with her characteristic determination marched back
to her office for yet another round of editing.

In some ways, Maryam was like all the other students,
struggling with writing and expressing herself clearly.
All of McMullen’s students went through the ritual of
countless rewrites. ButMaryamhad a rare dogged tenacity
always to do better. She revised and revised tirelessly. The
red on the page subsided, and she completed her thesis.
Later she would adapt this thesis into three beautiful
papers tying together Witten’s conjecture, the volume of
the moduli space of curves, and the counting of simple
closed geodesics on hyperbolic surfaces.

Maryam had a whimsical side that was not often seen.
We had many dinner parties together, hosted in our
homes. Once when she was cooking us an Iranian meal, in
the middle of preparing a rice dish she put on somemusic
and started to dance. Soon we were all dancing around
her kitchen, bumping hips and laughing as she stirred the
pot. Another time, we were helping Maryam move into a
new apartment, and we had to travel twenty-five miles to
return the moving truck. While the rest of us were cranky
and exhausted, Maryam spontaneously broke into song.
She taught us some Iranian children’s songs, and we sang
the rest of the way, like school kids on a field trip.

Occasionally Maryam’s lighter side would come out in
mathematical conversations, too. We all have memories
of standing in the hallways of the department with her,
laughing raucously about something mathematical, prob-
ably disturbing all those seemingly serious professors
in their offices. If she was really excited about an idea,
she would start explaining it with energetic gestures. She
would laughingly say “it’s sooo complicated,” though in
truth the complexity never stopped her.

Maryam had an incredibly warm and infectious smile,
but she eschewed the spotlight. While her warmth was
apparent among friends, she was often quite reserved in
her interactions with others. In 2002 David and Maryam
attended a two-week summer program in complex hy-
perbolic geometry at the University of Utah. A group of
students went on a weekend hiking trip together; Maryam
came along and seemed to enjoy these quiet hikes in the
mountains. When the group stopped to rest, she would
often find a place to sit and reflect on the scenery in
silence (see next page). Maryam was intensely private.
Even after knowing her for so many years, we do not
know her deepest religious, social, or political beliefs.
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On a 2002 hike in Utah, Mirzakhani liked to reflect on
the scenery in silence.

Maryam was extremely generous, both with her math-
ematical ideas and as a true friend. In her fourth year
in graduate school, David had a serious fall and had
to recover at home from several broken bones. Maryam
organized a group of students to visit him and cheer
him up during his recuperation. Maryam would not settle
for half measures. When Laura married, Maryam teamed
up with Izzet and another fellow graduate student, Alina
Marian, to find something that would really please her.
Laura had a cutlery set in her registry, but Maryam was
not satisfied with ordering a few knives and forks—she
insisted that only the entire set would do.

Maryam was equally gracious with her mathemati-
cal ideas. When David was working on a paper about
Thurston’s skinning maps, Maryam realized that part of
his work had implications for some counting problems
related to the mapping class group action on Teichmüller
space that sheandher collaboratorshad recently explored;
she was happy to have David include this application in
his paper.

Maryamwas a brilliantmathematician, a FieldsMedalist,
an inspiration to many young mathematicians. To us,

however, she was first a friend. We are lucky to have
studied math with her, benefiting from her deep insights
and her penetrating questions. We are equally lucky to
have danced and cooked together, laughed together and
struggled together through those hard but precious years
of graduate school. It seems so wrong that she has died
so young. We love and miss her dearly.

Photo Credit
Photo of Mirzakhani in Utah courtesy of David Dumas.

Elon Lindenstrauss
Maryam Mirzakhani at Princeton I
Maryam and I both came to Princeton in 2004. She came
just after completing a stellar PhD thesis and had a very
visible presence in the department—energetic, sharp, and
interested in everything. Getting to know Maryam was to
me an unexpected joy. Maryam and I were both going
to a course given by Peter Sarnak that first year, and we
probably started talking to each other then.

I was intrigued by one aspect of her remarkable thesis
that was closest to me: Maryam’s asymptotics for the
number of simple closed geodesics of length at most 𝑇 on
a hyperbolic surface. Counting the number of all closed
geodesics of length at most 𝑇 is classical in dynamics—it
is well known that for surfaces of constant curvature −1
the number of such geodesics grows like 𝑒𝑇/𝑇. The simple
closed geodesics—those that as curves on the surface do
not cross themselves—are governed by a very different
law, which is influenced by the topology of the surface,
by the genus 𝑔, and the number of cusps 𝑛: their number
is proportional to 𝑇6𝑔−6+2𝑛. As sometimes happens when
counting objects, the asymptotic formula for the number
of simple closed geodesics is intimately related to an
equidistribution statement, and as an ergodic theorist I
was excited by the fact that the heart of the matter was a
beautiful application of ergodicity but in a context I was
not familiar with, namely, the action of the mapping class
group on the space of measured laminations supported
on the surface.

When I met her, Maryam was already dreaming about
classifying the invariant measures and orbit closures for
the action of SL(2,ℝ) on the moduli space of quadratic
differentials. This quest was a somewhat speculative
one at the time, motivated by the fantastic results of
Marina Ratner (who died unexpectedly only a week before
Maryam’s untimely death) on invariant measures and
orbit closures for the action of Ad-unipotent subgroups
on quotients of Lie groups. Alex Eskin was also obsessed
with this problem, and some years later they would join
forces (in part aided also by Amir Mohammadi) to fulfill
this mathematical dream in a pair of long and exceedingly
difficult papers, using what seems like almost every
mathematical technology known to mankind.

Elon Lindenstrauss is professor of mathematics at the Einstein
Institute of Mathematics of The Hebrew University of Jerusalem.
His email address is elon@math.huji.ac.il.
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We started discussing mathematics, and in particular
Maryam patiently explained to me some bits of her thesis.
On the third floor of Fine Hall, the tower housing the
Princetonmathematics department, there are someniches
with blackboards, and they were the favorite places for
us to sit and discuss. We decided to work together on
an intermediate problem, motivated by the quest for
an analogue of Ratner’s theorems in the moduli space
setting but quite closely connected to Maryam’s thesis:
the classification of locally finite measures on the space
of measured laminations invariant under the action of
the mapping class group.

This problem can be viewed as the analogue of the prob-
lem of classifying measures invariant under horospheric
groups in the Lie group setting (horospheric groups are
a special case of Ad-unipotent groups that are “big” in
an appropriate sense), which in the Lie group setting
is easier than the general case of Ratner’s results and
where rigidity was established earlier by S. G. Dani and H.
Furstenberg. Working with Maryam on this project and
learning from her all the multiple points of view on this
problem was a pleasure. While working we also talked
about life, politics,…. In some sense Iran and Israel are
similar, with a tension between tradition/religion and
modernity, and we both hoped a time would come when
the conflicts between our nations would subside. Sadly,
this does not seem to be the direction theworld is heading.

When Maryam came to Princeton, she had to meet
very high expectations due to her remarkable PhD thesis.
Eventually she exceeded these expectations, but because
she was not trying to reap low-hanging fruits, this took
time, and I am sure it was probably not easy initially.
When we worked together she was modest but sharp and
persistent.

After Maryam moved to Stanford I had less frequent
contact with her, but we had some email exchanges from
time to time. In June 2013 she told me she would not be
able to come to the Fields Symposium in Toronto due to
“an unexpectedmedical issue that I will have to deal with,”
and in the ensuing email exchange she told me she had
been diagnosed with breast cancer. In 2014–15 I was with
my family on sabbatical in Berkeley. Just after we arrived
at Berkeley I heard about her Fields Medal. I knew she
was in the running, and she certainly very much deserved
it, but since I had not heard anything I had assumed this
did not work out. I was very pleased to be wrong, and
we exchanged some emails about our experiences with
the publicity of the medal (though of course her prize
generated much greater public interest than mine).

During thisyear, andparticularly in thesecondsemester,
when both of us participated in a special semester at MSRI,
it was a pleasure to see her back with her full energy
and insight, often asking prescient questions from the
balcony in the MSRI main lecture auditorium. My family
and I hosted Maryam and her family in the house we
were renting, and her little girl enjoyed the trampoline.
Everything seemed very idyllic. Unfortunately, this full
recovery proved to be a mirage, and the cancer returned
not long afterwards.

We all miss her terribly.

Peter Sarnak
Maryam Mirzakhani at Princeton II
The first I heard of Maryam was her spectacular thesis,
written with Curt McMullen as her adviser. In it she
resolveda long-standingquestionon theasymptotic count
of the number of simple closed geodesics on a hyperbolic
surface, as well as giving an ingenious new proof of
Witten’s conjecture relating certain intersection numbers
on moduli spaces of surfaces of genus 𝑔 with 𝑛 punctures
and a KdV hierarchy. These results won her immediate
international acclaim, and until her untimely passing, she
continued to produce one striking breakthrough after
another, reshaping and molding the theory of hyperbolic
surfaces and especially the dynamics connectedwith their
moduli spaces. Her contributions will be celebrated and
studied for years to come.

Maryam’s first faculty position was at Princeton Univer-
sity, and we cherish the period that she spent with us.
I met with Maryam many times over the years to learn
about her latest work and other developments and to
discuss problems of mutual interest. While she was very
modest in both private and public exchanges, her deep
mathematical intuition and brilliance shone right through
in any discussion; one always felt elevated in her presence.
On many occasions I would find myself standing at the
back of the lecture hall together with Maryam, as we both
preferred to stand while listening to a lecture. The bonus
for me was that I would get her private clarifications and
insights into what the speaker was saying.

Maryam’s most recent visit to Princeton was with her
husband, Jan, and daughter, Anahita. They spent the fall
of 2015 at the Institute for Advanced Study as part of
a core activity centered around her far-reaching works
with Alex Eskin. This was a good time; Maryam was in
remission anddoing verywell in all respects. She delivered
to a packed audience the Minerva Lectures at Princeton
University.2 Her and Jan’s research was moving forward
handsomely, and there were many exciting opportunities
for them going forward. Sadly, a few months after they
got back to Stanford I got an email from Maryam saying
that she had had a big setback healthwise. She confronted
her cancer with the same courage and boldness that she
attacked all the obstacles that her very rich and too short
life presented. She is missed by so many of us—those
whose lives were enriched by knowing her as well as those
who are inspired by her story and her mathematics.

Peter Sarnak is professor of mathematics at the Institute for
Advanced Study and the Eugene Higgins Professor of Mathemat-
ics at Princeton University. His email address is sarnak@math
.princeton.edu.
2https://www.math.princeton.edu/events/seminars
/minerva-lectures/archive/13.
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Maryam Mirzakhani, Roya Beheshti, and others at the
Math Olympiad preparation camp in summer 1994.

Maryam was a member of the Iranian Math Olympiad
teams in 1994 and 1995, with whom she went on to
receive gold medals at IMO with a perfect score on
the later one. I was director of the Math Olympiad in
Iran during that period, and it was exciting to see with
what ease she could solve difficult problems. Later she
joined the training camp of Math Olympiad to train
the next generation of Olympians. It was so amazing
for me to work with her to design new challenging
problems! She also developed resources and wrote
a number theory book with her lifelong friend, Roya
Beheshti, as a reference for Olympiad camps. The book
still is in use after a twelfth printing!

Maryam joined the math department of Sharif Uni-
versity for her undergraduate studies in 1995. I was
the chairman of the math department during that
period, and with a few colleagues we did our best to
generate a center of excellence. We attracted many
talented students, but Maryam was truly exceptional
in all her courses.

Saeed Akbari, a young faculty member at that time,
brought a twenty-four-year-old problem by Paul Erdős
to the attention of his algorithmic graph theory stu-
dents and offered a ten-dollar prize. The problem was
to prove the existence of a planar 3-colorable graph
that is not 4-choosable. Maryam solved it and received
the prize. Her solution appeared in the BICA journal
in 1996.

Then she went to Harvard and continued to be
among the greatest mathematicians in her generation,
but she always remembered the good old days of her
undergraduate studies at Sharif. Her heart was always
open to concerns about how we can help young and
talented teenagers to have the opportunity to flourish
and develop their own mindset and talent.

Yahya Tabesh is a member of the faculty at Sharif Uni-
versity of Technology (Tehran, Iran). His email address
is tabesh@sharif.ir.
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Alex Eskin
Maryam Mirzakhani as Collaborator
Maryam and I first met in person at Princeton. She was a
postdoc, and I was a visitor at the Institute for Advanced
Study. We started collaborating right away. For me it
was an amazing experience; she was obviously brilliant,
but she was also the nicest and most positive person I
have ever met. We spent a lot of time at the IAS talking
about math and other things, and every week we would
walk to the university to sit in on Elon Lindenstrauss’s
course about homogeneous dynamics, which included a
description of his “low-entropy method.”

After we both left Princeton, we continued working
together. Maryam’s philosophy was to never go after
the “low-hanging fruit,” and our projects got increasingly
ambitious. But the biggest open problem in our subfield,
since Curt McMullen’s pioneering work ten years before,
was trying to find analogues of Marina Ratner’s celebrated
theorems in moduli space by proving that the SL(2,ℝ)
orbit closures were always manifolds. For a few years we
never talked about it, but we both could sense that the
other person was working on it. Eventually we decided to
join forces. For me it was an easy decision, since working
with her was so incredibly fun.

At first we just had some vague dreams and no concrete
plan. At one point we read a breakthrough paper by two
French mathematicians, Yves Benoist and Jean-François
Quint. The paper had already been available for a few
years, and reading it was on our to-do list, but it was
written in French, which neither of us knew. At some
point I was visiting IHES, and there was a group of people
there who wanted to read the paper, and that provided
the needed push. It was ostensibly a result in a different
area of mathematics, but we could tell immediately that
it was relevant to our problem. At this point we both
dropped all of our other projects. After a few months of
struggling, we plotted a potential route to the solution
based on a variant of their method.

In my senior year at Stanford I had an independent
study with Professor Mirzakhani in topology. I learned
from her the art of thinking through problems—her
diligence and calm methodology of thinking through
problems that we would formulate was like watching
an artist construct a masterpiece. She would brush on
the blackboard the basic fundamentals that she would
ensure I had a strong grasp of and then slowly layer
on various colors of detailing that would give a more
vivid illustration of the problem we were tackling and,
more importantly, a profound excitement for our work

Alex Eskin is the Arthur Holly Compton Distinguished Service
Professor of Mathematics at the University of Chicago. His email
address is eskin@math.uchicago.edu.
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and potential as mathematicians. She would teach in a
way to instill in her students a deep curiosity coupled
with a heavy thirst for a greater mastery.

During a few of our meetings, I told her about my
interests in utilizing structures for grasping insight
into various biological phenomena, and we discussed
a few examples I had been thinking about. She asked
me about my career goals post graduation, and I told
her that I was unsure, but that I loved what we were
doing. She discussed withme hermotivations that fuel
her work. She propelled me to apply to PhD programs,
which I ended up doing later that year.

Her impact on my life is unforgettable, and I would
not be where I am now if not for her support and
encouragement.

Danielle Rasooly is a graduate student in Bioinformat-
ics and Integrative Genomics at Harvard. Her email
address is drasooly@g.harvard.edu.

We worked on this for two years while getting more
and more excited. But at some point, seemingly near the
end, we realized that there was a major problem and that
our path was blocked. Our method needed a fact called
the semisimplicity of the algebraic hull, which we could
not prove. We could understand the SL(2,ℝ)-invariant
measures, but, because of the nonamenability of SL(2,ℝ),
in order to understand the SL(2,ℝ) orbit closures we
needed to understand the 𝑃-invariant measures, where 𝑃
is the upper-triangular subgroup of SL(2,ℝ). We looked
for ways to fix the argument but could not find any.
We were still talking once a week on Skype, but we
were making no progress. During this period, Maryam’s
daughter was born, but she continued working; she had
this amazing inner strength.

After more than a year of being stuck, we realized that
there was a different approach to the problem that was
based on a distant relative of the “low-entropy method”
that we had learned from Lindenstrauss. That eventually
worked, but not all the way. However, it was enough
to show that 𝑃-invariant measures are SL(2,ℝ)-invariant,
and for a long time we had an argument (based on the
work of Giovanni Forni) that SL(2,ℝ)-invariance implies
the semisimplicity of the algebraic hull. Thenwe could fall
back on our original argument based on the Benoist-Quint
method to complete the proof. It took us another two
years to work out all the details. During this time Maryam
was first diagnosed with cancer.

Later, the cancer was in remission, and I remember a
lot of happy times at MSRI, at IAS, and at Stanford. But
eventually the cancer came back, and even Maryam could
not beat it. I miss her both personally and professionally.

Mirzakhani working at home.
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Eugenia Sapir
Maryam Mirzakhani as Thesis Advisor
I think back often to my time in grad school as a student
of Maryam Mirzakhani. The memories of her are still very
much alive in my head. These memories are so full of life
that sometimes I feel they will pop out of my mind and
materialize in front of me. I will attempt to draw a picture
here of the vibrant person who lives on in my mind.

Maryam was full of boundless energy and enthusiasm
for her work. This was evident whenwatching her domath
or give a talk or when working with her on a problem. This
excitement toward her subject was part of her driving
force. When giving talks, she would bounce slightly while
laying out all the disparate ideas that came together into
the picture. When she got to the part when all the ideas
came together, she’d talk faster, excited about getting to
the punchline.

Eugenia Sapir is assistant professor ofmathematics at Binghamton
University. Her email address is sapir@math.binghamton.edu.
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Maryam would paint beautiful, detailed landscapes in
her lectures. If she were giving a talk about concepts
A, B, and C, she would not just explain that A implies
B implies C. Rather, she would paint a mathematical
landscape where A, B, and C lived together and interacted
with one another in various complicated ways. More than
that, she made it seem like the rules of the universe
were working harmoniously together to make A, B, and
C come about. I was often amazed by what I imagined
her inner world to be like. In my imagination it contained
difficult concepts from disparate fields of mathematics
all living together and influencing one another. Watching
them interact, Maryam would learn the essential truths
of her mathematical universe.

Maryam’s vision occasionallymade for cryptic conversa-
tions. When, for example, we would talk about my thesis
problem, there was a set of concepts that Maryam would
repeatedly bring up, rather like a recurrent cast of charac-
ters in a television show. At first, it was unclear to me why
these characters were relevant. Only after working on my
problem for several months could I look back and see
that the hints that Maryam dropped formed the backbone
of the best, most illuminating way of understanding what
was going on.

I met Maryam when she was a graduate student
at Harvard. At that time I already saw her passion
for mathematics. A couple of years later she did
her fabulous dissertation. Subsequently, I saw her
at conferences and the couple of visits she made
to Chicago to work with Alex Eskin. Her work had a
profound influence onme andmany others. It was also
always a joy to see her. She loved talking mathematics
with everybody, and she was also just a wonderful
person to be around. I got to know her a little better
personally in the spring of 2015 when she and I were
both at the Mathematical Sciences Research Institute.
She had just won the Fields Medal. I remember how
gracious and generous she was with everyone. I saw
her for the last time at a seminar at Stanford in
November 2016. I knew at that time that her health
was deteriorating, so I was both a little surprised but
also very happy to see her. She listened to the talk
and then participated in a discussion for almost an
hour afterwards. In spite of all she was going through,
she exhibited the same enthusiasm and passion for
mathematics. I think it was important to Maryam
not to be identified with her illness. I miss her as a
mathematician and as a friend.

Howard Masur is visiting professor of mathematics at
the University of Chicago. His email address is masur
@math.uchicago.edu.

On the other hand, Maryam was completely down to
earth. I’ve heard many of my peers say that they also
found her completely approachable even though she
didn’t know them very well. It was easy for me to talk

to her about my ideas. I would come into her office each
week while I was in graduate school. I’d tell her what I’d
been thinking about, and we’d just talk. We’d throw ideas
back and forth and get excited when things worked. We
would make math jokes and laugh. Sometimes I’d bring
her an annoying problem I couldn’t get around. Then
her favorite phrase was, “How can that be?” She would
repeat it several times, until she found the fissure we
could use to crack the problem open. Our meetings would
skip along happily until we came to a problem where we
didn’t see an immediate solution. We’d become silent and
pensive, each of us retreating to our paper and pencil
until we came up with something new to try. Maryam
became engrossed in her drawing pad, sketching small
drawings related to what we were discussing. When the
silence dragged on for long enough and it had become
clear that it would take too long for the next idea to
come, the meeting was over. I knew that we’d discussed
everything possible that week and that it was time to table
the discussion for next time. I’d leave feeling energized
and excited for the week to come.

I saw Maryam as my math coconspirator and also as a
bottomless well of inspiration. She was an unpretentious
person who held great depths. She was the embodiment
of someone who studied math for the joy of the pursuit
of knowledge. She is someone we have lost much too
soon and who has left much undone.

Mirzakhani with her husband, Jan Vondrák, and
daughter, Anahita.
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Hélène Barcelo and
David Eisenbud
Maryam Mirzakhani and MSRI
Everyone in the mathematical community knows that
Maryam Mirzakhani was an outstanding mathematician,
a winner of the Fields Medal in 2014. Many have seen a
video3 with her on the floor drawing figures that reflect
her deep mathematical imagination and suggest some
of the charm of her fresh and vibrant personality. Still
others knew Maryam from her other distinctions—for
example, as one of Nature Magazine’s “10 People Who
Matter” in 2014. But only a few know how deeply Maryam
was engaged with the Mathematical Sciences Research
Institute (MSRI) located in Berkeley, California.

Maryam was a key member of the MSRI Scientific
Advisory Committee from 2012 to 2016, the committee
charged with selecting the scientific programs and their
members. During part of that time she was very ill with
what turned out to be her terminal cancer, but she never
missed a meeting—even when she couldn’t travel from
Stanford to Berkeley she attended by video between harsh
medical treatments—andshe faithfully did the substantial
committee homework. It is fair to say that she was an
inspiration to the entire committee.

She played other important roles at MSRI too. She was
one of the main organizers of the semester-long program
on Teichmüller theory and Kleinian groups in 2007 and
a research professor for the spring of 2015. She was
even a member of the complementary program when her
husband, Jan Vondrák, came to MSRI for a computational
program in the spring of 2005.

Finally, in the spring before her death, Maryam had
agreed to be nominated as a trustee of MSRI, although
she warned David Eisenbud, MSRI’s director, in a long and
deeply sad meeting that she might well not live to take
office.

We believe that Maryam’s engagement with MSRI came
from a close alignment of priorities: first, formathematics
of the highest quality, done in a playful collaborative style;
second, for the cultivation of talent also in young women,
and the support of women with children; and, finally, for
welcoming mathematicians from abroad, understanding
that they enormously enrich the US mathematical scene.

It was an honor to know Maryam: brilliant, charming,
and courageous to the end. We miss her deeply.

Hélène Barcelo is deputy directory of MSRI. Her email address is
hbarcelo@msri.org.
David Eisenbud is director of MSRI. His email address is de@msri
.org.
3https://www.simonsfoundation.org/2017/07/20/fields
-medalist-maryam-mirzakhani-dies-at-40/.

Ursula Hamenstädt
Zooming In and Out: The Work of Maryam
Mirzakhani through the Eyes of a Geometer
Prelude
Let us imagine that we intend to embark on an attempt
to understand the geometry of the universe. How would
we proceed?

A perhaps naive idea is as follows. Identify some small
region in the universe we are reasonably familiar with.
What this means can be argued about, but the amount of
information used to gain the level of understanding we
feel comfortable with should be controlled. Then we send
a spacecraft fromour region in some arbitrary direction to
collect information on the change of shape with respect
to the fixed reference region. As the journey of the
spacecraft continues and we collect more information, we
may have to acquire more knowledge about the reference
region todetect hidden similaritieswith thepictures taken
along the journey. The vague hope is that the geometric
interaction of nearby regions on the small scale reveals
the laws of nature which control the large-scale shape of
the universe as recorded in the random sampling.

To develop an understanding of the shape of the uni-
verse along such lines requires an intimate understanding
of what “shapes” are supposed to represent, how we can
describe their interaction, how simultaneously zooming
in and out can be done in such a way that pattern
formation can be correctly observed.

In my mind, Maryam Mirzakhani successfully imple-
mented this program for the universe formed by Riemann
surfaces and their canonical bundles, i.e., for the mod-
uli space of Riemann surfaces and the moduli space
of abelian differentials. These moduli spaces are well-
studied mathematical objects which naturally emerge in
almost any mathematical context. Building on the work of
many distinguished researchers, Mirzakhani developed
a new geometric way to study these spaces that puts
earlier, seemingly unrelated, results into complete har-
mony and, at the same time, creates many new research
directions which will be explored by future generations
of mathematicians.

In the sequel I will discuss three of Mirzakhani’s theo-
rems which were obtained using the principle of zooming
in and zooming out. Geometry should be understood in
the broad sense ofmeasurement, which includes counting
of shapes sorted by sizes, etc.

Riemann Surfaces
An oriented surface is a two-dimensional oriented man-
ifold and as such a quite simple object, in particular, if
it is closed (i.e., compact, without boundary). Viewed as
topological or smooth manifolds, surfaces can easily be
classified. Themost basic closed surface is the two-sphere,
and any other closed surface arises from the two-sphere

Ursula Hamenstädt is professor of mathematics at the University
of Bonn. Her email address is ursula@math.uni-bonn.de.
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Figure 1. Mirzakhani (Theorem 1 here) proved
estimates on the number of pair of pants
decompositions.

by attaching a nonnegative number 𝑔 of so-called handles.
The number of handles attached is the genus of the
surface.

Once this classification is established, seemingly there is
notmuchmore tosay,with theexceptionofunderstanding
the different geometric shapes a fixed closed surface 𝑆
admits. The perhaps best known classical result that
restricts the geometric structures on 𝑆 is the Gauss-
Bonnet theorem. It says that if we denote by 𝐾 the Gauss
curvature of a smooth Riemannian metric on 𝑆, then
the integral 1

2𝜋 ∫𝑆 𝐾𝑑vol equals the Euler characteristic
𝜒(𝑆) = 2 − 2𝑔 of 𝑆, where vol is the volume form of the
metric. Furthermore, for 𝑔 ≥ 2 there exists a hyperbolic
metric on 𝑆, i.e., a metric of constant Gauss curvature −1.

The space of all isometry classes of such metrics can be
described as follows. First, the set of allmarked hyperbolic
structures on 𝑆 is defined to be the set of equivalence
classes of hyperbolic metrics where two such metrics are
identified if they can be transformed into each other by a
diffeomorphism of 𝑆 isotopic to the identity. This space,
Teichmüller space 𝒯(𝑆), admits a natural topology that
identifies it with an open cell homeomorphic to ℝ6𝑔−6.
The group of isotopy classes of diffeomorphisms of 𝑆
coincides with the quotient of the automorphism group
of 𝜋1(𝑆) by the subgroup of inner automorphisms. This
mapping class group Mod(𝑆) of 𝑆 acts from the left on
𝒯(𝑆) by precomposition. The space of isometry classes of
hyperbolic surfaces is the quotient Mod(𝑆)\𝒯(𝑆), called
the moduli space of 𝑆.

Zooming In: Local from Global
For afixedhyperbolicmetric ona closed surface𝑆of genus
𝑔, there exists a decomposition of 𝑆 into geometric pieces,
hyperbolic pairs of pants as in Figure 1. Topologically,
such a hyperbolic pair of pants is a two-sphere from
which the interiors of three disjoint compact disks have
been removed. This decomposition is done by cutting 𝑆
open along a collection of 3𝑔−3 pairwise disjoint simple
geodesics. Here a geodesic is simple if it does not have
self-intersections.

Clearly, the geometric description of the hyperbolic sur-
face obtained from such a decomposition into hyperbolic
pairs of pants depends on the choice of the boundary
geodesics. A natural question is how many different such
decompositions exist for a fixed hyperbolic metric? The

easy answer is: This number is infinite, as there are simple
closed geodesics on 𝑆 of arbitrary length, and each simple
closed geodesic belongs to such a decomposition. But
what if we restrict the geometry by bounding the length
of these geodesics?

A result going back to Huber and Selberg states that the
number 𝑐(𝐿) of singly-covered closed geodesics of length
at most 𝐿 on a hyperbolic surface 𝑆 is asymptotic to 𝑒𝐿/𝐿
as 𝐿 → ∞. In particular, the growth rate of the number
of such geodesics is not only independent of the specific
hyperbolic metric on 𝑆 but also independent of the genus
of 𝑆.

However, most of these geodesics have self-
intersections, and if we want to understand the
geomety of a hyperbolic surface 𝑆 by decomposing it
into pairs of pants, we need to understand simple closed
geodesics on 𝑆. And, as we vary the hyperbolic metric
over moduli space, we may expect that these simple
geodesics and their growth rate give information on the
geometry of the surface.

In her thesis, Mirzakhani gave an affirmative answer to
quite a few questions of this type. Denoting by ℳ𝑔 the
moduli space of closed surfaces of genus 𝑔, she showed:

Theorem 1 (Mirzakhani [7, Thm. 1.1]). For a closed hyper-
bolic surface 𝑋 of genus 𝑔 ≥ 2 and 𝐿 > 0 denote by 𝑠𝑋(𝐿)
the number of distinct geodesic pair of pants decomposi-
tions of 𝑋 of total length at most 𝐿. Then

lim
𝐿→∞

𝑠𝑋(𝐿)
𝐿6𝑔−6+2𝑛 = 𝑛(𝑋),

where 𝑛 ∶ ℳ𝑔 → ℝ+ is a continuous proper function.

Thus asmoduli space is noncompact, the growth rate of
the number of pants decompositions of bounded length
depends not only on the genus of the surface but also on
the surface itself!

Mirakhani showed this result by first zooming out and
then zooming in. The first step is to prove that for
fixed 𝐿, the locally bounded function 𝑋 → 𝑠𝑋(𝐿) can be
integrated over moduli space, where this moduli space is
equipped with the so-called Weil-Petersson volume form,
the volume form of an (incomplete) Kähler metric. She
discovers that this integral, denoted here by 𝑝(𝐿), is a
polynomial in 𝐿 of degree 6𝑔− 6.

Some pointwise estimates on the growth rate 𝑠𝑋(𝐿)
were known earlier. But it requires far-reaching insight
and courage to believe that one can basically effectively
compute this integral by finding a global relation between
these integrals for all 𝐿 > 0. Mirzakhani [7, p. 99] explains
this for afixedpants decomposition𝛾of𝑆, “the crux of the
matter is to understand the density of Mod𝑔 ⋅ 𝛾 in ℳℒ𝑔.”
Here ℳℒ𝑔 is the space of so-called measured geodesic
laminations which is homeomorphic to a euclidean space
of dimension 6𝑔−6 with the point 0 removed. It contains
weighted simple multicurves, i.e., collections of disjoint
closed geodesics equipped with some positive weights as
adensesubset, and it admitsanactionof themultiplicative
group (0,∞) by scaling.

Each marked hyperbolic metric on 𝑆 defines a continu-
ous length function on ℳℒ𝑔. This function associates to
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a multicurve the length of its geodesic representative for
this metric.

Themapping class groupMod(𝑆) acts transitively on the
multicurveswhich define a pants decomposition of a fixed
combinatorial type. If one equips each component of such
a multicurve with the weight 𝑇 > 0, then these weighted
point masses define a Mod(𝑆)-invariant Radon measure
𝜇𝑇 on ℳℒ𝑔. Mirzakhani observes that dividing by 𝑇6𝑔−6,
the total mass of the set of laminations of length at most
one for a fixed marked hyperbolic metric determines the
value of 𝑠𝑋(𝑇). Furthermore, the measures 𝜇𝑇 converge
as 𝑇 → ∞ to a Mod(𝑆)-invariant Radon measure 𝜆 on
ℳℒ𝑔 which was earlier constructed by Thurston. Thus
zooming in again to the unit length ball defined by a
fixed hyperbolic metric, she obtains the asymptotics of
the function 𝑠𝑋(𝐿) as 𝐿 → ∞.

Mirzakhani’s result indicates that the action of the
mapping class group on ℳℒ𝑔 has properties which re-
semble amore familiar setting in homogeneous dynamics:
The group SL(2, ℤ) acts by linear transformations on the
puncture plane ℝ2−{0}. This action preserves the Radon
measure, which is just the sum of the Dirac masses
on the standard integral grid ℤ2 or on any dilation of
this grid, and it also preserves the Lebesgue measure of
ℝ2. These measures are all ergodic under the action of
SL(2,ℝ), which means that there are no invariant Borel
subsets 𝐵 of ℝ2 of positive measure so that the measure
of ℝ2 − 𝐵 is positive as well. In fact, they are the only
ergodic SL(2, ℤ)-invariant Radon measures up to scale,
with 𝜆 being the only nonwandering measure.

It turns out that the dynamics of the action of Mod(𝑆)
on ℳℒ𝑔 has very similar properties: In joint work [6]
with Lindenstrauss, Mirzakhani proved that the Thurston
measure 𝜆 is the only nonwandering invariant Radon
measure on ℳℒ𝑔 up to scale.

Hyperbolicity
Mirzakhani’s thesis was built on the interplay between
geometric information on individual hyperbolic surfaces
and the geometry of moduli space, and it culminated
in a counting result for simple closed multicurves on
hyperbolic surfaces. But in which way does moduli space
resemble the Riemann surfaces it is made of?

It is classical that moduli space admits a natural com-
plete geometric structure in its own right, the so-called
Teichmüller metric. Although this metric is not Riemann-
ian, nor is it nonpositively curved in any reasonable sense,
it shares many global features of a hyperbolic metric on a
surface. In particular, any two points in Teichmüller space
can be connected by a unique geodesic for the pullback
of this metric, and periodic geodesics in moduli space are
in bijection with conjugacy classes of so-called pseudo-
Anosov mapping classes. These periodic geodesics can be
sorted and counted according to their length.

In joint work with Alex Eskin [2] and with Eskin
and Rafi [5], Mirzakhani uses random sampling and local
information on surfaces to obtain precise counting results
for periodic geodesics in moduli space. The starting point
for this endeavor is the (classical) fact that the cotangent

space of moduli space at a surface 𝑋 can naturally be
identified with the vector space of holomorphic quadratic
differentials for 𝑋. More precisely, the hyperbolic metric
of 𝑋 determines a complex structure, and a holomorphic
quadratic differential for this structure is a holomorphic
section of the bundle (𝐾∗)2, where 𝐾∗ is the cotangent
bundle.

The geometric beauty of this observation lies in the
fact that each nontrivial quadratic differential defines
a new geometric structure on the surface 𝑆 in the
same conformal class as the hyperbolic structure. This
geometric structure is a flat (Euclidean)metricwith finitely
many cone points of cone angle an integral multiple of 𝜋.
As one varies over the fibre of the cotangent bundle at a
given point, these flat metrics vary as well, and the space
of all such flat metrics reflects the geometric shape of the
hyperbolic metric.

Evenmore is true: Each such flatmetric comes equipped
with a pair of preferred orthogonal directions, the
so-called horizontal and vertical directions, which are
defined on the complement of the cone points Σ of the
differentials and which are just the line bundles on 𝑆−Σ
on which the evaluation of the differential is positive or
negative, respectively. These directions define orthogo-
nal foliations of the surface away from the cone points.
Furthermore, there is a natural one-parameter group Φ𝑡

of transformations of such flat surfaces which consists
of scaling the horizontal direction with the scaling factor
𝑒𝑡/2 and the vertical direction with the scaling factor 𝑒−𝑡/2.
These transformations clearly preserve the surface area
of the flat metric. Two such flat surfaces define the same
cotangent vector in moduli space if they can be trans-
formed into each other with finitely many cut-and-paste
operations.

The flow thus defined by Φ𝑡 on the unit area subbundle
of the cotangent bundle of moduli space can be analyzed
by zooming out: The local change of shape along a flow
line can easily be described. Amain result is the following:

Theorem 2 (Eskin and Mirzakhani [2]). As 𝑅 → ∞, the
number of periodic trajectories of the flow Φ𝑡 of length at
most 𝑅 is asymptotic to 𝑒(6𝑔−6)𝑅/(6𝑔 − 6)𝑅.

This result was later extended in joint work [5] with
Eskin and Rafi with a much more sophisticated argument
to strata in the moduli space of abelian and quadratic
differentials.

The idea of the proof consists of zooming out in
random directions and averaging the random samples.
It was noted earlier that the flow Φ𝑡 has properties
resembling the properties of a hyperbolic flow as long
as the trajectories remain in a fixed compact set. What
this means precisely was clarified by Mirzakhani in joint
work [1] with Athreya, Bufetov, and Eskin. But the moduli
space is very notably noncompact, and the metric near
the cusp resembles a sup metric which can be thought of
as a metric of infinite positive curvature. There are many
recent results which make this idea precise.

Now moduli space is the quotient of Teichmüller space
𝒯(𝑆)under the action of themapping class group.Moving
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in Teichmüller space in a randomdirection can be thought
of as looking at a randomly chosen finite set of points
in some large ball in 𝒯(𝑆) and trying to understand the
change of shape of a hyperbolic or flat surface sampled
on these finitely many points. A careful analysis of this
sampling process reveals a bias of such random samples
to return to the so-called thick part of Teichmüller space.
This is defined to be the preimage of a fixed compact
subset of moduli space. Understanding the hyperbolic
behavior of the flow Φ𝑡 on the cotangent bundle of the
thick part allows Eskin and Mirzakhani to show that the
growth rate of periodic orbits that are disjoint from some
fixed compact subset of moduli space is strictly smaller
than the growth rate of all orbits. That this is sufficient
for the above counting result can be established by an
adaptation of a classical strategy of Margulis.

Hidden Symmetries and Homogeneous Dynamics
The singular Euclidean metric on the surface 𝑆 defined by
a quadratic differential is given by a collection of charts
on the complement of the finite number of singular
points with values in the complex plane. Chart transitions
are translations or compositions of translations with the
reflection 𝑧 → −𝑧. The differential is the square of a holo-
morphic one-form or, equivalently, a holomorphic section
of the cotangent bundle 𝐾∗ of 𝑆 if all chart transitions
can be chosen to be translations. The differential is, in
this case, called abelian. Postcomposition of charts then
defines a right action of the group SL(2,ℝ) on the moduli
space of abelian or quadratic differentials. The action of
the diagonal group is just the Teichmüller flow Φ𝑡.

The SL(2,ℝ)-action preserves the strata which consists
of differentials with the same number and order of
singular points. Strata are complex suborbifolds in the
moduli space of holomorphic one-forms on Riemann
surfaces.

Let 𝑃 be the set of singular points of an abelian dif-
ferential 𝜔. Then 𝜔 determines by integration over a
smooth path a class in 𝐻1(𝑆,𝑃;ℂ). In fact, this class
determines 𝜔 locally uniquely in the following sense. In-
tegration over a fixed basis of 𝐻1(𝑆,𝑃; ℤ) yields so-called
period coordinates for the stratum. These period coordi-
nates equip the stratum with an SL(2,ℝ)-invariant affine
structure, i.e., local charts with affine chart transitions.
These chart transitions are volume-preserving and, hence,
define a Lebesgue measure on the stratum. This Masur–
Veech measure is finite and invariant under the action of
SL(2,ℝ).

Orbits of the SL(2,ℝ)-action on the moduli space
of area-one abelian differentials can be identified with
the unit tangent bundle of Teichmüller disks which are
totally geodesic immersed hyperbolic disks in moduli
space. The analog of periodic Teichmüller geodesics
are closed SL(2,ℝ)-orbits. Such orbits project to finite-
volume immersed hyperbolic surfaces in moduli space. It
is known that such closed orbits are dense in any stratum.
But how can one globally understand the dynamics of the
SL(2,ℝ)-action?

In homogenous dynamics, the celebrated solution of
a conjecture of Raghunathan by Marina Ratner (who
sadly passed away one week before the death of Maryam
Mirzakhani) states for example the following.

Consider a simple Lie group 𝐺 of noncompact type and
a lattice Γ in 𝐺. Let 𝐻 < 𝐺 be a closed subgroup that
is generated by unipotent elements. The group 𝐻 acts
by right translation on Γ\𝐺. Then for every 𝐻-invariant
Borel probability measure 𝜇 on Γ\𝐺 there exists a closed
subgroup 𝐿 < 𝐺 with the following properties:
(1) Γ ∩ 𝐿 is a lattice in 𝐿.
(2) 𝜇 is the projection of the Haar measure on 𝐿 to

Γ ∩ 𝐿\𝐿.
Furthermore, the closure of each 𝐻-orbit on Γ\𝐺 equals
the closed orbit of a Lie subgroup 𝐿 < 𝐺 which intersects
Γ in a lattice.

Thus Ratner’s theorem gives a complete classification
of orbit closures on quotients Γ\𝐺 as well as of invariant
measures.

Can one formulate a conjecture which translates Rat-
ner’s theorem into the framework of the action of SL(2,ℝ)
on a stratum of area-one abelian differentials? Remem-
bering that an orbit closure in Γ\𝐺 is algebraic, an ad
hoc guess could be that such an orbit closure is an affine
suborbifold, i.e., cut out by polynomial equations in affine
coordinate charts. But the affine structure on strata of
moduli space is obtained by taking periods of holomor-
phic one-forms over relative homology classes, with an
integral structure that arises from integral homology, and
a priori this is not in harmony with algebraic structures
obtained from global algebraic geometric information.

The amazing rigidity result of Eskin and Mirzakhani [3]
states as a special case:

Theorem 3 (Eskin and Mirzakhani [3]). Every SL(2,ℝ)-
invariant Borel probability measure on the moduli space
of area-one abelian differentials is an affine measure of
an affine invariant manifold.

Together with Mohammadi, they also show that ev-
ery orbit closure is an affine invariant manifold. By a
2016 result of Filip, this result can be translated into an
algebraic-geometric statement for moduli space: The quo-
tient of an affine invariant manifold by the natural circle
group of rotations whichmultiplies an abelian differential
by a complex number of absolute value one is a projective
subvariety of the projective bundle over moduli space
whose fibre at a point 𝑋 equals the projectivization of the
vector space of holomorphic one-forms on 𝑋.

But how can one prove this result? By an amazing
construction which simultaneously zooms in and out.
Random sampling is used to reveal the global geometry.
One of the main tools is random walks, and vast and
sophisticated knowledge about such randomwalks which
provides information on deviation, stationary measures,
drifts, and structural insights related to the idea of
proximality enters into the argument.

It requires the amazing insight, the unsurpassed opti-
mism, and the enormous technical strength of Maryam
Mirzakhani to carry out this program, using along the
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way tools from areas of mathematics as diverse as geom-
etry, ergodic theory, homogeneous dynamics, algebraic
groups, random walks, algebraic geometry, and mathe-
matical physics. Her vision is the door to a wonderland
where very concrete but seemingly unrelated mathemat-
ical structures combine to a composition of extreme
complexity and breathtaking beauty, yet which is made
from simple tunes and is orchestrated in perfect harmony.
There is no coda, but there is an unspoken invitation to
everyone to extract his or her favorite line and explore its
variations and ramifications.

I met Maryam for the first time on the occasion of a
workshop in Chicago (probably in 2002). Curtis McMullen
introduced her to me during lunch, and, as mathemati-
cians do, the small lunch group chatted about math. She
fully participated in the discussion, making interesting
comments, and answered a question that came up. Right
after giving the answer, she realized that what she had
said was not quite right, and she corrected herself with a
laugh, mockingly embarrassed about her inaccuracy.

During our encounters in later years, I found many
times again this laughter, reflecting her professional
ambition, passion, and optimism which enabled her to
adjust andfine-tune her fantastic vision until the next step
had emerged in complete clarity and in an aesthetically
pleasing way. Looking backwards, I am very grateful that
I had the privilege to know her in person, early on.

With her creativity, persistence, and courage, Maryam
Mirzakhani made a contribution to mathematics which
I believe will be remembered and further developed by
many future generations of mathematicians. Her memory
should in particular serve as an inspiration and rolemodel
for all young women interested in pursuing a career in
mathematics.
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Scott A. Wolpert
Maryam Mirzakhani and Hyperbolic
Geometry
Reflection
In the spring of 2004, I set about reading a manuscript
from one of Curt McMullen’s graduating students. The
manuscript included many of my favorite topics and con-
cluded with a proof, beginning with hyperbolic geometry,
of Witten’s conjecture from 2𝑑-quantum gravity. In 1992
Maxim Kontsevich first proved the conjecture using a
matrix Airy integral model and ribbon graphs. The conjec-
ture posits that the intersection numbers on the moduli
space ℳ of Riemann surfaces of two tautological line
bundles satisfy the recursion of the Korteweg–de Vries
(KdV) hierarchy. I soon realized that the manuscript was
closely interrelated with two other manuscripts, one on a
recursive scheme in genus for integration over the moduli
space ℳ and one on the asymptotic count by length of
simple geodesics on a hyperbolic surface. The constants
in the asymptotic count formulas were given by the tauto-
logical intersection numbers and Thurston volumes. The
graduate student was Maryam Mirzakhani, and so began
my journey of studying and contemplating her beautiful
results. Mirzakhani’s number of publications is not so
large, but the breadth and achievements are very special.
Often her results are given by simple answers—broad
statements without special hypotheses.

In my experience, studying Mirzakhani’s works is some-
what akin to signing on for a hike with a young, freshly
trained guide. You embark on familiar terrain but soon
arrive at surprising new vistas. Also the pace of the
hike can be quite varied—conceptual steps can be large,
and detailed calculations with formulas go by quickly.
I’ve thought that the latter might be the product of
her Math Olympiad training. I always personally found
Maryam to be full of energy, most gracious, and intellec-
tually ambitious—always eager to unravel the next piece
of the puzzle. For me, Maryam always embodied the
mathematician persona that we aspire to fulfill.

Background
We describe Mirzakhani’s thesis results from Simple
geodesics and Weil–Petersson volumes of moduli spaces of
bordered Riemann surfaces, Weil–Petersson volumes and
intersection theory on the moduli space of curves, and
Growth of the number of simple closed geodesics on hy-
perbolic surfaces, as well as the main results from the
joint work with Elon Lindenstrauss. An exposition of the
results andnecessarybackgroundmaterial areprovided in
our CBMS lectures Families of Riemann surfaces and Weil–
Petersson geometry and our PCMI lectures Mirzakhani’s
volume recursion and approach for the Witten–Kontsevich
theorem on moduli tautological intersection numbers.

Mirzakhani considers Riemann surfaces 𝑅 of finite
topological type with hyperbolic metrics, possibly with

Scott Wolpert is professor of mathematics at the University of
Maryland. His email address is saw@math.umd.edu.
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Figure 1. Assembling a genus 3 surface from pairs of
pants.

punctures and geodesic boundaries. A surface is marked
by choosing a homotopy class of a homeomorphism from
a reference surface 𝐹. Teichmüller space 𝒯 is the space
of equivalence classes of marked Riemann surfaces. If
the Riemann surfaces are compact or compact with punc-
tures, then the Teichmüller space is a complex manifold.
The mapping class group 𝑀𝐶𝐺 consists of homotopy
classes of orientation-preserving homeomorphisms of 𝐹
and the group acts by precomposition onmarking homeo-
morphisms. The quotient 𝒯/𝑀𝐶𝐺 is the classical moduli
space ℳ of Riemann surfaces. For compact genus one
surfaces, Teichmüller space is the upper half-plane ℍ
and PSL(2 ∶ ℤ) is the MCG. A point 𝜏 ∈ ℍ describes
the lattice 𝐿𝜏 with generators 1 and 𝜏 and the Riemann
surface ℂ/𝐿𝜏. Surfaces of negative Euler characteristic
are uniformized by the upper half-plane with hyperbolic
metric. We consider Teichmüller spaces for negative Euler
characteristic surfaces—compact surfaces, surfaces with
a finite number of punctures, and surfaces with a finite
number of geodesic boundaries. Denote the genus of a
surface𝑅 by𝑔 and the number of punctures or boundaries
by 𝑛.

A nontrivial, nonpuncture homotopic, free homotopy
class 𝛼 on the reference surface has a unique geodesic
representative on a marked surface 𝑅—the geodesic
length ℓ𝛼 provides a natural function on𝒯. Collections of
geodesic-length functions provide local coordinates and
global immersions to Euclidean space for𝒯. A hyperbolic
surface can be cut open on a simple geodesic. Since a
neighborhood of a simple geodesic is an annulus with an
𝑆1 symmetry, the cut boundaries can be reassembled with
a relative rotation to form a new hyperbolic structure. For
unit-speed hyperbolic relative displacement of reference
points, the infinitesimal deformation is the Fenchel–
Nielsen (FN) twist vector field 𝑡𝛼 on 𝒯.

Hyperbolic surfaces can be assembled from pairs of
pants—from genus zero surfaces with three geodesic
boundaries, as in Figure 1. For pants, boundary reference
points are provided by the unique orthogonal geodesics
between boundaries. At an assembly seam, the common
boundary length ℓ and Fenchel–Nielsen twist displace-
ment parameter 𝜏 are unrestricted. The length varies in
ℝ>0, and the twist varies in ℝ.

Theorem 1 (FN coordinates). The parameters
∏3𝑔−3+𝑛

𝑗=1 (ℓ𝑗, 𝜏𝑗) provide a real analytic equivalence of
𝒯 to (ℝ>0 ×ℝ)3𝑔−3+𝑛.

The symplectic geometry of 𝒯 begins with the 𝑀𝐶𝐺-
invariant Weil–Petersson Kähler metric 𝑔𝑊𝑃𝐾 ̈𝑎ℎ𝑙𝑒𝑟 and its

symplectic form 𝜔 = 𝜔𝑊𝑃𝐾 ̈𝑎ℎ𝑙𝑒𝑟. Symmetry reasoning
shows that ℓ and 𝜏 provide action-angle coordinates.

Theorem 2 ([W]). The WP symplectic form satisfies twist-
length duality

𝜔( , 𝑡𝛼) = 𝑑ℓ𝛼
and has the expansion

𝜔 =
3𝑔−3+𝑛

∑
𝑗=1

𝑑ℓ𝑗 ∧𝑑𝜏𝑗.

In particular geodesic-length functions are Hamiltonian,
and the symplectic structure is independent of pants
decomposition. Also the quotient 𝒯/𝑀𝐶𝐺 is at least a
real analytic manifold.

The Bers fiber space ℬ is the complex disc holomorphic
bundle over 𝒯 with fiber over a marked surface 𝑅
being the universal cover 𝑅̃. A point on a fiber can
be declared to be a puncture, and so ℬ𝑔 ≈ 𝒯𝑔,1 and
ℬ𝑔,𝑛 ≈ 𝒯𝑔,𝑛+1. An extension 𝑀𝐶𝐺ℬ of 𝑀𝐶𝐺 by the
fundamental group of the fiber 𝜋1(𝐹) acts properly
discontinuously and holomorphically on ℬ. The resulting
map 𝜋 ∶ ℬ/𝑀𝐶𝐺ℬ → 𝒯/𝑀𝐶𝐺 describes an orbifold
bundle, theuniversal curve overℳ; the fibers are Riemann
surfaces modulo their automorphism groups. A fiber of
the vertical line bundle (Ker𝑑𝜋) is a tangent to a Riemann
surface; the hyperbolic metrics of individual surfaces
provide metrics for the fibers. The Chern form c1(Ker𝑑𝜋)
on ℬ/𝑀𝐶𝐺ℬ can be used to define forms/cohomology
classes on ℳ by integrating over fibers 𝜅𝑘 = ∫𝜋−1(𝑅) c

𝑘+1
1 .

Theorem 3 ([W]). For the hyperbolic metrics on fibers,
2𝜋2𝜅1 = 𝜔, pointwise on ℳ and in cohomology on the
Deligne–Mumford compactification ℳ.

There is a uniqueway tofill in apuncture for a conformal
structure. Accordingly a labeled puncture determines a
section 𝑠 of ℬ̃/𝑀𝐶𝐺ℬ → ℳ (punctures on fibers are now
filled in). Along a puncture section 𝑠 we consider the
family of tangent lines (Ker𝑑𝜋)|𝑠 or the dual family of
cotangent lines (Ker𝑑𝜋)∗|𝑠—the pullback to ℳ by the
puncture section 𝑠 of the dual family of cotangent lines
is the tautological canonical class 𝜓.

Mirzakhani–McShane and the Volume Recursion
On a compact manifold, the number of closed geodesics
of length less than a given bound is finite. In 2003
Mirzakhani wrote, “My work has been motivated by the
problem of estimating 𝑠𝑅(𝐿), the number of primitive
simple closed geodesics of hyperbolic length less than
𝐿 on 𝑅.” A natural first step is to average the count
over all Riemann surfaces—this requires an approach to
computing integrals over the moduli space of Riemann
surfaces. Fundamental domains in Teichmüller space
cannot provide a workable approach. With an especially
ingenious and useful insight, Mirzakhani considered Greg
McShane’s remarkable identity to provide a partition of
unity relative to themapping class group. TheMirzakhani–
McShane identity is based on studying the geodesics
emanating orthogonally from a geodesic boundary of a
Riemann surface. The behavior of emanating geodesics
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Figure 2. On the waist boundary: an ortho-boundary
geodesic, a pair of distinguished intervals, and a pair
of spirals.

prescribes a measure zero Cantor subset of the boundary.
The remarkable identity is the formula that the sum of
lengths of complementary intervals equals the boundary
length.

A geodesic boundary 𝛽 has an infinite number of
ortho-boundary geodesics—simple geodesic segments or-
thogonal to the boundary at segment endpoints. Given an
ortho-boundary geodesic 𝛾, an 𝜖-neighborhood of 𝛽 ∪ 𝛾
is a topological pair of pants—the pants cuff boundaries
are homotopic to simple geodesics 𝛼 and 𝜆. Along the
boundary 𝛽 there is a pair of distinguished intervals; each
interval contains an endpoint of 𝛾 and has as endpoints
spirals (one clockwise and one counterclockwise) about 𝛼
and 𝜆. A spiral is a simple infinite geodesic emanating or-
thogonally from 𝛽. The pair of pants bounded by 𝛽,𝛼, and
𝜆 contains only the four spirals emanating orthogonally
from 𝛽. The (equal) length of the two distinguished inter-
vals is an elementary hyperbolic trigonometric expression
in ℓ𝛽, ℓ𝛼, and ℓ𝜆. The association of distinguished inter-
vals to ortho-boundary geodesics can also be reversed.
Given a pair of pants bounded by 𝛽,𝛼′, and 𝜆′, there
is a corresponding ortho-boundary geodesic 𝛾′ and dis-
tinguished intervals bounded by spirals about 𝛼′ and
𝜆′. Distinguished intervals for distinct ortho-boundary
geodesics are disjoint, and the complement of all distin-
guished intervals on a given boundary is a null Cantor
set.

To state the resulting identity, let

𝒟(𝑥,𝑦, 𝑧) = 2 log 𝑒 𝑥
2 + 𝑒 𝑦+𝑧

2

𝑒 −𝑥
2 + 𝑒 𝑦+𝑧

2
.

Theorem 4 (The Mirzakhani–McShane identity). For a hy-
perbolic surface 𝑅 with a single boundary 𝛽 of length 𝐿,

𝐿 = ∑
𝛼,𝜆

𝒟(𝐿,ℓ𝛼, ℓ𝜆),

where the sum is over unordered pairs of simple geodesics
with 𝛽,𝛼, and 𝜆 bounding an embedded pair of pants.

Mirzakhani applied the length identity to reduce the
action of the mapping class group to actions of mapping
class groups of subsurfaces. Computing the volume of
the moduli space is reduced to an integral of products of
lower-dimensional volumes—the desired recursion.

The integration approach is illustrated by computing
the genus one, one boundary, volume. For such tori, the
selection of an ortho-boundary geodesic is equivalent to
selecting a simple closed geodesic. The length identity is

𝐿 = ∑
𝛼 𝑠𝑖𝑚𝑝𝑙𝑒

𝒟(𝐿,ℓ𝛼, ℓ𝛼).

Introduce FN coordinates relative to a particular geodesic
𝛼 and introduce 𝑆𝑡𝑎𝑏(𝛼) ⊂ 𝑀𝐶𝐺, the stabilizer for
𝑀𝐶𝐺 acting on free homotopy classes. The stabilizer is
generated by the Dehn twist about 𝛼.

The Dehn twist acts in FN coordinates by (ℓ,𝜏) →
(ℓ,𝜏+ℓ). The sector {0 ≤ 𝜏 < ℓ} is a fundamental domain
for the 𝑆𝑡𝑎𝑏(𝛼) action. A mapping class ℎ ∈ 𝑀𝐶𝐺 acts
on a geodesic-length function by ℓ𝛼 ∘ ℎ−1 = ℓℎ(𝛼).

Now we apply an unfolding argument and write the
length identity as
𝐿 = ∑

𝛼
𝒟(𝐿,ℓ𝛼, ℓ𝛼) = ∑

ℎ∈𝑀𝐶𝐺/𝑆𝑡𝑎𝑏(𝛼)
𝒟(𝐿,ℓℎ(𝛼), ℓℎ(𝛼)),

use the 𝑀𝐶𝐺 action on geodesic-length functions to find

𝐿𝑉(𝐿) = ∫
𝒯(𝐿)/𝑀𝐶𝐺

∑
𝑀𝐶𝐺/𝑆𝑡𝑎𝑏(𝛼)

𝒟(𝐿,ℓ𝛼 ∘ ℎ−1, ℓ𝛼 ∘ ℎ−1)𝜔,

change variables on 𝒯 by 𝑝 = ℎ(𝑞) to find

= ∑
ℎ∈𝑀𝐶𝐺/𝑆𝑡𝑎𝑏(𝛼)

∫
ℎ(𝒯(𝐿)/𝑀𝐶𝐺)

𝒟(𝐿,ℓ𝛼, ℓ𝛼)𝑑𝜏𝑑ℓ

= ∫
𝒯(𝐿)/𝑆𝑡𝑎𝑏(𝛼)

𝒟(𝐿,ℓ𝛼, ℓ𝛼)𝑑𝜏𝑑ℓ,

and use the 𝑆𝑡𝑎𝑏(𝛼) fundamental domain to obtain the
integral

∫
∞

0
∫

ℓ

0
𝒟(𝐿,ℓ, ℓ)𝑑𝜏𝑑ℓ.

The integral in 𝜏 gives a factor of ℓ. The derivative
𝜕𝒟(𝑥,𝑦, 𝑧)/𝜕𝑥 is a simpler function. Apply this observa-
tion and differentiate in 𝐿 to obtain a formula for the
derivative of 𝐿𝑉(𝐿):
𝜕
𝜕𝐿𝐿𝑉(𝐿) = ∫

∞

0

1
1 + 𝑒ℓ+ 𝐿

2
+ 1

1+ 𝑒ℓ− 𝐿
2
ℓ𝑑ℓ = 𝜋2

6 + 𝐿2

8 .

The genus one volume formula 𝑉(𝐿)= 𝜋2

6 + 𝐿2

24 results.
The general volume recursion is a sum over topological

configurations for the complement of a pair of pants
containing a surface boundary; see Figure 3 (see p. 1238).
The possible configuration types for the complement are:
connected with two internal cuffs, disconnected with two
internal cuffs and one internal cuff. For the tuple of
boundary lengths 𝐿 = (𝐿1,… , 𝐿𝑛) and 𝑉𝑔(𝐿) the volume
of 𝒯𝑔(𝐿)/𝑀𝐶𝐺, the recursion is

(1) 𝜕
𝜕𝐿1

𝐿1𝑉𝑔(𝐿) = 𝒜𝑐𝑜𝑛𝑛𝑒𝑐𝑡
𝑔 (𝐿) +𝒜𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡

𝑔 (𝐿) + ℬ𝑔(𝐿),

where 𝒜∗
𝑔 (𝐿) and ℬ𝑔(𝐿) are integral transforms of prod-

ucts of smaller topological-type volume functions. By
direct calculation the volume functions are polynomi-
als of lengths-squared with coefficients positive rational
multiples of powers of 𝜋—products of factorials and Rie-
mann zeta at nonnegative even integers. Mirzakhani very
astutely recognized that symplectic geometry provides
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Figure 3. Pants complement configurations.

the setting for the volume formulas to be intersection
numbers and for the recursion to give a solution for the
Witten–Kontsevich conjecture. The relations between vol-
umes of moduli spaces are the relations of 2𝑑-quantum
gravity.

Symplectic Reduction
Mirzakhani considered equivalences of symplectic spaces.
She introduced the space 𝒯̂𝑔,𝑛 of decorated Riemann
surfaces with geodesic boundaries of varying lengths and
a reference point on each boundary. The ℝ dimension of
𝒯̂𝑔,𝑛 is 2𝑛 greater than that of𝒯𝑔(𝐿). To a Riemann surface
with reference points on 𝑛 boundaries is also associated
a tailored surface with 2𝑛 cusps and no boundaries. For a
boundary of length ℓ, an almost tight pair of pants with
boundary lengths ℓ, 0, and 0 (zero length prescribes a
puncture) can be attached to cap off the boundary. Almost
tight pants are attached by aligning reference points. The
space 𝒯̂𝑔,𝑛 is equivalent to 𝒯𝑔,2𝑛. The seams and variable
points can be included in a pants decomposition of the
resulting tailoredsurface.Theorems1and2canbeapplied
to prescribe a symplectic form 𝜔𝒯̂𝑔,𝑛

on 𝒯̂𝑔,𝑛. Consider
the resulting symplectic geometry. For a Riemann surface
with boundaries 𝛽1,… ,𝛽𝑛, let 𝐿𝑗 be the length of 𝛽𝑗, 𝜏𝑗
describe the location of the reference point, and 𝑡𝑗 be
the infinitesimal FN twist of the 𝑗th almost tight pants.
Introduce the moment map

𝒯̂𝑔,𝑛
𝜇⟶ 𝐿̂ = (𝐿2

1/2,… ,𝐿2
𝑛/2) ∈ ℝ𝑛

≥0.
The function 𝐿2

𝑗/2 is the Hamiltonian potential for the
rescaled twist 𝜔𝒯̂𝑔,𝑛

(−𝐿𝑗𝑡𝑗, ) = 𝑑( 1
2𝐿

2
𝑗), and 𝜔𝒯̂𝑔,𝑛

is
twist flow invariant. In particular the vector field −𝐿𝑗𝑡𝑗
is the infinitesimal generator for an 𝑆1 action on the
𝑗th reference point. The group (𝑆1)𝑛 acts on the level
sets of 𝜇 ∶ 𝒯̂𝑔,𝑛 → ℝ𝑛 and the quotient of a level set of
the moment map is naturally 𝒯𝑔(𝐿). Theorem 2 leads to
symplectic reduction: for small 𝐿, the level set quotient
𝜇−1(𝐿̂)/(𝑆1)𝑛 is diffeomorphic to 𝒯𝑔(𝐿) with

𝜔𝒯̂𝑔,𝑛
|𝜇−1(𝐿̂)/(𝑆1)𝑛 ≈ 𝜔𝒯𝑔(𝐿),

and the level set quotients are mutually diffeomorphic.
The volumes 𝑉𝑔(𝐿) are the volumes of (𝑆1)𝑛 quotients of
𝜇 level sets in 𝒯̂𝑔,𝑛.

Mirzakhani noted that the reference points on circle
boundaries describe 𝑆1 bundles. 𝒯̂𝑔,𝑛 is the total space
of an (𝑆1)𝑛 bundle over 𝒯𝑔(𝐿). Circle bundles can be en-
dowed with 𝑆1 principal connections with the associated
curvature 2-forms giving the first Chern classes of the
bundles in the cohomology of the compactification of
𝒯𝑔(𝐿)/𝑀𝐶𝐺. What are the cohomology classes? Instead
of capping off with almost tight pants, a boundary 𝛽
can be capped off by a Euclidean disc of radius 𝐿 with
the boundary reference point prescribing a radius vector
at the origin. The orientation for the twist parameter
prescribes the orientation for rotating the radius vector.
The fiber is equivalent to the cotangent plane at the
origin—the description of the tautological class 𝜓.

An application of the Duistermaat–Heckman theorem
now gives the desired cohomology relationship

𝜔𝒯𝑔(𝐿) ≡ 𝜔𝒯𝑔(0) +
𝑛
∑
𝑗=1

𝐿2
𝑗
2 𝑐1( ̂𝛽𝑗),

for ̂𝛽𝑗 the 𝑆1 principal bundle for 𝛽𝑗. The bundles ̂𝛽𝑗 and
𝜓𝑗 are smoothly equivalent. Combining with Theorem
3’s formula 2𝜋2𝜅1 = 𝜔 gives Mirzakhani’s beautiful
relationship of volumes to intersection numbers.

Theorem 5 (Volume and intersections). For 𝑑 = dimℂ 𝒯𝑔,𝑛,

𝑉𝑔(𝐿) = 1
𝑑! ∫𝒯𝑔,𝑛/𝑀𝐶𝐺

(2𝜋2𝜅1 +
𝑛
∑
𝑗=1

𝐿2
𝑗
2 𝜓𝑗)

𝑑
.

A very pleasing result: the coefficients of the volume
polynomials are the 𝜅1-𝜓 tautological intersection num-
bers. The tautological classes are rational andnonnegative.
The observations explain the positive coefficients and the
pattern of powers of𝜋2 and 𝐿2 in the volume polynomials.

Witten–Kontsevich and Counting Geodesics by
Length
Witten posited that a generating function for the 𝜓
intersection numbers should satisfy the KdV relations. To
encode intersections, for any set of nonnegative integers
{𝑑1,… ,𝑑𝑚}, write for top intersections

⟨𝜏𝑑1 ,… ,𝜏𝑑𝑚⟩𝑔 = ∫
ℳ𝑔,𝑛

𝑚
∏
𝑖=1

𝜓𝑑𝑖
𝑖 ,

for the integral over the compactified moduli space. A
product is defined for∑𝑚

𝑖=1 𝑑𝑖 = 3𝑔−3+𝑛 and is otherwise
set equal to zero. Introduce formal variables 𝑡𝑖, 𝑖 ≥ 0, and
define 𝐹𝑔, the generating function for genus 𝑔, by

𝐹𝑔(𝑡0, 𝑡1,…) = ∑
{𝑑𝑖}

⟨∏𝜏𝑑𝑖⟩𝑔 ∏
𝑟>0

𝑡𝑛𝑟𝑛 /𝑛𝑟! ,

where the sum is over all finite sequences of nonnegative
integers and 𝑛𝑟 = #{𝑖 ∣ 𝑑𝑖 = 𝑟}. The generating function

F =
∞
∑
𝑔=0

𝜆2𝑔−2𝐹𝑔

is a partition function (probability of states) for a 2𝑑-
quantum gravity model.
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Known relations for the intersection numbers include
the string equation for adding a puncture to a surface
without a 𝜓 factor and the dilaton equation for adding a
puncture with a single 𝜓 factor. For 𝑛 > 0 and ∑𝑖 𝛼𝑖 =
3𝑔− 2+ 𝑛 > 0, the relations are
string equation ⟨𝜏0𝜏𝛼1 ⋯𝜏𝛼𝑛⟩𝑔 = ∑

𝛼𝑖≠0
⟨𝜏𝛼1 ⋯𝜏𝛼𝑖−1 ⋯𝜏𝛼𝑛⟩𝑔,

and for 𝑛 ≥ 0 and ∑𝑖 𝛼𝑖 = 3𝑔 − 3 + 𝑛 ≥ 0, the dilaton
equation

⟨𝜏1𝜏𝛼1 ⋯𝜏𝛼𝑛⟩𝑔 =(2𝑔− 2+ 𝑛)⟨𝜏𝛼1 ⋯𝜏𝛼𝑛⟩𝑔.
Witten’s posited relations are expressed in terms of the

Virasoro Lie algebra generated by differential operators
ℒ𝑛 = −𝑧𝑛+1 𝜕

𝜕𝑧 , 𝑛 ≥ −1, with commutators [ℒ𝑛, ℒ𝑚] =
(𝑛−𝑚)ℒ𝑛+𝑚. The leading termsof thevolumepolynomials
𝑉𝑔(𝐿) are given by top 𝜓 intersections. Mirzakhani was
able to decipher the mystery—the leading terms of the
volume recursion (1) give the desired relationsℒ∗(𝑒F) = 0.
Theorem 6 (The Witten-Kontsevich conjecture). The mod-
uli volume recursion gives the Virasoro constraints.

Mirzakhani’s prime simple geodesic theorem is based
on studying the action of 𝑀𝐶𝐺 on the space ℳ𝒢ℒ of
compactly supported measured geodesic laminations. A
geodesic lamination is a foliation of a closed subset
of a surface by geodesics. A transverse measure for a
geodesic lamination 𝒢 is an assignment for each smooth
transverse arc 𝜏 with endpoints in the complement, a
nonnegativemeasure which supports the intersection𝒢∩
𝜏. Assigned measures coincide for smooth transversals
that are homotopic through smooth arcs with endpoints
in 𝒢𝑐. Assigning masses to transverse arcs is a functional,
and the assignment provides for a weak∗ topology—
ℳ𝒢ℒ is the space of compactly supported geodesic
laminations. The space ℳ𝒢ℒ is the closure of the set of
positively weighted simple closed geodesics; ℝ+ acts on
ℳ𝒢ℒ by multiplying measures. Typically a convergent
sequence of simple closed geodesics limits to a disjoint
union of infinite simple complete geodesics. The cross
section of a measured geodesic lamination is the union
of a finite set and a Cantor set. A multicurve is a finite
positive weighted sum 𝛾 = ∑𝑚

𝑗=1 𝑎𝑗𝛾𝑗 of disjoint, distinct
simple closed geodesics with length ℓ𝛾 = ∑𝑚

𝑗=1 𝑎𝑗ℓ𝛾𝑗 .
For a general element 𝜈 of ℳ𝒢ℒ, the product of the
transverse measure and hyperbolic length along leaves
gives a measure whose total mass is ℓ𝜈 the length of
𝜈. Multicurves with integer weights ℳ𝒢ℒ(ℤ) form an
𝑀𝐶𝐺-invariant lattice-like subset. The space ℳ𝒢ℒ has a
natural volume element, the Thurston measure 𝜇𝑇ℎ. For a
convex open set 𝑈 ⊂ ℳ𝒢ℒ,

𝜇𝑇ℎ(𝑈) = lim
𝑇→∞

#{𝑇 ⋅ 𝑈∩ℳ𝒢ℒ(ℤ)}
𝑇6𝑔−6+2𝑛 ;

equivalently 𝜇𝑇ℎ can be computed from the masses of
leaves intersecting a system of transverse arcs; 𝜇𝑇ℎ
is the top exterior power of Thurston’s train-track
symplectic form. The volumes of geodesic-length balls
𝐵(𝑅) = 𝜇𝑇ℎ({𝜈 ∈ ℳ𝒢ℒ ∣ ℓ𝜈(𝑅) ≤ 1}) and total vol-
ume 𝑏(𝑅) = ∫ℳ𝑔,𝑛

𝐵(𝑅)𝑑𝑉 provide ℳ𝒢ℒ(ℤ) normalizing
factors in the following formulas.

Margulis’s general counting result is that for a compact
negatively curved closed manifold, the count of closed
geodesics is asymptotic in length 𝐿 to 𝑒ℎ𝐿/ℎ𝐿, for ℎ the
topological entropy of the geodesic flow. The homeomor-
phisms of a surface act on the free homotopy classes of
curves. Mirzakhani’s focus is the length counting function
for an 𝑀𝐶𝐺 orbit

𝑠𝑅(𝐿,𝛾) = #{𝛼 ∈ 𝑀𝐶𝐺𝛾 ∣ ℓ𝛼(𝑅) ≤ 𝐿}
for a multicurve on a compact surface with possible
cusps.

Theorem 7 (Prime simple geodesic theorem). For a ra-
tional multicurve 𝛾, there is a positive constant 𝑐(𝛾) such
that

lim
𝐿→∞

𝑠𝑅(𝐿,𝛾)
𝐿6𝑔−6+2𝑛 = 𝑐(𝛾)𝐵(𝑅)

𝑏(𝑅) ,

where the constant is computed from the weights for 𝛾, the
symmetries of 𝛾, and the volume polynomial 𝑉𝑅(𝛾)(𝐿) for
the cut open surface 𝑅−𝛾.

For a multicurve 𝛾, introduce FN coordinates for 𝒯,
including the component curves of 𝛾. Similar to the above
unfolding argument for

∫
𝒯/𝑀𝐶𝐺

∑
𝛼

𝒟(𝐿,ℓ𝛼, ℓ𝛼)𝑑𝑉 = ∫
∞

0
𝒟(𝐿,ℓ, ℓ)ℓ𝑑ℓ,

we have

∫
𝒯/𝑀𝐶𝐺

𝑠𝑅(𝐿,𝛾)𝑑𝑉 = (#𝑆𝑦𝑚(𝛾))−1

×∫
{0<∑𝑎𝑗𝑥𝑗≤𝐿,𝑥𝑗>0}

𝑉(𝑅(𝛾);x)x ⋅ 𝑑x

for the symmetry group of 𝛾 and 𝑉(𝑅(𝛾);x) the volume
of the moduli space of the cut open surface 𝑅(𝛾) with
boundary lengths x. The right-hand integral is calculated
by the volume recursion.

HowardMasur showed that the𝑀𝐶𝐺-invariantmeasure
𝜇𝑇ℎ is ergodic—an 𝑀𝐶𝐺-invariant subset of ℳ𝒢ℒ either
has full or zero 𝜇𝑇ℎ measure. Now if 𝑘0 is a common
denominator for the coefficients of 𝛾, then the𝑀𝐶𝐺 orbit
satisfies 𝑀𝐶𝐺𝛾 ⊂ 1/𝑘0ℳ𝒢ℒ(ℤ) and counts for 𝑠𝑅(𝐿,𝛾)
are bounded by counts for 1/𝑘0ℳ𝒢ℒ(ℤ). It follows for a
convex open set 𝑈 that a limit

𝜇𝛾(𝑈) = lim
𝑇𝑗→∞

#{𝑇 ⋅ 𝑈∩𝑀𝐶𝐺𝛾}
𝑇6𝑔−6+2𝑛
𝑗

is bounded by 𝑘−6𝑔+6−2𝑛
0 𝜇𝑇ℎ(𝑈); the measure 𝜇𝛾 is abso-

lutely continuous with respect to 𝜇𝑇ℎ. By Masur ergodicity,
we have that 𝜇𝛾 = 𝑐′𝜇𝑇ℎ. Now evaluate the measures on
the unit balls {𝜈 ∈ ℳ𝒢ℒ ∣ ℓ𝜈 ≤ 1} and integrate over the
moduli space. The left-hand side is calculated above, and
the right-hand side gives the normalizing factors 𝐵(𝑅)
and 𝑏(𝑅), completing the argument.

Understanding all the invariant measures and all the
possible closures of orbits for a group action is often very
challenging. In the joint paper with Lindenstrauss, Ergodic
theory of the space of measured geodesic laminations, the
authors provide an understanding for the mapping class
group 𝑀𝐶𝐺 acting on ℳ𝒢ℒ. The description is in terms
of complete pairs (𝑆,𝛾), a multicurve 𝛾, and a subsurface
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𝑆 that is a union of components of the cut open 𝑅(𝛾).
For the natural embedding ℐ𝑆 of ℳ𝒢ℒ(𝑆) into ℳ𝒢ℒ(𝑅),
define the subset

𝒢(𝑆,𝛾) = {𝛾+ 𝜈 ∣ 𝜈 ∈ ℐ𝑆(ℳ𝒢ℒ(𝑆))},
sums of pairs: a multicurve and a measured geodesic
lamination contained in the complement. By using either
the lattice-like subset ℳ𝒢ℒ(𝑆,ℤ) or Thurston’s train-
track symplectic form for 𝑆, there is a natural measure
𝜇(𝑆,𝛾)
𝑇ℎ on 𝒢(𝑆,𝛾). The measure can be distributed to a

locally finite measure 𝜇𝒮
𝑇ℎ on the orbit 𝑀𝐶𝐺 ⋅ 𝒢(𝑆,𝛾) in

ℳ𝒢ℒ(𝑅).Mirzakhani andLindenstrauss give an especially
straightforward answer to the 𝑀𝐶𝐺 orbit questions.
Theorem 8. Let 𝜇 be a locally finite 𝑀𝐶𝐺-invariant mea-
sure on ℳ𝒢ℒ. Then 𝜇 is a constant multiple of a 𝜇𝒮

𝑇ℎ for
a complete pair (𝑆,𝛾). Given 𝜈 ∈ ℳ𝒢ℒ, there exists a
complete pair (𝑆,𝛾) such that 𝑀𝐶𝐺 ⋅ 𝜈 = 𝑀𝐶𝐺 ⋅ 𝒢(𝑆,𝛾).
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Section figures 1–3 courtesy of Scott A. Wolpert.

Maryam Mirzakhani with Greg McShane on the
terrace at Luminy.

Alex Wright and Anton Zorich

The Magic Wand Theorem
From Problems of Physics to Billiards in Polygons
In a sense, dynamical systems concern anything which
moves. The things that move might be the planets in the
solar system, or a system of particles in a chamber, or a
billiard ball on an unusually shaped table, or currents in
the ocean, or electrons in a metal, etc. One can observe
certain common phenomena in large classes of dynamical
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x1 x2 0 x

Figure 1. The configuration space of two molecules in
a one-dimensional chamber is a triangle.

systems; in particular, ideal billiards might be interpreted
as toy models of a gas in a chamber. One can argue that
one cannot model a gas with only one molecule. But if
you let your molecule move and take a picture of it every
second, then superposing millions of pictures you will
get a simplified model of the gas, where we pretend that
molecules do not interact between themselves.

A very simple model of a gas where molecules do
strongly interact also leads to a billiard. In this model
there are only two molecules and the chamber is one-
dimensional. Consider a system of two elastic beads
confined to a rod placed between two walls,1 as in
Figure 1. (To the best of our knowledge this construction
originates in lectures of Ya. G. Sinai.)

The beads have differentmasses𝑚1 and𝑚2; they collide
between themselves and also with the walls. Assuming
that the size of the beads is negligible, we can describe
the configuration space of our system using coordinates
0 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝑎 of the beads, where 𝑎 is the distance
between the walls. Rescaling the coordinates as

{ ̃𝑥1 = √𝑚1𝑥1,
̃𝑥2 = √𝑚2𝑥2,

we see that the configuration space in the new coordinates
is given by a right triangle Δ; see Figure 1. Consider now
a trajectory of our dynamical system. It is not difficult
to verify that in coordinates ( ̃𝑥1, ̃𝑥2) trajectories of the
system of two beads on a rod correspond to billiard
trajectories in the triangle Δ.

Dynamics of a triangular billiard is anything but trivial.
For example, it is not known whether every acute triangle
has at least one closed billiard trajectory different from
the Fagnano trajectory presented in Figure 2. For a general
obtuse triangle we do not know whether it has any closed
billiard trajectories at all! (See papers of Richard Schwartz
for recent results in this direction.)

From Billiards in Polygons to Flat Surfaces
Let us discuss now how billiards in rational polygons
(polygons having angles rational multiples of 𝜋) give rise
to surfaces and how billiard trajectories unfold to straight
lines as in Figure 3 (see p. 1242).

1This paper uses some extracts from publications of the second
author in Gazette des Mathèmaticiens 142 and 154.
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Figure 2. Every acute triangle has a closed Fagnano
trajectory, joining the bases of the three heights. It is
not known whether it always has another.

Consider a rectangular billiard and launch a billiard
ball. When the ball hits the wall we can reflect the billiard
table instead of letting the ball bounce from the wall.
The trajectory unfolds to a straight line. Folding back
the copies of the billiard table we project this line to
the original trajectory. Note that at any moment the ball
moves in one of the four directions defining the four
types of copies of the billiard table. Copies of the same
type are related by a parallel translation respecting the
labeling of the corners.

Identifying the equivalent patterns by a parallel trans-
lation we obtain a torus; the billiard trajectory unfolds to
a straight line on the corresponding torus, as in Figure 4
(see p. 1242).

One can apply a similar unfolding construction to any
polygon with angles which are rational multiples of 𝜋 to
pass from a billiard to a flat surface.

Consider, for example, the triangle with angles
3𝜋/8, 3𝜋/8,𝜋/4, as in Figure 5 (see p. 1242). It is easy
to check that a generic trajectory of such billiard moves
at any time in one of 8 directions (compared to 4 for
a rectangle). We can unfold the triangle to a regular
octagon glued from 8 copies of the triangle. Identifying
opposite sides of the octagon we get a flat surface. All
straight lines on this surface project to the initial billiard
trajectories.

The geometry of flat surfaces provides important in-
formation on billiards. For example, it was proved by
H. Masur that rational billiards have plenty of closed tra-
jectories. Closed trajectories appear in bands of parallel
trajectories of the same length as in Figure 6 (see p. 1242).
To quantify the number of closed billiards trajectories
in a rational polygon one counts the number of such
bands. It is natural to take into account how thick the
band is by giving the band a weight equal to the ratio of
the area of the band over the area of the billiard table.
When some regions of the billiard table are covered by
the band several times, we count their contribution to the
area of the band with the corresponding multiplicity. In
other words, the area of the band is measured on the flat
surface obtained after unfolding the rational billiard as
in Figure 10 (see p. 1245).

The results of Masur imply that the number 𝑁(Π,𝐿)
of closed trajectories of length at most 𝐿 in a rational

polygon Π admits lower and upper bounds

lim inf
𝐿→+∞

𝑁(Π,𝐿)
𝐿2 = 𝑐(Π) > 0, limsup

𝐿→+∞

𝑁(Π,𝐿)
𝐿2 = 𝐶(Π) .

It is not known, however, whether the number of closed
trajectories in every rational polygon Π admits exact
quadratic asymptotics, i.e., with 𝑐(Π) = 𝐶(Π). We are
not even aware of an algorithm which produces realistic
estimates of the constants 𝑐(Π) and 𝐶(Π) for a general
rational polygon Π.

Translation Surfaces
We have seen that unfolding a billiard in a rectangle
gives us a flat torus. Unfolding more complicated rational
polygons gives us more complicated translation surfaces.
We present now a construction of a general translation
surface, not necessarily related to a billiard.

Consider a collection of vectors 𝑣⃗1,… , 𝑣⃗𝑛 in ℝ2 and
arrange these vectors into a broken line as in Figure 7 (see
p. 1242). Construct another broken line starting at the
same point as the first one arranging the same vectors in
the order 𝑣⃗𝜋(1),… , 𝑣⃗𝜋(𝑛), where 𝜋 is some permutation of
𝑛 elements. By construction the two broken lines share the
same endpoints; suppose that they bound a polygon as in
Figure 7. Identifying the pairs of sides corresponding to
the same vectors 𝑣⃗𝑗, 𝑗 = 1,… ,𝑛, by parallel translations
we obtain a closed topological surface.

By construction, the surface is endowed with a flat
metric. When 𝑛 = 2 and 𝜋 = (2, 1) we get a usual flat
torus glued from a parallelogram. For a larger number of
elementswemight get a surface of higher genus,where the
genus is determinedby thepermutation𝜋. It is convenient
to impose from now on some simple restrictions on the
permutation 𝜋 which guarantee nondegeneracy of the
surface; see the original Annals of Mathematics papers of
H. Masur and W. Veech for details.

For example, a regular octagon gives rise to a surface
of genus two as in Figure 8 (p. 1243). Indeed, identifying
pairs of horizontal and vertical sides of a regular octagon
we get a usual torus with a hole in the form of a square.
We slightly cheat in the next frame, where we turn this
hole by 45∘ and only then glue the next pair of sides.
As a result we get a torus with two isolated holes as on
the third frame. Identifying the remaining pair of sides
(which represent the holes) we get a torus with a handle
or, in other words, a surface of genus two.

Similar to the torus case, the surface glued from the
regular octagon or from an octagon as in Figure 7
also inherits from the polygon a flat metric, but now the
resulting flatmetric has a singularity at the point obtained
from identified vertices of the octagon.

Note that the flat metric thus constructed is very
special: since we identify the sides of the polygon only by
translations, the parallel transport of any tangent vector
along a closed cycle (avoiding conical singularities) on the
resulting surface brings the vector back to itself. In other
words, our flat metric has trivial holonomy. In particular,
since a parallel transport along a small loop around any
conical singularity brings the vector to itself, the cone
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Figure 3. A billiard trajectory (right) can be unfolded to a straight line.
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Figure 4. An unfolded billiard trajectory is a straight
line on the flat torus.

Figure 5. Billiard trajectories on the descriptor
3𝜋
8 - 3𝜋8 -𝜋4 triangle unfold to straight lines on the
octagon with opposite sides identified.

Figure 6. Closed trajectories on the triangle appear in
parallel bands.

angle at any singularity is an integer multiple of 2𝜋. In
the most general situation the flat surface of genus 𝑔
would have several conical singularities with cone angles
2𝜋(𝑑1 +1),… ,2𝜋(𝑑𝑚 +1), where 𝑑1 +⋯+𝑑𝑚 = 2𝑔− 2.

It is convenient to consider the vertical direction as part
of the structure. A surface endowed with a flat metric
with trivial holonomy and with a choice of a vertical
direction is called a translation surface. Two polygons
in the plane obtained one from another by a parallel
translation give rise to the same translation surface,
while polygons obtained one from another by a nontrivial
rotation (usually) give rise to distinct translation surfaces.

We can assume that the polygon defining our transla-
tion surface is embedded into the complex plane ℂ ≃ ℝ2

with coordinate 𝑧. The translation surface obtained by
identifying the corresponding sides of the polygon inher-
its the complex structure. Moreover, since the gluing rule
for the sides can be expressed in local coordinates as
𝑧 = ̃𝑧 + const, the closed 1-form 𝑑𝑧 = 𝑑( ̃𝑧 + const) is
well-defined not only in the polygon but on the surface.
An exercise in complex analysis shows that the complex
structure extends to the points coming from the vertices
of the polygon and that the 1-form𝜔 = 𝑑𝑧 extends to the
holomorphic 1-form on the resulting Riemann surface.
This 1-form 𝜔 has zeroes of degrees 𝑑1,… ,𝑑𝑚 exactly at
the points where the flat metric has conical singularities
of angles 2𝜋(𝑑1 + 1),… ,2𝜋(𝑑𝑚 + 1).

Conversely, given a holomorphic 1-form 𝜔 on a Rie-
mann surface one can always find a local coordinate 𝑧 (in
a simply-connected domain not containing zeroes of 𝜔)
such that 𝜔 = 𝑑𝑧. This coordinate is defined up to an

�v1

�v2

�v3

�v4

�v4

�v3

�v2

�v1

C

Figure 7. Identifying corresponding pairs of sides of
this polygon we obtain a flat surface of genus two
with a single conical singularity.
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Figure 8. Identifying opposite sides of a regular octagon gives rise to a surface of genus two.

additive constant. It defines the translation structure on
the surface. Cutting up the surface along an appropriate
collection of straight segments joining conical singulari-
ties, we can unwrap the Riemann surface into a polygon as
above. Polygons that differ by cut and paste correspond
to the same 𝜔; we will elaborate on this later.

This construction shows that the two structures are
completely equivalent: the flat metric with trivial ho-
lonomy plus a choice of distinguished direction or a
Riemann surface endowed with a nonzero holomorphic
1-form.

Families of Translation Surfaces and Dynamics
in the Moduli Space
The polygon in our construction depends continuously
on the vectors 𝑣⃗𝑖. This means that the topology of the
resulting translation surface (its genus 𝑔, the number and
the types of the resulting conical singularities) does not
change under small deformations of the vectors 𝑣⃗𝑖. For
every collection of cone angles 2𝜋(𝑑1+1),… ,2𝜋(𝑑𝑚+1)
satisfying 𝑑1 + ⋯ + 𝑑𝑚 = 2𝑔 − 2 with integer 𝑑𝑖 for
𝑖 = 1,… ,𝑛, we get a space ℋ(𝑑1,… ,𝑑𝑚) of translation
surfaces. Vectors 𝑣⃗1,… , 𝑣⃗𝑛 can be viewed as local com-
plex coordinates on this space, called period coordinates.
These coordinates define a structure of a complex orb-
ifold (manifold withmoderate singularities) on each space
ℋ(𝑑1,… ,𝑑𝑚). The geometry and topology of spaces of
translation surfaces is not yet sufficiently explored.

Readers preferring algebro-geometric language may
view the space of translation surfaces with fixed conical
singularities 2𝜋(𝑑1 + 1),… ,2𝜋(𝑑𝑚 + 1) as the stratum
ℋ(𝑑1,… ,𝑑𝑚) in the moduli space ℋ𝑔 of pairs (Riemann
surface𝐶; holomorphic 1-form𝜔on𝐶), where the stratum
is specified by the degrees 𝑑1,… ,𝑑𝑚 of zeroes of𝜔, where
𝑑1 +⋯+ 𝑑𝑚 = 2𝑔 − 2. Note that while the moduli space
ℋ𝑔 is a holomorphic ℂ𝑔-bundle over the moduli space
ℳ𝑔 of Riemann surfaces, individual strata are not. For
example, the minimal stratum ℋ(2𝑔 − 2) has complex
dimension 2𝑔, while the moduli space ℳ𝑔 has complex
dimension 3𝑔 − 3. The very existence of a holomorphic
form with a single zero of degree 2𝑔 − 2 on a Riemann
surface 𝐶 is a strong condition on 𝐶.

To complete the description of the space of translation
surfaces we need to present one more very important
structure: the action of the group GL(2,ℝ) on ℋ𝑔 mi-
nus the zero section. This action preserves strata. The
description of this action is particularly simple in terms
of our polygonal model Π of a translation surface 𝑆. A

linear transformation 𝑔 ∈ GL(2,ℝ) of the plane maps
the polygon Π to a polygon 𝑔Π. The new polygon again
has all sides arranged into pairs, where the two sides
in each pair are parallel and have equal length. We can
glue a new translation surface and call it 𝑔 ⋅ 𝑆. It is easy
to see that unwrapping the initial surface into different
polygons would not affect the construction. Note also that
we explicitly use the choice of the vertical direction: any
polygon is endowed with an embedding into ℝ2 defined
up to a parallel translation.

The subgroup SL(2,ℝ) ⊂ GL(2,ℝ) preserves the flat
area. This implies that the action of SL(2,ℝ) preserves the
real hypersurfaceℋ1(𝑑1,… ,𝑑𝑚)of translation surfacesof
area one in any stratum ℋ(𝑑1,… ,𝑑𝑚). The codimension-
one subspace ℋ1(𝑑1,… ,𝑑𝑚) can be compared to the unit
hyperboloid in ℝ2𝑛.

Recall that under appropriate assumptions on the
permutation 𝜋, the 𝑛 vectors

𝑣⃗1 = (𝑣1,𝑥
𝑣1,𝑦

) ,… , 𝑣⃗𝑛 = (𝑣𝑛,𝑥
𝑣𝑛,𝑦

)

as in Figure 7 define local coordinates in the
space ℋ(𝑑1,… ,𝑑𝑚) of translation surfaces. Let
𝑑𝜈 ∶= 𝑑𝑣1𝑥𝑑𝑣1𝑦 …𝑑𝑣𝑛𝑥𝑑𝑣𝑛𝑦 be the associated vol-
ume element in the corresponding coordinate chart
𝑈 ⊂ ℝ2𝑛. It is easy to verify that 𝑑𝜈 does not depend on
the choice of coordinates, 𝑣⃗1,… , 𝑣⃗𝑛, so it is well-defined
on ℋ(𝑑1,… ,𝑑𝑚). Similarly to the case of Euclidean vol-
ume element, we get a natural induced volume element
𝑑𝜈1 on the unit hyperboloid ℋ1(𝑑1,… ,𝑑𝑚). It is easy to
check that the action of the group SL(2,ℝ) preserves the
volume element 𝑑𝜈1.

The following theorem proved independently and si-
multaneously by Masur and Veech is the keystone of this
area. (The two papers were published in the same volume
of Annals of Mathematics in 1982).

Theorem (H. Masur, W. A. Veech). The total volume of
every stratum ℋ1(𝑑1,… ,𝑑𝑚) is finite.

The group SL(2,ℝ) and its diagonal subgroup act er-
godically on every connected component of every stratum
ℋ1(𝑑1,… ,𝑑𝑚).

Here “ergodically” means that every measurable subset
invariant under the action of the group has necessarily
measure zero or full measure. The Birkhoff Ergodic
Theorem then implies that the orbit of almost every point
homogeneouslyfills theambient connectedcomponent. In
plain terms, a consequence of the ergodicity of the action
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Figure 9. Expansion-contraction, combined with cut-and-paste transformations, approximates any other
prescribed octagon.

of the diagonal subgroup can be interpreted as follows.
Having almost any polygon as above, we can choose an
appropriate sequence of times 𝑡𝑖 such that contracting
the polygon horizontally with a factor 𝑒𝑡𝑖 and expanding
it vertically with the same factor 𝑒𝑡𝑖 and modifying the
resulting polygonal pattern of the resulting translation
surface by an appropriate sequence of cut-and-paste
transformations (see Figure 9) we can get arbitrarily close
to, say, a regular octagon rotated by any angle chosen in
advance. Note that expansion-contraction (action of the
diagonal group) changes the translation surface, while
cut-and-paste transformations change only the polygonal
pattern and do not change the flat surface.

Now everything is prepared to present the first marvel
of this story. Suppose that we want to find out some
fine properties of the vertical flow on an individual
translation surface. Applying a homothety we can assume
that the translation surface has area one. Masur andVeech
suggest the following approach. Consider our translation
surface (endowed with a vertical direction) as a point 𝑆 in
the ambient stratum ℋ1(𝑑1,… ,𝑑𝑚). Consider the orbit
SL(2,ℝ) ⋅ 𝑆 (or the orbit of 𝑆 under the action of the

diagonal subgroup (𝑒
𝑡 0
0 𝑒−𝑡) depending on the initial

problem). Numerous important properties of the initial
vertical flow are encoded in the geometrical properties
of the closure of the corresponding orbit. This approach
places the problem of finding the orbit closures under
the action of SL(2,ℝ) and studying their geometry at the
center of the work in this area for the last three decades.

At first glance, we have just reduced the study of a
rather simple dynamical system, namely, the vertical flow
on a translation surface, to a really complicated one, the
study of the action of the group GL(2,ℝ) on the space
ℋ(𝑑1,… ,𝑑𝑚). Nevertheless, this approach proved to be
extremely fruitful, despite the fact that geometry and
topology of spaces of translation surfaces is still under
exploration. It is the Magic Wand Theorem of A. Eskin,
M. Mirzakhani, and A. Mohammadi which made this
approach particularly powerful.

“Almost All” versus “All”
From the dynamical point of view, the moduli space of
holomorphic differentials can be viewed as a “homoge-
neous space with difficulties.” We are citing Eskin, who
knows both facets very well: how the dynamics on the

moduli space might mimic the homogeneous dynamics in
some situations and how deep the difficulties might be.

The rigidity theorems including and generalizing the
theorems proved by Marina Ratner at the beginning
of the 1990s show why homogeneous dynamics is so
special. General dynamical systems usually have some
very peculiar trajectories living in very peculiar fractal
subsets. Such trajectories are rare, but there are still plenty
of them. In particular, the question of identification of
all (versus almost all) orbit closures or of all invariant
measures makes no sense for most dynamical systems:
the jungle of exotic trajectories is too large. In certain
situations this diversity creates a major difficulty: even
when you know plenty of fine properties of the trajectory
launched from almost every starting point, you have no
algorithm to checkwhether the particular initial condition
you are interested in is generic or not. Ergodic theory
answers statistical questions but says nothing about
specific initial data.

Consider, for example, the geodesic flow on a compact
Riemannian surface of constant negative curvature. We
get a very nice dynamical systemon the three-dimensional
total space of the unit tangent bundle. It was observed
long ago by H. Furstenberg and B. Weiss that the closures
of individual geodesics might have almost arbitrary Haus-
dorff dimension from 1 (closed trajectories) to 3 (typical
trajectories).

The situation in homogeneous dynamics is radically
different. In certain favorable cases (such as certain
unipotent flows) one manages to prove that every orbit
closure is a nice homogeneous space, every invariant
measure is the corresponding Haar measure, etc. This
kind of rigidity gives rise to fantastic applications to
number theory.

For several decades it was not clear to what extent the
dynamics of the SL(2,ℝ) action on the moduli space of
Abelian and quadratic differentials resembles homoge-
neous dynamics. For Eskin, who came to the dynamics in
the moduli space from homogeneous dynamics, it was,
probably, the main challenge for fifteen years. Mirzakhani
joined him in working on this problem about 2006. She
was challenged by the result of her scientific advisor,
C. McMullen, who had solved the problem in the particu-
lar case of genus two. After several years of collaboration,
the first major part of the theorem, namely, the measure
classification for SL(2,ℝ)-invariant measures, was proved
in 2010.
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To illustrate the importance of this theorem we can
cite what Artur Avila has said about this result of Eskin
and Mirzakhani to S. Roberts for the New Yorker article
in memory of Mirzakhani:

Upon hearing about this result, and knowing her
earlier work, I was certain that she would be a
front-runner for the Fields Medals to be given in
2014, so much so that I did not expect to have
much of a chance.

We do not think that Maryam thought much about the
Fields Medal at this time. Several years later she took
the email message from I. Daubechies announcing that
Maryam got the Fields Medal for a joke and just ignored it.
But she certainly knew how important the theorem was.
We’d say that most recent papers in our domain have
used this Magic Wand Theorem in one way or another.

It took Eskin and Mirzakhani another several years
of extremely hard work to extend their result from
SL(2,ℝ) to its subgroup of upper-triangular 2×2matrices.
The difference might seem insignificant, but exactly this
difference is needed for the most powerful version of the
Magic Wand Theorem.

Magic Wand Theorem
Now comes the Magic Wand Theorem of Eskin, Mirza-
khani [EMi], and Mohammadi [EMiMh]. (A. Mohammadi
joined the collaboration for the part of the theorem
concerning orbit closures.)

As we have already mentioned, the moduli space is not
a homogeneous space. Nevertheless, the orbit closures of
GL(2,ℝ) in the space of translation surfaces are as nice as
one can only hope: they are complex manifolds, possibly
with very moderate singularities (so-called “orbifolds”).
In this sense the action of GL(2,ℝ) and SL(2,ℝ) on the
space of translation surfaces mimics certain properties
of the dynamical systems in homogeneous spaces.

Magic Wand Theorem (A. Eskin, M. Mirzakhani, and
A. Mohammadi [EMiMh]). The closure of any GL(2,ℝ)-
orbit is a complex suborbifold (possibly with self-inter-
sections). In period coordinates 𝑣⃗1,… , 𝑣⃗𝑛 in the corre-
sponding space ℋ(𝑑1,… ,𝑑𝑚) of translation surfaces it is
locally represented by a linear subspace.

Every ergodic SL(2,ℝ)-invariant measure is supported
on a suborbifold. In coordinates 𝑣⃗1,… , 𝑣⃗𝑛 this suborbifold
is represented by the intersection of the hypersurface
ℋ1(𝑑1,… ,𝑑𝑚) of translation surfaces of area one with
a linear subspace, and the invariant measure is induced
from the usual Lebesgue measure on this subspace.

As a vague conjecture (or optimistic dream) this prop-
erty was discussed long ago, and there was not the
slightest hint of a general proof. The only exception is
the case of surfaces of genus two, for which ten years ago
C. McMullen proved a very precise statement, classifying
all possible orbit closures. He used a special case of
Ratner’s results which are applicable here. And he, very
ingeniously, used the special properties of surfaces of
genus two.

The proof of the Magic Wand Theorem is a titanic work,
which absorbed numerous fundamental recent develop-
ments in dynamical systems. Most of these developments
do not have any direct relation to moduli spaces. It in-
corporates certain ideas of the low entropy method of
M. Einsiedler, A. Katok, and E. Lindenstrauss; results of
G. Forni and of M. Kontsevich on Lyapunov exponents of
the Teichmüller geodesic flow; the ideas from theworks of
Y. Benoit and J.-F. Quint on stationary measures; iterative
improvement of the properties of the invariant measure
inspired by the approach of G. Margulis and G. Tomanov
to the actions of unipotent flows on homogeneous spaces;
some fine ergodic results due to Y. Guivarch and A. Raugi;
and many others.

For many experts in the area it remains a miracle that
Eskin andMirzakhanimanaged to accomplish this project.
Very serious technical difficulties appeared at every stage
of the project. Not to mention that in the four years
between 2010 and 2014 Maryam gave birth to a daughter
and overcame the first attack of cancer. Since then we
believed that Maryam could do anything.

The theorem itself reallyworks like aMagicWand,which
allows one to touch a given billiard and obtain precious
information describing its geometry and dynamics.

This Magic Wand works best if the corresponding orbit
closure in the moduli space of translation surfaces can
be computed. Unfortunately, until recently, the orbit clo-
sures associated to most billiards remained impossible to
calculate. As the result of recent progress stemming from
the Magic Wand Theorem, this situation is undergoing
rapid improvement, some of which is witnessed by one
of the last results of Mirzakhani [MiW]:

Theorem (M. Mirzakhani and A. Wright[MiW]). There are
infinitely many triangular billiards that unfold to transla-
tion surfaces whose GL(2,ℝ)-orbit is dense in the ambient
stratum of flat surfaces.

For example, the triangle Δ with angles ( 2𝜋
11 , 4𝜋11 , 5𝜋11 )

unfolds to a surface whose orbit is dense in ℋ(1,3, 4).
A simple consequence for billiards is the existence of
bands of parallel periodic trajectories which cover the

Figure 10. There are bands of closed trajectories
which cover an arbitrarily large part of the 22-fold
unfolding of the 2𝜋

11 –
4𝜋
11 –

5𝜋
11 triangle (obtained by

sewing the above images along the dotted cut).
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table almost 22 times. In other words, one can find bands
of parallel closed geodesics as in Figure 10 covering
an arbitrarily large part of the flat surface obtained by
unfolding the triangle Δ. This follows directly from the
density of the orbit, because there is an open set of
translation surfaces in the ambient stratum with a band
of parallel geodesics covering an arbitrarily large part of
the surface.

This also gives a much more precise counting result for
the number 𝑁(Δ,𝐿) of bands of parallel periodic billiard
trajectories of length less than 𝐿, weighted by the width
of the band. Under some additional averaging one has

𝑁(Δ,𝐿) ∼
3350523
760400𝜋 ⋅

𝐿2

area of the billiard table
.

Here the constant in front of 𝐿2 (the Siegel–Veech
constant) is a function of the geometry of the orbit
closure, so a billiard giving a different orbit closure would
have a different constant.

There are only countably many GL(2,ℝ)-orbit closures.
Each parameterizes surfaces with exceptional flat geome-
try, and by work of Filip, each is an algebraic variety that
can be defined in terms of special properties of the Jaco-
bian. Despite important progress, in general it remains
an open problem to classify GL(2,ℝ)-orbit closures.

At first, the proof of the Magic Wand Theorem seemed
to use the special properties of the GL(2,ℝ) action on
strata of translation surfaces. However, the techniques
have already proved very useful far outside their original
setting. For example, they have been applied to random
dynamics on surfaces by Brown and Rodriguez Hertz and
to homogeneous spaces by Eskin and Lindenstrauss.

In fact, we use not only the results but also the ideas
of Mirzakhani all the time. Rereading her papers often
echoes something which you were thinking about for a
long time and all of a sudden it reveals a simple and
unexpected solution. Mirzakhani foresaw many beautiful
further results but did not have time to work on them.
We often feel that we are following the paths and trails
which she imagined and outlined.

Epilogue
We would feel insincere limiting ourselves to mathemat-
ical results of Maryam. We feel happy to have known
Maryam as a person. Alex spent the last three years in
Stanford working with Maryam, speaking with Maryam.
We reproduce his recollection presented at the Stanford
memorial for Maryam.

I remember vividly the first time I met Maryam in per-
son. It was in her office at Stanford, and I was a graduate
student, visiting at her invitation. I sat on the couch op-
posite the blackboard, which was layered with equations
and mathematical doodles. Whenever she needed to write
something, she would erase only the smallest portion of
the board possible, and squeeze her writing into the small
space. She spoke excitedly, sharing her ideas without
reservation. Sometimes she repeated herself, sometimes
she abandoned a sentence midway through, and her

Following the Prize Sessions at the 2009 Joint
Mathematics Meetings, Mirzakhani stands with a
group of Iranian-American mathematicians, including
Ali Enayat, Mojtaba Moniri, Iraj Kalantari, Vali Siadat,
and Bahman Kalantari.

thoughts came out somewhat in a jumble. As her former
student Jenya Sapir puts it, she would present different
ideas like a cast of characters, all talking to each other.
But as I started to grasp the depth of her understanding
and vision, I felt awe.

Two years later, I was back in that same office, having
just moved to Stanford to work with Maryam. She was so
eager to get to work that she arranged for me to stay in a
hotel for the week before my lease began, so that we could
get started that much earlier.

We would discuss mathematics for hours at a time,
standing at her blackboard, sometimes pacing in excite-
ment or concentration. She was always optimistic. As her
student Ben Dozier recalls, she would find some aspect
of any question, even if naive, to be fascinating. Her
enthusiasm was infectious.

I would leave ourmeetings determined, even if themath-
ematical challenges we faced were daunting. Maryam was
not intimidated, and with her working with me, any fear of
failure evaporated. I was energized to work on problems
I previously would have judged to be too difficult to even
attempt.

We had lunch together frequently, always at the busi-
ness school cafeteria, right next to this auditorium. There
our mathematical discussions would pause. Maryam spoke
of her daughter, Anahita, and of the joys and challenges of
being a parent. She spoke of teaching and complained that
she was unable to stick with just one textbook, so that her
house would be covered with different textbooks whenever
she taught.

She rarely gave advice and spoke in mildly worded sug-
gestions rather than instructions. On career issues, like the
best journal to submit a paper to or how to get the best job,
she was often silent. Perhaps, as a result of her own me-
teoric career, she had different firsthand experience with
such struggles. But more than that, she radiated a sense of
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perspective and focus, as if the adversities she had faced
had taught her that which journal accepts a paper is not
the most important thing and as if her intellectual curiosity
dwarfed academic politics. She once told me: “Know what
you want, and don’t get distracted.”

She seemed to follow that advice herself. After she was
awarded the Fields Medal, she wanted to get right back
to thinking deeply. She tried to ignore reporters and the
press coverage and seemed unchanged by her newfound
recognition and celebrity.

But she did want to help fellow mathematicians, es-
pecially young mathematicians. One of the graduate
students at Stanford, Pedram Safee, contacted her from
Iran as a high school student. They had never met, but she
still took the time to reply to him and give him advice on
studying mathematics. Recently, Maryam became an edi-
tor of one of the most prestigious journals in mathematics.
Most papers submitted to that journal get rejected, and
the review process is very long. She told me repeatedly, “I
just want to accept a paper, I just want to press the accept
button.”

When Maryam’s cancer recurred, she wanted to keep
working. Instead of her office, we met at the Coupa Cafe
in front of Green Library, closer to her home. Between
the meetings, now much less frequent, I was sad and wor-
ried, knowing that Maryam’s medical situation was dire.
But when I saw her in person, even when she spoke of
her struggle, I felt almost elated. Maryam was still herself,
still curious, brilliant, perseverant, and brave, and her op-
timism would make me feel, if only briefly, as if she would
surely be ok.

Now, as we mourn her, I want to remember the beauty
and power of her mathematics and the force of her person-
ality, which could convince me, even as she was in pain, to
smile.

For more on the the Magic Wand Theorem, see [W]. If
you want to learn more about Maryam as a person, read
the article by Erica Klarreich [K] in Quanta.
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Earlier this year, the American Mathematical Society
governance developed and approved two ways by
which to commemorate Maryam Mirzakhani and her
mathematical legacy.

The Maryam Mirzakhani Lecture will be an annual
AMS Invited Address at the Joint Mathematics Meet-
ings (JMM). The lecture will allow leading scholars
to present their research, while commemorating the
exceptional accomplishments of Maryam Mirzakhani.
The first lecture will be at the 2020 JMM in Denver .

The Maryam Mirzakhani Fund for The Next Gen-
eration is an endowment that exclusively supports
programs for early career mathematicians; i.e., doc-
toral and postdoctoral scholars. It is part of a special
initiative and aims to assist rising scholars each year
at modest but impactful levels. A donation to the
Maryam Mirzakhani Fund honors her memory by
supporting emerging mathematicians now and in the
future.
To give online, go to www.ams.org/giving, click Make
a Gift, and select Maryam Mirzakhani Fund for The
Next Generation. For questions, contact AMS Develop-
ment at development@ams.org or 401-455-4111.
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