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A POSITIVE DEFINITE ENERGY FUNCTIONAL FOR
THE AXISYMMETRIC PERTURBATIONS OF KERR–NEWMAN BLACK HOLES

VINCENT MONCRIEF AND NISHANTH GUDAPATI

We consider the axisymmetric, linear perturbations of Kerr–Newman black holes, allowing for arbitrarily
large (but subextremal) angular momentum and electric charge. By exploiting the famous Carter–Robinson
identities, developed previously for the proofs of (stationary) black hole uniqueness results, we construct
a positive definite energy functional for these perturbations and establish its conservation for a class of
(coupled, gravitational and electromagnetic) solutions to the linearized field equations. Our analysis
utilizes the familiar (Hamiltonian) reduction of the field equations (for axisymmetric geometries) to
a system of wavemap fields coupled to a 2+1-dimensional Lorentzian metric on the relevant quotient
3-manifold. The propagating “dynamical degrees of freedom” of this system are entirely captured by
the wavemap fields, which take their values in a 4-dimensional, negatively curved (complex hyperbolic)
Riemannian target space, whereas the base-space Lorentzian metric is entirely determined, in our setup,
by elliptic constraints and gauge conditions.

The associated linearized equations are analyzed with insight derived from the so-called “linearization
stability” program for such (generally covariant) systems. In particular this program provides a natural
connection between the (conserved, positive definite) energy defined for first-order perturbations and the
correction to the ADM mass induced therefrom at second order. A well-known technique allows one to
generate, for sufficiently smooth perturbations, a sequence of higher-order (conserved, positive definite)
energies that, in turn, bound certain higher-order (weighted) Sobolev norms of the linearized solutions.
We anticipate that our results may prove useful in analyzing the dynamical stability of (arbitrarily rapidly
rotating) Kerr–Newman black holes with respect to axisymmetric perturbations. Establishing such stability
at the linearized level is expected to be an essential first step in dealing, ultimately, with the nonlinear
problem.
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1. Introduction

Impressive observational and experimental evidence has accumulated for the existence of black holes as
dynamically stable entities in the Universe. But are these the black holes predicted by general relativity?
To conclude that they are would seem to hinge, in large measure, on the success of ongoing mathematical
efforts to prove that the purely theoretical, Einsteinian black holes are, themselves, dynamically stable. A
natural first step in this direction would be to establish such stability at the level of linear perturbation
theory — a long-standing research program that began with the pioneering work of Regge and Wheeler
[67], Vishveshwara [74] and Zerilli [77] for the case of Schwarzschild perturbations and with the
discovery, by Teukolsky [73; 72], of a separable wave equation for Kerr perturbations. Subsequently
the coupled gravitational and electromagnetic perturbations of (electrically charged but nonrotating)
Reissner–Nordström black holes were analyzed by Zerilli through working in a special gauge [78] and by
one of us who developed a gauge-independent, Hamiltonian formalism for the perturbative study of such
spherically symmetric “backgrounds” [56; 57; 58].

A corresponding treatment of (charged and rotating) Kerr–Newman black holes has, up until now, been
lacking. Indeed, as recently as 2006, Brandon Carter could write that the coupled system of electromagnetic
and gravitational Kerr–Newman perturbations “has so far been found to be entirely intractable” [16].
Much of the early work on black hole perturbation theory is summarized and extended in interesting ways
in the classic monograph by Chandrasekhar [17] which, though it includes an independent derivation of
the Reissner–Nordström results, devotes only a few pages to the unsolved, Kerr–Newman problem.

The earlier, somewhat formal, “mode stability” analysis for Schwarzschild perturbations has recently
been upgraded to a genuine proof of linear stability by Dafermos, Holzegel and Rodnianski [23] and,
independently, by Hung, Keller and Wang [50]. A corresponding proof for the case of Reissner–Nordström
black holes (in the full subextremal range |Q|< M) has been given by Giorgi [36]. On the other hand,
much of the recent work on Kerr stability has focused on analyzing the evolution of various, lower-spin
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“probe” fields propagating in given (Kerr) black hole “backgrounds”. Important results of this type have
been obtained for scalar [1; 24; 25; 31; 32], electromagnetic [2] and wavemap [52; 53] fields. The methods
employed in the electromagnetic and wavemap cases have required that the background black hole be
“slowly rotating” in a suitable sense, whereas those ultimately developed for scalar field perturbations
allow “arbitrarily rapid” rotation (consistent with the preservation of an event horizon).

For the actual gravitational perturbations of Kerr black holes Hollands and Wald have emphasized a crucial
distinction between the analysis of axisymmetric versus fully nonsymmetric metric perturbations that arises
primarily because of the suppression of “superradiance” in the axisymmetric case [47]. They have argued
that the existence of a conserved, positive definite “canonical” energy functional for axisymmetric, linear
perturbations is in fact a necessary condition for Kerr stability. For nonrotating (spherically symmetric)
backgrounds, on the other hand, the phenomenon of superradiance (whereby a black hole can absorb
negative radiative energy) disappears (unless electromagnetically charged fields are considered [10])
and the importance of distinguishing between axisymmetric and nonsymmetric perturbations is largely
dissolved.

One of the main results of [56; 57; 58] was in fact the derivation of a conserved, gauge-invariant, positive
definite energy functional for the coupled, dynamical, gravitational and electromagnetic perturbations
of Reissner–Nordström black holes. Using totally different (“Hertz potential”) methods Wald and
Prabhu have recently announced that the conserved, “canonical” energy formula for purely gravitational
perturbations given by Hollands and Wald in [47] is indeed positive definite when specialized to a
Schwarzschild background, and they conjecture that a corresponding result should hold for axisymmetric
Kerr perturbations [65].

Even for exclusively axisymmetric perturbations, though, a serious obstacle for the construction of
a positive definite energy functional for Kerr (or Kerr–Newman) perturbations is the presence of an
“ergoregion” lying outside of any (rotating) black hole’s event horizon. This is the region in which the
“time-translational” Killing field of the unperturbed (Kerr–Newman) spacetime becomes spacelike and
conventional local energy density expressions built from it can lose their definiteness. To a limited extent
this shortcoming can be handled by introducing “weighted” energy densities that, by exploiting timelike
linear combinations of the “time-translational” and rotational Killing fields of the background, interpolate
between positive definite density expressions inside the ergoregion and exterior to it. But this technique
does not seem to be capable of treating arbitrarily rapid rotation and, since such energies are not strictly
conserved, needs additional, technically intricate, Morawetz-type estimates for the extraction of uniform
bounds on the fields and their derivatives.

By imposing axial symmetry at the outset, Dain and his collaborators applied well-known Kaluza–Klein
reduction techniques to reformulate the (fully nonlinear) vacuum field equations as a 2+1-dimensional
Einstein-wavemap system for which the wavemap target space is the hyperbolic plane [27; 28]. In this
formulation the scalar wavemap variables represent the truly dynamical gravitational wave degrees of
freedom, whereas the 2+1-dimensional Lorentzian metric to which they are coupled is fully determined
by gauge conditions and elliptic constraints. After using this setup in elegant ways to study Penrose
inequalities and black hole thermodynamics in the axisymmetric case, they linearized their system and
applied it to the Kerr black hole stability problem. By utilizing an extension [28] of the classic Brill mass
formula [13] for axisymmetric, vacuum spacetimes expressed in terms of the wavemap variables, they
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computed the first and second variations of this functional about a Kerr background and derived therefrom
a conserved, positive definite energy functional for the linearized, purely gravitational perturbations of an
extremal (i.e., maximally rotating) Kerr black hole.

A key step in the logic of their derivation was the observation that, for fixed angular momentum (a strictly
conserved quantity for axially symmetric evolutions), the extended Brill mass functional is minimized, for
Cauchy data containing an apparent horizon, precisely at the initial data for an extremal, Kerr black hole.
Through an application of Carter’s remarkable identity [15] (that played a fundamental role in the proof
of the uniqueness of the Kerr family among stationary, asymptotically flat, vacuum black holes without
naked singularities) they showed, by an explicit calculation, that the second variation of the extended
Brill mass density functional was, up to a spatial divergence term, positive definite. Upon discarding the
boundary integral that resulted from integrating this density over a Cauchy surface for the black hole’s
domain of outer communications (DOC) they arrived at an energy expression for the (axisymmetric)
linear perturbations of the extremal Kerr spacetime’s DOC that was both conserved and positive definite.

On the other hand, even though the concept of extremality applies equally well to the Reissner–Nordström
family (with electrical charge playing a role analogous to that of angular momentum for the Kerr case) no
such limitation (to extremal black holes) was needed for the derivation of the earlier results, which had
been obtained by a somewhat analogous variational calculation. Partly for this reason the authors realized
that it should be entirely feasible to remove this limitation in the rotating case and treat subextremal (as
well as electrically charged) black holes. We present the results of our analysis herein by deriving an
explicit, positive definite, conserved energy functional for the axisymmetric (coupled gravitational and
electromagnetic) perturbations of arbitrary subextremal Kerr–Newman black holes. While the occurrence
of a nonnegligible electric charge for a black hole is of doubtful astrophysical significance, subextremal
holes are certainly more astrophysically significant than extremal ones which, in fact, are thought to be
unachievable via realistic natural evolutions, an expectation encoded in the “third law” of black hole
mechanics [11].

While it may not be strictly necessary for our program, we have found it very illuminating to appeal
to a straightforward modification of the mathematical “machinery” developed long ago for the study
of the so-called linearization stability (LS) problem in general relativity [7; 8; 9; 14; 33; 34; 59; 60].
In particular, this technology (which was developed initially for the study of perturbations of spatially
compact, “cosmological” spacetimes) provides one with a rather clear understanding of a somewhat
mysterious step in the Dain et al. analysis, wherein one multiplies the variations of the Brill energy
density by an explicit weight factor that plays, for those authors, its desired role only in the extremal
case. As we shall see, the natural interpretation of this weight factor is that it serves as (a special case
of) an element (C, Z) of the kernel of the adjoint operator of the linearized Einstein constraint map
wherein C is the normal and Z the tangential projection (at an arbitrary Cauchy hypersurface for the
unperturbed spacetime) of the (asymptotically timelike) Killing field of the background [34; 59; 60]. With
this recognition of the significance of such Killing initial data sets (or KIDS as they are now often called),
one can remove the limitation to extremality and derive, by methods analogous to those given in [28]
combined with Carter’s identity for the wavemap variables, an energy functional that is both conserved
and positive definite. In fact, by exploiting Robinson’s renowned generalization of Carter’s identity [71]
together with the Kaluza–Klein reduced form of the axisymmetric Einstein–Maxwell equations to a
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still larger 2+1-dimensional Einstein-wavemap system (now with complex hyperbolic space as the
naturally occurring target), one can extend the aforementioned results to cover the coupled, axisymmetric
gravitational and electromagnetic perturbations of fully general Kerr–Newman black holes.

Although we shall not attempt to fully exploit it here, the recognition of the (spacetime covariant)
geometrical significance of the kernel (C, Z) of the relevant adjoint operator allows one also to remove
any apparent dependence upon the “slicing” employed for the background spacetime and, in particular,
to allow for hypersurfaces of the black hole’s DOC that could, for example, penetrate its (future) event
horizon or intercept (future) null infinity (Scri) or perhaps both. In the present paper though we shall, for
simplicity, only deal with the Boyer–Lindquist-type slicings that, in contrast to the above, are “locked
down” at the horizon’s bifurcation two-sphere and at spacelike infinity. These are actual Cauchy surfaces
for the DOC’s of interest here and allow for a strictly conserved energy functional, whereas energies
defined with respect to the more general slicings mentioned above would normally decay through the
occurrence of outgoing fluxes at the horizon and at Scri [47].

Another advantage of the use of the LS “technology” is that it shows clearly how to relate the linearized
energy expression obtained therefrom to a perturbation of the asymptotically defined ADM mass of the
perturbed spacetime which, as we shall see, is necessarily induced at second order from the presence of
nonvanishing energy at first order. The absence of such compensating boundary integral expressions in the
spatially compact, “cosmological” cases originally considered for the LS problem was what gave rise to
the curious phenomenon of linearization instability wherein any linear perturbation with a nonvanishing
Killing conserved quantity was shown to be “spurious” in that it could not, even in principle, be extended
to higher order [7; 8; 9; 14; 33; 34; 59; 60]. For the spatially noncompact problems of interest here such
conserved energy integrals are not, of course, forced to vanish but, when nonvanishing and combined with
suitable boundary conditions on the perturbations at the black hole’s event horizon, coerce a corresponding
perturbation in the ADM mass at second order.

Though we shall focus exclusively on the derivation of this fundamental energy expression herein, there is
a well-known technique for generating, for sufficiently smooth perturbations, a sequence of higher-order
energy expressions by successively Lie differentiating the linearized field equations with respect to the
(asymptotically timelike) Killing field of the background, essentially “time” differentiating the unknowns
sequentially and evaluating their “energies”, and then using the linearized equations to “trade” time
derivatives for spatial ones in defining the ultimate, higher-order, energy expressions. Though we shall not
pursue this strategy in detail herein, we shall sketch, in the concluding section, its potential application
for extracting (higher-order) Sobolev-type bounds upon the perturbations from the corresponding energy
integrals. The derivation of such bounds would serve, through the application of standard Sobolev
inequalities, to establish uniform boundedness of the perturbations and their derivatives and will be the
subject of a subsequent article. A well-known difficulty in deriving such bounds arises through the natural
occurrence of certain “weight factors” in the higher-order energies that degenerate at the horizon and
thereby force the need for a more subtle analysis for the extraction of the desired Sobolev estimates.

In Section 2 we shall begin by focusing on the special case of purely electromagnetic perturbations of a
Kerr background spacetime. These have the distinct advantage of allowing a straightforward representation
in terms of (electromagnetic) gauge and infinitesimal diffeomorphism-invariant variables that satisfy
an elegant system of partial differential equations derived directly from Maxwell’s equations in the
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axisymmetric case. Even for this problem, however, Robinson’s identity, specialized to the case at hand,
is needed to handle the ergoregion difficulties and demonstrate positivity of the resulting, “regularized”
energy expression defined therein. By contrast, the linearized wavemap variables for the more general
Kerr–Newman problem analyzed in Sections 3 and 4 are gauge-dependent (since they correspond to the
perturbations of nonconstant background scalar fields) and accordingly, for the elliptic gauges considered
herein, satisfy “nonlocal” evolution equations incorporating the linearized lapse and shift variables. While
one could have employed a nonelliptic gauge of “spacetime harmonic” type (i.e., the analogue of Lorenz
gauge for Maxwell’s equations), this would have significantly enlarged the system to be analyzed and thus
the number of evolving variables to be controlled by energy arguments in an ultimate stability analysis. In
our setup, however, only the independent dynamical, linearized wavemap variables need to be controlled
by the energy (and its higher-order generalizations).

Somewhat remarkably, most of the elliptic problems involved in our formulation reduce to 2-dimensional
flat space Poisson equations for which the relevant fundamental solution (Green’s function) is explicitly
known. Indeed, this is true for all of the elliptic problems in the special case of what we shall call
the 2+1-dimensional, maximal slicing gauge condition. For more general gauge conditions (such as
3+1-dimensional maximal slicing) the linear elliptic equation for the perturbed lapse function need not
be of this elementary, explicitly solvable type. The elliptic analysis needed for dealing with the linearized
constraints and the imposed gauge conditions is developed in Appendices G, H and I, while Appendix A
presents the Kerr–Newman black hole solutions in the coordinate systems of interest and Appendix C
reviews the Hamiltonian formalism for the (axial) symmetry-reduced Einstein-wavemap system that is
the main object of our study. Appendix B reviews the global Cauchy problem for the linearized field
equations specialized to a “hyperbolic” gauge of Lorenz type, whereas Appendix D establishes the
equivalence between our Hamiltonian formulation of the “twist potential” wavemap variables and the
more conventional Lagrangian definition of these fields and Appendix E reviews the charge and angular
momentum conservation laws in our formalism. Appendix F introduces the (Weyl–Papapetrou) gauge
condition needed to determine our linearized shift field. Appendix J establishes the vanishing of a certain
integral invariant, the result of which is needed to justify our chosen (Weyl–Papapetrou) gauge condition.
Appendix K analyzes maximal slicing gauge conditions in both the 2+1- and 3+1-dimensional sense,
whereas Appendix L lays the foundation for relating our formulation of the linearized field equations to
that involving the perturbed Weyl tensor. It has seemed advisable to us to relegate some of these more
technical discussions to appendices in order not to unduly interrupt the logical flow of the arguments
given in the main body of the article.

In Section 5 we briefly discuss some possible further extensions of our work. In particular, we describe
some of the modifications that would be needed for the inclusion of a (positive) cosmological constant
and the corresponding derivation of a (conserved, positive definite) energy functional for Kerr–Newman–
de Sitter spacetimes. A key point here is that the Robinson identity, which is normally applied to purely
electrovacuum problems, only generates, thanks to a favorable sign in one of its terms that vanishes
for electrovacuum backgrounds, a new term of positive sign in the presence of a positive cosmological
constant. While the remarkable work of Hintz and Vasy has already demonstrated the stability of slowly
rotating Kerr–de Sitter black holes with respect to fully nonlinear and nonsymmetric perturbations [44]
there may be some potential contribution of our approach to the study, at least at linearized level, of



AXISYMMETRIC PERTURBATIONS OF KERR–NEWMAN BLACK HOLES 7

rapidly rotating Kerr–de Sitter solutions, as well as to their Kerr–Newman–de Sitter generalizations. We
propose to pursue this issue in a future work.

Though our treatment of the U(1)-symmetric Einstein-wavemap formalism is herein limited to linearized
equations, we remark that work by Choquet-Bruhat and one of us applied this same setup (in the vacuum
case) to establish the (fully nonlinear) stability of a family of (spatially compact) cosmological models
in the temporal direction of cosmological expansion [18]. The future stability of a still different set
of vacuum cosmological background solutions was proven, for fully nonsymmetric perturbations, by
Andersson and one of us by using energies of a (generalized) Bel–Robinson type [5; 6]. Separately, large
data global existence for the (nonlinear) equivariant Einstein-wavemap system was proven by Andersson,
Gudapati and Szeftel [3] by building on the nonconcentration of energy result established by one of us in
[38]. An entirely different approach to Kerr mode stability, made possible through Whiting’s remarkable
transformation of the Teukolsky equation [76], has recently been further developed by Andersson, Ma,
Paganini and Whiting [4]. Equations of Teukolsky type for the linear perturbations of Kerr–Newman
spacetime have been recently derived by Giorgi [37].

We also briefly discuss, in the concluding section, the potential application of our approach to the study of
black holes in higher than four spacetime dimensions. It has long been realized, for example, that when an
(n−2)-dimensional, commutative, spacelike isometry group is imposed upon the solutions of the Einstein
[54] or Einstein–Maxwell [51] equations in n+ 1 dimensions (with n > 3), these systems can be reduced,
à la Kaluza–Klein, to another wavemap system coupled to a Lorentzian 3-metric. In fact stationary black
holes and more general black objects, at least in the vacuum, analytic case, can be proven to automatically
admit such toroidal isometry groups when the associated angular momentum parameters are nonvanishing
[46; 62]. Furthermore, generalizations of the Carter and Robinson identities have been systematically
derived for the proofs of corresponding black hole uniqueness theorems [21; 45; 48; 49]. Thus all of the
needed “machinery” for the extension of our results to such higher-dimensional problems seems already
to be available. On the other hand, as pointed out by Hollands and Ishibashi, such a high-dimensional
toroidal isometry group is compatible with asymptotic flatness (in the standard sense for spacetimes
with a well-defined Scri diffeomorphic to Sn−1

×R) only in four and five spacetime dimensions [45].
But the stability of the famous 5-dimensional Myers–Perry rotating black hole solution [64] (and its
electrovacuum generalization [43]) is an important unsolved mathematical problem, whereas the instability
of still higher-dimensional, rotating black objects has, to a considerable extent, been established [30].
Thus we conjecture that our methods can be applied to shed light on these open questions at least for
perturbations preserving the T n−2 “axial” isometry group of the chosen, axisymmetric background. We
propose to investigate this in detail in future work.

The reader will not fail to notice that our Appendix B is essentially just a linearized version of the (local)
existence and uniqueness theorem for the fully nonlinear Einstein–Maxwell equations derived by Yvonne
Choquet-Bruhat in [19]. We include the argument for the linearized field equations here both for the
convenience of the reader and also because the linear character of our system allows us to establish
the global extensibility of solutions to the full, maximal Cauchy development of a chosen initial data
surface for the background solution that is being perturbed. In particular, linearized solutions generated
from appropriate initial data will automatically extend to the full domain of outer communications of the
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Kerr–Newman black-hole that we choose to perturb. The subtlety of the needed argument, even at this
simplified, linearized level, reinforces the elegance and depth of Choquet-Bruhat’s theorem.

2. Pure electromagnetic perturbations of Kerr spacetimes

As is well known and easily seen, linearization of the Einstein–Maxwell equations about an arbitrary,
vacuum solution leads to a decoupled system of perturbation equations of which the electromagnetic
component consists simply of Maxwell’s field equations formulated on the chosen (vacuum) background.
The corresponding linearized Einstein component for the metric perturbation is homogeneous in this
approximation and thus always compatible with taking the metric perturbation to vanish identically.
Specializing the background to be a Kerr, black hole spacetime and demanding, for simplicity, that the
metric perturbation be trivial we thus arrive at the important special case of analyzing Maxwell’s equations
on a given Kerr background.

With this aim in mind it is natural to look for a conserved, positive definite energy functional for Maxwell
fields on the domain of outer communications (DOC) of an arbitrary Kerr black hole. As far as we know,
however, no such energy functional has heretofore been constructed, even for the case of purely axisymmet-
ric perturbations, thanks to the well-known difficulties presented by the ergoregion that always surrounds
a (rotating) black hole. Thus the solution to this problem that we present here (for the axisymmetric case)
may be of interest in its own right as well as providing an example, in a somewhat simpler setting, of
the full linearized Kerr–Newman energy functional construction that is the main aim of this paper.

While one could simply specialize our comprehensive, Kerr–Newman construction to the case at hand,
it will perhaps prove more illuminating to start “from scratch” and derive the pure Maxwell energy
functional from first principles, leaving its reconciliation with our general, Kerr–Newman results until
later (see the discussion at the end of Appendix G). The action for electromagnetic fields on an arbitrary,
3+1-dimensional, globally hyperbolic spacetime {M̃ ×R, (4)g}, with M̃ a smooth, connected 3-manifold,
is given, in Hamiltonian form (see (221)–(224)), by

I Maxwell
� :=

∫
�

d4x {A′i E
i ′
,t − NHMax

− N iHMax
i − A′0 E

i ′
,i }, (1)

where

HMax
:=

1
2

gi j

µ(3)g
(E i ′E j ′

+Bi ′B j ′), (2)

HMax
i := −εi jkE j ′Bk′ . (3)

Here the Lorentzian metric (4)g has been expressed in ADM (Arnowitt, Deser, Misner) form (see (217)) and,
to ensure convergence, the integral has been restricted to an arbitrary compact domain, �⊂ M̃×R, having
a piecewise smooth boundary. The “primes” attached to the Maxwell fields, superfluous for the moment,
are intended to signify that we regard these as linear perturbations of an identically vanishing background.

We now specialize {M̃ ×R, (4)g} to be the domain of outer communications of an arbitrary, rotating Kerr
black hole and constrain the (perturbative) Maxwell fields under consideration to be axisymmetric and
thus, relative to the coordinate systems discussed in Appendix A, to satisfy

∂

∂ϕ
A′µ =

∂

∂ϕ
E i ′
=

∂

∂ϕ
Bi ′
= 0. (4)
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Here ψ = ∂/∂ϕ together with ζ = ∂/∂t are the axial and time-translational Killing fields of the general
Kerr solution and, as elaborated in Appendix C, it is natural to pass to the quotient space for the circle
action generated by ψ and to formulate the Maxwell equations on the base manifold (with boundary)

V/U (1)= R×Mb (5)
defined therein.

Variation of I Maxwell
� with respect to A′0 leads immediately to the (Gauss law) constraint equation

E i ′
,i = 0, which, under our axial symmetry assumption, simplifies to Ea′

,a = 0, with {xa
} = {x1, x2

},
while x3

= ϕ. On the simply connected space Mb one can always solve this constraint, without loss of
generality, by introducing a potential function η′ and setting

Ea′
= εabη′,b. (6)

This follows from applying the Poincaré lemma to the dual, closed one-form εacEa′dxc and expressing it
as the exact form η′,cdxc. Writing λ′ for the azimuthal component, A′3, of the “linearized” vector potential,
one arrives at

Ba′
= εabλ′,b (7)

for the corresponding magnetic field components.

Linearizing the defining equations for the electromagnetic momentum variables {ũ, ṽ} (defined through
(242), (245), (232) and (233)) and recalling that the metric one-form βadxa vanishes on the Kerr
background (compare (167) and (227)), one finds that

ũ′ = B3′, ṽ′ =−E3′ . (8)

Taking � to be invariant with respect to the circle action generated by ψ = ∂/∂x3
= ∂/∂ϕ and assuming

that it projects to a domain in the quotient space of the form D×[t0, t1], with D compact in Mb, one can
reexpress the action integral as

Ĩ Maxwell
� = 2π

∫ t1

t0
dt
∫
D

d2x
{

ũ′η′,t+ṽ
′λ′,t−

[
1
2

Ñ
µ(2)g̃

e2γ ((ũ′)2+(ṽ′)2)

+
1
2

Ñµ(2)g̃ g̃abe−2γ (η′,aη
′

,b+λ
′

,aλ
′

,b)−β0ε
abη′,aλ

′

,b

]}
+2π

∫ t1

t0
dt
∫
D

d2x {−(λ′ṽ′),t+(A′aε
abη′,t),b}, (9)

where we have now exploited the parametrization introduced via (227) to denote the background metric
components in “quotient space” format. The Kerr values for these metric components (in Weyl–Papapetrou
coordinates) can be read off from (167) (upon taking the background charge Q to vanish).

Since the second integral in (9) equates to a pure boundary term and thus makes no contribution to the
field equations, one may discard it and define, accordingly, the “reduced Maxwell action functional”

J̃ Maxwell
� :=

∫ t1

t0
dt
∫
D

d2x
{

ũ′η′,t + ṽ
′λ′,t −

[
1
2

Ñ
µ(2)g̃

e2γ ((ũ′)2+ (ṽ′)2)

+
1
2

Ñµ(2)g̃ g̃abe−2γ (η′,aη
′

,b+ λ
′

,aλ
′

,b)−β0ε
abη′,aλ

′

,b

]}
= ( Ĩ Maxwell

� /2π)− (boundary term). (10)
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It may be helpful to note here that the metric functions employed above, namely {γ, g̃ab, βa, β0, Ñ a, Ñ },
are related to the conventional ADM metric functions {gi j , N i , N } through

e2γ
= gϕϕ, βa = e−2γ gaϕ, (11)

g̃ab = e2γ gab− e4γβaβb = e2γ gab− gaϕgbϕ, (12)

Ñ a
= N a, β0 = Nϕ

+ N aβa = Nϕ
+ N ae−2γ gaϕ, (13)

Ñ = eγ N (14)

and that we write µ(2)g̃ for the 2-dimensional “volume” element
√

det |g̃ab|. Furthermore, in the standard
coordinate systems discussed in Appendix A, βa = 0 and Ñ a

= N a
= 0 for a metric of Kerr type, whereas

the shift vector N i (∂/∂x i ) reduces to

Nϕ ∂

∂ϕ
−→ β0

∂

∂ϕ
.

To this point no actual field equations have needed to be imposed on the background metric — the
axisymmetric Maxwell equations for an arbitrary such background may thus be derived by variation
of J̃ Maxwell

� with respect to the (unconstrained) canonical variables {(η′, ũ′), (λ′, ṽ′)}. For most of the
arguments to follow, however, satisfaction of the vacuum field equations (specifically by the Kerr metric)
will play an essential role. In terms of the twist potential ω, defined via (238) and (232), the field
equations satisfied by the Kerr metric are given, after setting η = λ= 0, by (278)–(285). Of these, the
most immediately relevant are

4(Ñµ(2)g̃ g̃abγ,a),b+ 2Ñµ(2)g̃ g̃abe−4γω,aω,b = 0, (15)

(Ñµ(2)g̃ g̃abe−4γω,a),b = 0 (16)

and

Ñ |c
|c =

1
µ(2)g̃

(µ(2)g̃ g̃ab Ñ,a),b = 0. (17)

In addition (251), specialized to the (stationary, vacuum) case at hand, reduces to

β0,a + Ñe−4γ εab µ(2)g̃ g̃bcω,c = 0. (18)

Explicit formulas for the relevant quantities appearing herein are given, in Boyer–Lindquist coordinates,
by (253)–(260), upon setting the charge Q to 0. Henceforth, in this section, we restrict the background
metric to be specifically that of a Kerr black hole.

In a suitable function space, setting the Hamiltonian

H̃ Maxwell
:=

∫
Mb

d2x {NHMax
+ NϕHMax

ϕ }, (19)

where now

NHMax
+NϕHMax

ϕ =

{
1
2

Ñe2γ

µ(2)g̃
((ũ′)2+(ṽ′)2)+ 1

2
Ñµ(2)g̃ g̃abe−2γ (η′,aη

′

,b+λ
′

,aλ
′

,b)−β0ε
abη′,aλ

′

,b

}
, (20)
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will be well-defined and yield the symmetry-reduced Maxwell equations in the form of Hamilton’s
equations for the canonical pairs {(η′, ũ′), (λ′, ṽ′)}. These latter are readily found to be

η′,t =
δ H̃ Maxwell

δũ′
=

Ñe2γ

µ(2)g
ũ′, (21)

λ′,t =
δ H̃ Maxwell

δṽ′
=

Ñe2γ

µ(2)g̃
ṽ′, (22)

ũ′,t = −
δ H̃ Maxwell

δη′
= (Ñµ(2)g̃ g̃abe−2γ η′,a),b+ Ñµ(2)g̃ g̃abe−4γω,aλ

′

,b, (23)

ṽ′,t = −
δ H̃ Maxwell

δλ′
= (Ñµ(2)g̃ g̃abe−2γλ′,a),b− Ñµ(2)g̃ g̃abe−4γω,aη

′

,b, (24)

wherein we have exploited the background (18) to reexpress the resulting forms, eliminating β0 in favor
of the twist potential, ω.

Though H̃ Maxwell would seem to be a natural candidate for the energy functional we are seeking to
construct, its density (20) can be shown to attain negative values inside the Kerr ergoregion leaving
positivity of the total energy in doubt. To see this explicitly, assume for definiteness that the Kerr rotation
parameter a is positive and evaluate the Hamiltonian density (20) in Weyl–Papapetrou coordinates {ρ, z},
for which

µ(2)g̃ g̃ab ∂

∂xa ⊗
∂

∂xb −→
∂

∂ρ
⊗
∂

∂ρ
+
∂

∂z
⊗
∂

∂z
, (25)

taking (locally defined) Cauchy data of the form

ũ′ = ṽ′ = 0, (26)

with η′ and λ′ satisfying the Cauchy Riemann equations,

λ′,ρ = η
′

,z and λ′,z =−η
′

,ρ, (27)

within some open subset of the ergoregion. With these substitutions the Hamiltonian density reduces to

NHMax
+ NϕHMax

ϕ −→ (Ñe−2γ
+β0)((λ

′

,ρ)
2
+ (λ′,z)

2), (28)

and one has β0+ Ñe−2γ < 0 inside the ergoregion. To treat the case a < 0 one need only reverse the roles
of η′ and λ′ to generate a similar, negative result. Thus whereas for a single, axisymmetric scalar field
the troublesome term in the shift vector, β0(∂/∂ϕ), drops out of the corresponding Hamiltonian density,
this is not true for the pair of electromagnetic scalars η′ and λ′ for which the shift induces the natural,
Maxwellian coupling between them.

Note that, by virtue of the background field (18) one can write

−β0ε
abη′,aλ

′

,b = β0ε
abη′,bλ

′

,a = (β0ε
abη′,bλ

′),a + Ñe−4γµ(2)g̃ g̃abω,aη
′

,bλ
′ (29)

and use this identity to replace the “shift term” in the Hamiltonian density (20) by a term involving the
background gravitational “twist potential” ω together with a spatial divergence. Since the latter integrates
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to a pure boundary expression that will not contribute to the equations of motion, we may discard it and
define an alternative Hamiltonian, H Alt, given by

H Alt
:=

∫
Mb

d2x {HAlt
}, (30)

where

HAlt
=

{
1
2

Ñe2γ

µ(2)g̃
((ũ′)2+ (ṽ′)2)+ 1

2
Ñµ(2)g̃ g̃abe−2γ (η′,aη

′

,b+ λ
′

,aλ
′

,b)+ Ñe−4γµ(2)g̃ g̃abω,aη
′

,bλ
′

}
. (31)

As we shall see later this arises as a special case of the general Kerr–Newman perturbational Hamiltonian
that we shall derive in Appendix G. At first sight though it appears to amount to a step backwards since,
if we exploit the freedom to shift the (undifferentiated) λ′ by an additive constant, we could make HAlt

locally negative even outside the ergoregion!

Now, however, we are in the fortuitous position of being able to exploit Robinson’s identity, which,
specialized to the case of a vacuum background and purely electromagnetic perturbations and reexpressed
in our notation, reads

Ñµ(2)g̃ g̃abe−2γ (η′,aη
′

,b+λ
′

,aλ
′

,b)+2Ñµ(2)g̃ g̃abe−4γω,aη
′

,bλ
′
+L1

[1
2
(η′)2+

1
2
(λ′)2

]
−λ′η′L2+

1
2
∂

∂xb {−2Ñµ(2)g̃ g̃abe−4γω,aη
′λ′+Ñ (µ(2)g̃ g̃ab)(e−2γ ),a((η

′)2+(λ′)2)}

=
1
2

Ñe2γµ(2)g̃ g̃ab
{∂a(e−2γλ′)∂b(e−2γλ′)+∂a(e−2γ η′)∂b(e−2γ η′)}

+
1
2

Ñe−2γµ(2)g̃ g̃ab
{(η′,a+λ

′e−2γω,a)(η
′

,b+λ
′e−2γω,b)+(λ

′

,a−η
′e−2γω,a)(λ

′

,b−η
′e−2γω,b)}, (32)

where

L1 :=
e−2γ

2
{4(Ñµ(2)g̃ g̃abγ,a),b+ 2Ñe−4γµ(2)g̃ g̃abω,aω,b}, (33)

L2 := −(Ñµ(2)g̃ g̃abe−4γω,a),b. (34)

Note that L1 and L2 both vanish when the background field equations (15)–(16) are enforced. Thus for a
vacuum background, Robinson’s identity lets us replace the indefinite potential energy density in HAlt

(i.e., the first two terms appearing in (32)) with a spatial divergence and a sum of positive terms.

Again discarding the boundary term resulting from the integrated divergence, we define our ultimate,
regulated, Maxwell Hamiltonian as the integral over Mb of the density, HReg, thus constructed, setting

H Reg
=

∫
Mb

d2x {HReg
}, (35)

with

HReg
:=

1
2

Ñ
µ(2)g̃

e2γ ((ũ′)2+(ṽ′)2)

+
1
2

Ñµ(2)g̃ g̃ab
{[
∂a(e−γλ′)−

1
2
(e−γ η′)e−2γω,a

][
∂b(e−γλ′)−

1
2
(e−γ η′)e−2γω,b

]
+

[
∂a(e−γ η′)+

1
2
(e−γλ′)e−2γω,a

][
∂b(e−γ η′)+

1
2
(e−γλ′)e−2γω,b

]
+

1
2

[
2γ,aγ,b+

1
2

e−4γω,aω,b

]
[(e−γλ′)2+(e−γ η′)2]

}
. (36)
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Note that H Reg can be more compactly expressed in terms of the “rescaled” canonical pairs {(η′, ũ′), (λ′, ṽ′)}
defined by

η′ :=
η′

eγ
, ũ′ := eγ ũ′, λ′ :=

λ′

eγ
, ṽ′ = eγ ṽ′ (37)

for which the regulated density becomes simply

HReg
=

1
2

Ñ
µ(2)g̃

((ũ′)2+(ṽ′)2)+1
2

Ñµ(2)g̃ g̃ab
{(
∂aλ
′
−

1
2
η′e−2γω,a

)(
∂bλ
′
−

1
2
η′e−2γω,b

)
+

(
∂aη
′
+

1
2
λ′e−2γω,a

)(
∂bη
′
+

1
2
λ′e−2γω,b

)
+

1
2

(
2γ,aγ,b+

1
2

e−4γω,aω,b

)
((λ′)2+(η′)2)

}
. (38)

Hamilton’s equations, which now take the form

η′
,t
=
δH Reg

δũ′
, λ′,t =

δH Reg

δṽ′
, (39)

ũ′,t = −
δH Reg

δη′
, ṽ′,t = −

δH Reg

δλ′
, (40)

regenerate the Maxwell equations (21)–(24) given previously but now with a positive definite Hamiltonian.

Using these equations to compute the time derivative of HReg, one arrives at

HReg
,t =

∂

∂xb

{
Ñ 2g̃abũ′

(
η′
,a
+

1
2λ
′e−2γω,a

)
+ Ñ 2g̃abṽ′

(
λ′,a −

1
2η
′e−2γω,a

)}
, (41)

which leads one to define the divergence-free vector density current, JReg, via

J 0
Reg :=HReg, (42)

J b
Reg := −Ñ 2g̃ab[ũ′(η′

,a
+

1
2λ
′e−2γω,a

)
+ ṽ′

(
λ′,a −

1
2η
′e−2γω,a

)]
, (43)

with

JReg = J 0
Reg

∂

∂t
+J b

Reg
∂

∂xb (44)

satisfying, by construction,
∂

∂t
J 0

Reg+
∂

∂xa J
a
Reg = 0. (45)

The regularity conditions at the axis satisfied by the (rescaled) canonical variables {(η′, ũ′), (λ′, ṽ′)}
together with their asymptotic behaviors at the Kerr event horizon and at infinity are discussed in detail in
Appendix B. Appealing to these results, it is straightforward to apply the continuity equation (45) to show
that the total electromagnetic “energy”, defined by H Reg, is strictly conserved. This energy could only
differ in value from those defined by H Alt and H Maxwell by possible boundary contributions at (spacelike)
infinity or at the bifurcation 2-sphere lying in the black hole’s horizon. It has, however, the significant
analytical advantage over these latter quantities of being manifestly positive definite.
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Combining (21), (22), and (6)–(8) one finds that

η′,t =
Ñe2γB3′

µ(2)g̃
, η′,b = εabEa′, (46)

λ′,t = −
Ñe2γ E3′

µ(2)g̃
, λ′,b = εabBa′, (47)

and thus that, in any open connected domain of R×Mb in which the (projected) electromagnetic field
components (E i ′,Bi ′) all vanish, the potentials η′ and λ′ must both be spacetime constants. Since the
Maxwell fields E i ′ and Bi ′ propagate causally on the domain of outer communications of a Kerr black
hole it is easily verified that these fields, projected to the quotient space R×Mb, propagate causally with
respect to the induced, 2+1-dimensional Lorentz metric (3)k defined by

(3)k := −Ñ 2 dt ⊗ dt + g̃ab(dxa
+ Ñ a dt)⊗ (dxb

+ Ñ b dt) (48)

(see (227)). It follows that any nonconstant disturbance in the potentials η′ and λ′ must propagate causally
on (R×Mb,

(3)k).

Another way of verifying the causal propagation of energy in this quotient space is to calculate the flux
density of the current JReg across an arbitrary null hypersurface in (R×Mb,

(3)k) with (future-directed) null
normal `µ(∂/∂xµ), i.e., to evaluate −`µJ

µ
Reg =−

(3)kµν`µJ ν
Reg for an arbitrary tangent field `µ(∂/∂xµ)

satisfying
`0 > 0, (3)kµν`µ`ν = 0. (49)

Appealing to the defining equations (38), (42) and (43) and recalling that Ñ a
= 0 for the metrics of interest

herein, it is straightforward to verify directly that this flux density, −`µJ
µ
Reg, is always nonnegative and

thus that the corresponding energy can only flow causally through such null hypersurfaces.

For the coordinate systems discussed in Appendix A it is well known that null geodesics originating in
the Kerr black hole’s DOC cannot reach infinity or the event horizon in finite (coordinate) time but only
in the limit as t→±∞. Projected to the quotient space this result implies, in particular, that Cauchy data
{(η′, ũ′), (λ′, ṽ′)} specified at t = t0 and having compact support in Mb at this “initial” instant will evolve
in such a way as to preserve this property for all t . In other words the support of these fields, evaluated
at any time t, will remain bounded and disjoint from the horizon. For these solutions in particular it is
evident that the various “energies”, H̃ Maxwell, H Alt and H Reg that we have defined will all coincide.

Note however that whereas the densities NHMax
+ NϕHMax

ϕ and HAlt both vanish at any point at which
E i
= Bi
= 0, this need not be true of HReg. Indeed, as we have seen, the fields E i (∂/∂x i ) and Bi (∂/∂x i )

could both vanish throughout an entire open subset of R×Mb implying only that η′ and λ′ are spacetime
constants in this domain. Unless both these constants also vanish the density HReg will be strictly
positive (though time independent) throughout this region. In other words HReg is actually nonlocal in
the fundamental fields E i (∂/∂x i ) and Bi (∂/∂x i ). One could nevertheless express it explicitly in terms of
these fields by applying the methods of Appendix H to solve the two Poisson equations

(µ(2)g̃ g̃abη′,a),b = (µ(2)g̃ g̃cdεac Ea′),d , (50)

(µ(2)g̃ g̃abλ′,a),b = (µ(2)g̃ g̃cdεac Ba′),d (51)
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that follow from the defining formulas (6) and (7). Alternatively one could appeal to the exactness of the
one-forms εac Ea′ dxc and εac Ba′ dxc and integrate the defining equations

η′,c = εac Ea′, (52)

λ′,c = εac Ba′ (53)

along conveniently chosen paths from (say) points on the axis where these potentials both vanish (see the
discussion in Appendix E).

To summarize the results of this section, we have proven the following:

Theorem 2.1. Maxwell’s equations for the axisymmetric, purely electromagnetic perturbations of an
arbitrary Kerr black hole are derivable from a Hamiltonian (H Reg defined by (35)–(37)) that is positive
definite and strictly conserved but nonlocal when expressed in terms of the electric and magnetic fields.

Since this work was completed, one of us (N.G.) has shown how to derive a corresponding (positive definite
energy) result, in the presence of a positive cosmological constant, for the axisymmetric, Maxwellian
perturbations of Kerr–de Sitter black holes [40]. Independently, Wald and Prabhu have derived positive
definite energy functionals for the axisymmetric, electromagnetic perturbations of Kerr black holes that
are not only compatible with ours in 4-dimensions but which apply as well to sufficiently symmetric
electromagnetic perturbations of higher-dimensional black holes [66].

3. An energy functional for axisymmetric Kerr–Newman perturbations

In this section we construct a conserved, positive definite energy functional for linear, axisymmetric
perturbations of arbitrary Kerr–Newman black holes. While we focus, for technical reasons, on the
most astro-physically relevant, subextremal cases our main calculational results are equally applicable to
extremal black holes for which they generalize, to the electrovacuum framework, those given in [28].

To set the stage for our derivation we first recall how similar ideas were developed, long ago, for the
special case of (charged but nonrotating) Reissner–Nordström black holes.

3A. Background on Reissner–Nordström perturbations. The derivation of a conserved, positive definite
energy functional for the coupled (electromagnetic and gravitational) dynamical perturbations of Reissner–
Nordström (RN) black hole spacetimes was given by one of us in [56; 57; 58]. It followed from computing
the second variation of the Einstein–Maxwell action functional about a Reissner–Nordström black hole
background and restricting the resulting expression to the latter’s domain of outer communications (DOC).
It has been realized from the time of Jacobi that such a second variation functional serves, in turn, as
an action for the corresponding linearized equations — in the present context for those of the linear
perturbations of an arbitrary RN background.

By exploiting the spherical symmetry of the RN geometry and expanding the perturbations in Regge–
Wheeler tensor harmonics, one was able to carry out an explicit canonical transformation to a new set
of variables wherein a certain (unconstrained, gauge-invariant) subset of canonical pairs was found to
represent the radiative, dynamical degrees of freedom. This was complemented by a further subset com-
prised of the (equally gauge-invariant) linearized constraints and their (gauge-variant but unconstrained)
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canonically conjugate partners. The linearized lapse, shift and electromagnetic “scalar potential” served as
Lagrange multipliers in the perturbative action functional where, paired with the (gauge-group-generating)
linearized constraints, they could be adjusted to fix the evolution of gauge-dependent canonical variables.

The Hamiltonian emerging naturally from this formulation of the linearized field equations (for the
radiative, dynamical degrees of freedom unconstrained by the Birkhoffian rigidity of the complementary,
purely spherically symmetric perturbations) was found, by explicit calculation, to be positive definite,
conserved and to bound a naturally associated Sobolev norm of the gauge-invariant dynamical variables.
That a positive definite energy functional emerged rather straightforwardly from this analysis was however
due, in no small measure, to the absence of an ergoregion in a Reissner–Nordström black hole’s DOC.
An interesting feature of the resulting field equations, found independently by Zerilli who derived them
by working in a special gauge [78], was that certain specific linear combinations of the perturbative,
gravitational and electromagnetic variables decoupled from one another and satisfied single component
wave equations of Regge–Wheeler–Zerilli type.

On the other hand the heavy reliance on the use of tensor spherical harmonics seemed to limit the
application of the aforementioned methods to spherically symmetric backgrounds. While there is no
particular difficulty involved in computing the second variation of the Einstein–Maxwell action about the
more general, Kerr–Newman backgrounds of principal interest herein, a demonstration that the resulting
“canonical energy” expression is, at least for purely axisymmetric perturbations, actually positive definite
has not heretofore been realized.

By exploiting the reducibility of the axisymmetric field equations to a 2+1-dimensional Einstein-wavemap
system (see Appendix C), computing the first and second variations of the corresponding field equations
(see Appendix G) about a Kerr–Newman black hole background (see Appendix A) and applying Robinson’s
identity to the resulting energy expression, we shall derive below an energy functional with the desired
properties. This result will subsume that for purely electromagnetic perturbations of Kerr backgrounds,
given in Section 2, as a special case and now incorporate the coupled gravitational and electromagnetic
perturbations of general Kerr–Newman black hole spacetimes in linear approximation. Since our strategy
for deriving the desired energy expression will involve an extension of certain mathematical methods
developed for the study of the so-called linearization stability problem for Einstein’s equations, we briefly
review some of the central ideas of that analysis in the following subsection. These will not only show
the way for deriving the desired energy formula but also that for interpreting its geometrical significance.

3B. Brief review of the linearization stability problem. At around the same time that this early work on
Reissner–Nordström perturbations was being carried out some seemingly unrelated technology was being
developed for the rigorous analysis of what came to be called the “linearization stability problem” for
Einstein [9; 33; 34; 59; 60], Einstein–Maxwell [7] and, still more generally, Einstein–Yang–Mills [9] space-
times having compact Cauchy hypersurfaces. These studies dealt with the fact that, for spatially compact
solutions of the relevant field equations that admitted one or more globally defined Killing vector fields,
one could show that the associated linearized equations admitted so-called “spurious solutions” that were
not tangent to any differentiable curve of exact solutions to the corresponding, nonlinear field equations.

Such spurious solutions could be identified and excluded precisely by demanding that the Noether-like
conserved quantities for the perturbation problem — one for each Killing field of the background — vanish.
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This additional condition supplemented the linearized field equations themselves with a (nonvacuous)
set of conserved, gauge-invariant quadratic integral restrictions upon the first-order perturbations that was
eventually shown to have a natural geometric interpretation [8; 9; 34]. The geometrical meaning of this
result was that it showed that the manifold structure of the solution space of the (nonlinear) constraint
equations broke down at any point corresponding to Cauchy data for an exact solution admitting nontrivial,
global Killing symmetries (or, in the case of the Einstein–Yang–Mills equations, generalized gauge
symmetries [9]). Roughly speaking the space of solutions to the nonlinear constraints was shown to
exhibit a conical singularity at any such point and the role of the supplementary quadratic conditions on the
linear perturbations was to restrict them to actually be tangent to this conical structure [9; 33; 34; 59; 60].

This geometrically nontrivial conclusion did not carry over to the case of noncompact Cauchy surfaces
since, roughly stated, certain boundary integrals linear in the second-order perturbations now arose to
“take up the slack” and allow the otherwise spurious first-order perturbations to tangentially approximate
curves of exact solutions while forcing the boundary contributions at second order (which were absent
in the compact case) to take on certain specific values. More precisely the conserved quadratic integral
expressions in the first-order perturbations — one for each global Killing field of the background exact
solution — were no longer coerced to vanish, since their actual values could always now be compensated
by those of the (second order) boundary integral expressions. One could forcibly recover the conical
singularity structure in the solution space for the nonlinear constraints only by artificially restricting
certain asymptotically defined, conserved quantities for the nonlinear problem (e.g., the ADM mass for
asymptotically flat solutions) to have fixed values.

A key step in the development of this linearization stability technology was the proof (originally for the
vacuum case) that the kernel of the adjoint of the linearized constraint operator was precisely the space
of Cauchy data for the Killing fields of the corresponding, vacuum spacetime [9; 33; 34; 59; 60]. Each
such Killing initial data set (or KID as they are nowadays known) consists of a function C and a spatial
vector field Z such that the pair (C, Z) provides the normal and tangential components (at the chosen
Cauchy hypersurface) of a Killing vector field on the resulting Einstein spacetime. For the special case of
a timelike Killing field ζ , formulated in coordinates for which ζ = ∂/∂t , the pair (C, Z) is nothing other
than the lapse and shift of the spacetime metric expressed in those coordinates.

While the published literature does not seem to include precisely the analogous (nonvacuum) case of
interest to us here we shall simply verify the needed result, for the problem at hand, by a direct calculation
rather than appeal to general theory. In this regard a key role will be played by the fact that the reduced
lapse function, Ñ, for Kerr–Newman backgrounds (see (227) and (256)) is harmonic (see (285)). Since
the corresponding reduced shift field vanishes, the pair (Ñ , O) will prove to provide precisely the needed
kernel of the adjoint to the linearized constraint operator. It is straightforward to show that, in the
{t, ϕ, ρ̄, z̄} coordinate system defined in Appendix A, this kernel takes the simple form (ρ̄, O).

3C. An “alternative” energy functional and its regularization. While a fully general, “canonical” en-
ergy density for nonsymmetric perturbations of Kerr–Newman black holes could readily be constructed
by reinstating the terms that were omitted in the static background (RN) limit analyzed in [58], this
would have little hope of directly yielding a positive definite total energy. By constraining the study
to axisymmetric perturbations, however, and transforming the field equations to the 2+1-dimensional
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Einstein-wavemap form reviewed in Appendix C we are led to introduce the “alternative” energy density,
EAlt, defined in (343) and (346) of Appendix G.

This expression is itself indefinite though since in particular it reduces to HAlt for the purely electro-
magnetic perturbations of Kerr backgrounds. The single negative term in the kinetic energy density,
−(Ñ/2)e2ν

√
(2)h(τ ′)2, can, however, be disposed of by imposing a suitable time-coordinate gauge

condition. The simplest choice, τ ′ = 0, corresponds to enforcing 2+1-dimensional, maximal slicing,1

whereas setting

τ ′ = −
p̃′e−2ν

4
√
(2)h

(54)

implies the imposition of maximal slicing in the “lifted”, 3+1-dimensional sense. Though the latter choice
leaves a negative term in the kinetic density, it is easily seen to be dominated by the complementary,
positive terms leaving a net positive definite kinetic energy density.

Let us abbreviate by (Ñ/2)D2V(q,(2)h) · (q ′, q ′) the potential energy density, given explicitly by

Ñ
2

D2V(q,(2)h)·(q ′,q ′)

:=

{ Ñ
2

√
(2)h hab[4γ ′,aγ ′,b+2e−2γ (γ ′)2(η,aη,b+λ,aλ,b)−4e−2γ γ ′(η,aη

′

,b+λ,aλ
′

,b)+e−2γ (η′,aη
′

,b+λ
′

,aλ
′

,b)

+8e−4γ (γ ′)2(ω,a+λη,a)(ω,b+λη,b)−8e−4γ γ ′(ω,a+λη,a)(ω
′

,b+λη
′

,b+λ
′η,b)

+e−4γ (ω′,a+λη
′

,a+λ
′η,a)(ω

′

,b+λη
′

,b+λ
′η,b)+e−4γ (ω,a+λη,a)(2λ′η′,b)

]}
, (55)

and by

K1 :=
4
√
(2)h

(Ñ
√
(2)h habγ,a),b+Ñe−2γ hab(η,aη,b+λ,aλ,b)+2Ñe−4γ hab(ω,a+λη,a)(ω,b+λη,b), (56)

K2 :=
1
√
(2)h

(Ñ
√
(2)h habe−4γ (ω,a+λη,a)),b, (57)

K3 :=
1
√
(2)h

(Ñ
√
(2)h habe−2γ η,a),b+Ñhabe−4γλ,b(ω,a+λη,a), (58)

K4 :=
1
√
(2)h

(Ñ
√
(2)h habe−2γλ,a),b−Ñhabe−4γ η,b(ω,a+λη,a) (59)

the wavemap expressions which vanish for any Kerr–Newman background (see (279)–(282)). Finally,
denote by {(1)V, . . . , (8)V } the one-forms defined explicitly by

(1)Va := 2γ ′,a + e−4γ (ω′+ λη′)(ω,a + λη,a)+
1
2 e−2γ (η′η,a + λ

′λ,a), (60)
(2)Va := −(e−2γ (ω′+ λη′)),a +

1
2 e−2γ (η′λ,a − λ

′η,a)+ 2e−2γ γ ′(ω,a + λη,a), (61)
(3)Va :=

1
2 e2γ (η′,a)− e2γ γ ′(η,a)+

( 1
2λ
′
)
(ω,a + λ(η,a)), (62)

(4)Va :=
1
2 e2γ (λ′,a)− e2γ γ ′(λ,a)−

( 1
2η
′
)
(ω,a + λ(η,a)), (63)

1: Here τ ′ designates the first variation of the 2+1-dimensional mean curvature, τ , defined by (516). Its 3+1-dimensional
analogue is given by (517).
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(5)Va :=
1
4(η
′λ,a − λ

′η,a), (64)
(6)Va :=

1
2(η
′

,a)− η
′γ,a +

1
2 e−2γλ,a(ω

′
+ λη′), (65)

(7)Va :=
1
2(λ
′

,a)− λ
′γ,a −

1
2 e−2γ η,a(ω

′
+ λη′), (66)

(8)Va := 2γ,a(ω′+ λη′)− 1
2(η
′λ,a − λ

′η,a)− 2γ ′(ω,a + λη,a). (67)

In this notation Robinson’s identity [71] takes the form

Ñ D2V(q,(2)h)·(q ′,q ′)

+
∂

∂xb

{
Ñ
√
(2)h hab[

−2e−4γ γ,a(ω
′
+λη′)2−e−2γ γ,a((η

′)2+(λ′)2)

+e−4γ (ω′+λη′)(λ,aη
′
−λ′η,a)−e−4γ (ω,a+λη,a)η

′λ′

+4e−4γ γ ′(ω,a+λη,a)(ω
′
+λη′)+2e−2γ γ ′η′η,a+2e−2γ γ ′λ′λ,a

]}
+

√
(2)h

2e2γ K1
[
e−2γ (ω′+λη′)2+1

2((η
′)2+(λ′)2)

]
+

√
(2)h K2 [η

′λ′−4γ ′(ω′+λη′)]

+

√
(2)h K3[λ

′e−2γ (ω′+λη′)−2γ ′η′]+
√
(2)h K4[η

′e−2γ (−ω′−λη′)−2γ ′λ′]

≡ Ñ
√
(2)h hab

{
(1)Va

(1)Vb+
(2)Va

(2)Vb+2e−6γ (3)Va
(3)Vb+2e−6γ (4)Va

(4)Vb

+12e−4γ (5)Va
(5)Vb+2e−2γ (6)Va

(6)Vb+2e−2γ (7)Va
(7)Vb+e−4γ (8)Va

(8)Vb
}
. (68)

It follows immediately that, if we drop the terms that vanish by virtue of the background field equations
(i.e., set K1 = K2 = K3 = K4 = 0), then we can express the potential energy density occurring in EAlt as
the sum of a spatial divergence and a positive definite quadratic expression in the one-forms (1)V, . . . , (8)V .

Since the integrated divergence will only contribute a boundary term in the total energy expression, we
set it aside here and define our regulated energy density, EReg, by

EReg
:=

{
Ñ
√
(2)h

e−2ν [r̃ ′ba r̃ ′ab +
1
8( p̃
′)2+ 1

2 e4γ (r̃ ′)2+ 1
2 e2γ ((ṽ′)2+(ũ′−λr̃ ′)2)]− 1

2 Ñe2ν
√
(2)h(τ ′)2

}
+ Ñ

√
(2)h hab{ 1

2
(1)Va

(1)Vb+
1
2
(2)Va

(2)Vb+e−6γ (3)Va
(3)Vb+e−6γ (4)Va

(4)Vb

+6e−4γ (5)Va
(5)Vb+e−2γ (6)Va

(6)Vb+e−2γ (7)Va
(7)Vb+

1
2 e−4γ (8)Va

(8)Vb
}

(69)

and corresponding total regulated energy by

EReg
:=

∫
Mb

d2x {EReg
}. (70)

Evaluated with respect to either of the two maximal slicing gauges discussed above EReg and thus EReg

are manifestly positive definite.

4. Conservation of the total energy

The “alternative” energy, EAlt, defined by (347) has its density, EAlt, given explicitly via (343) and (346).
While EAlt potentially differs by a boundary integral from its “regulated” counterpart EReg (see (69)–(70)),
we shall see below that this difference actually vanishes for the class of (asymptotically pure-gauge)
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perturbations that we consider here. Thus for our present purposes it will suffice to show that EAlt is
conserved since this will imply the corresponding result for EReg.

As discussed more completely in Appendices F and H, we work in a partially gauge-fixed setting wherein
the flat (2-dimensional) “conformal” desensitized spatial metric,

(2)h̃ :=
hab
√
(2)h

dxa
⊗ dxb, (71)

is held fixed during the evolution through a judicious choice of the linearized shift field X ′ := Ñ c′(∂/∂xc).
By contrast, at least for now, we leave the perturbative time gauge unspecified by allowing the linearized
lapse function, Ñ ′, to remain arbitrary. That our total energy will be found to be conserved independently
of the interior behavior of the linearized time gauge chosen corresponds to its essential gauge invariance.
Otherwise one could modify its evolution by merely making a change of gauge.

Computing (∂/∂t)EAlt directly by means of the linearized field equations one gets

∂

∂t
EAlt
=

∂

∂xb

{
Ñ 2
√
(2)g̃

[
p̃′(
√
(2)hhabγ,a)

′
+e4γ r̃ ′(e−4γ

√
(2)hhab(ω,a+λη,a))

′
+e2γ ṽ′(

√
(2)hhabe−2γλ,a)

′

+e2γ (ũ′−λr̃ ′)(
√
(2)hhabe−2γ η,a)

′
+e2γ (ũ′−λr̃ ′)λ′

√
(2)hhabe−4γ (ω,a+λη,a)

]
+γ ′LX ′(4Ñ

√
(2)hhabγ,a)+ω

′LX ′(Ñ
√
(2)hhabe−4γ(ω,a+λη,a))+λ

′LX ′(Ñe−2γ
√
(2)hhabλ,a)

+η′LX ′
(
Ñe−2γ

√
(2)hhabη,a+Ñe−4γ

√
(2)hhabλ(ω,a+λη,a)

)
+2(LX ′ Ñ )(

√
(2)hhbaν ′,a)+2(LX ′ν

′)
√
(2)hhab Ñ,a−2Xb′(

√
(2)hhacν ′,a Ñ,c)

+2Ñhbc(r̃a
c )
′e−2ν Ñ ′,a+(Ñ Ñ ′,a−Ñ ′ Ñ,a)τ ′

√
(2)hhab

−2Ñ ′hbc(r̃a
c )
′e−2ν Ñ,a

}
−{H̃′LX ′ Ñ+(Ñ ′ Ñ,a−Ñ Ñ ′,a)e

−2νhabH̃′b}, (72)

where, since the variations of
√
(2)h hab (∂/∂xa)⊗ (∂/∂xb) are taken to vanish (see Appendices F and H),

one has
(
√
(2)hhabγ,a)

′
=

√
(2)hhabγ ′,a, (73)

(
√
(2)hhabe−2γλ,a)

′
=

√
(2)hhabe−2γλ′,a − 2

√
(2)hhabe−2γ γ ′λ,a, etc. (74)

Note that the terms in the last line of (72) vanish by virtue of the linearized constraints leaving only a
total spatial divergence whose integral over Mb will result in pure boundary expressions. As we shall
show below these boundary integrals vanish for the class of (asymptotically pure-gauge) perturbations
that we consider herein.

4A. Evaluating the “dynamical” boundary flux terms. Consider first the boundary flux contributions
from (72) that are each linear in the perturbed momenta { p̃′, r̃ ′, ṽ′, ũ′− λr̃ ′}— we shall refer to these as
“dynamical” flux terms. From (426)–(429) we see that the momentum factors occurring in each of these
terms can, in the asymptotic regions near R = R+ and R =∞ defined therein, be expressed as a pairing
of the vector field (see (431))

(2)Da ∂

∂xa := Ñ 2g̃ab(4)Y 0
,b
∂

∂xa (75)
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with a corresponding one-form taken from the list {4γ,adxa, λ,adxa, η,adxa, (ω,a + λη,a)dxa
}. Here

(4)Y 0 is the time component of the gauge-transforming vector field (4)Y = (4)Yµ(∂/∂xµ) introduced in
Appendix H. From (376) we see that (in the asymptotic regions defined in Appendix H where the compactly
supported “hyperbolic gauge perturbation” (4)kαβ vanishes) this component is determined from integrating

(4)Y 0
,0 −→

Ñ ′

Ñ
−
(2)Y a Ñ,a

Ñ
, (76)

with (2)Y = (2)Y a(∂/∂xa)= (4)Y a(∂/∂xa) given in turn by (see (387)–(388), (397), (403)–(409) and recall
the vanishing of a0(R+) for the perturbations of interest herein established in Appendix J):

(2)Y R

R
=

∞∑
n=1

α(+)n (t)Rn
+

(
Rn

Rn
+

−
Rn
+

Rn

)
cos (nθ), (77)

(2)Y θ =
∞∑

n=1

α(+)n (t)Rn
+

(
Rn

Rn
+

+
Rn
+

Rn

)
sin (nθ) (78)

near R = R+, and by
(2)Y R

R
= −

∞∑
n=1

β(−)n (t)R−n cos (nθ), (79)

(2)Y θ =
∞∑

n=1

β(−)n (t)R−n sin (nθ) (80)

near R =∞. Recall that the t-dependent coefficients {α(+)n , β
(−)
n } are computable in terms of specified

“sources” (determined by (4)kαβ) via (410), (412)–(414).

Defining

(2)Ya(t, R, θ) :=
∫ t

t0
dt ′(2)Y a(t ′, R, θ), (81)

we see that

(4)Y 0(t, R, θ)= (4)Y 0
|t=t0(R, θ)+

∫ t

t0
dt ′
(

Ñ ′

Ñ
(t ′, R, θ)

)
−
(2)Ya(t, R, θ)

Ñ,a
Ñ
(R, θ), (82)

where (4)Y 0
|t=t0(R, θ) is initial data chosen for (4)Y 0. Defining

α̃(+)n (t) :=
∫ t

t0
dt ′ α(+)n (t ′), (83)

β̃(−)n (t) :=
∫ t

t0
dt ′ β(−)n (t ′), (84)

c̃0(R, t) :=
∫ t

t0
dt ′ c0(R, t ′), (85)

one arrives at explicit (Fourier representation) formulas for the (2)Ya by making the replacements
α
(+)
n → α̃

(+)
n and β(−)n → β̃

(−)
n in (77)–(80).
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For definiteness we shall herein eventually impose the 2+1-dimensional maximal slicing gauge condition
which, taken together with suitable (homogeneous) boundary conditions for the linearized lapse function,
δ Ñ := Ñ ′, will imply that Ñ ′=0 (see the discussion given in Appendix K). For now however we shall retain
the contributions of (a nonvanishing) Ñ ′ to (4)Y 0 so that they can be easily reinstated if alternative gauge
conditions (e.g., 3+1-dimensional, maximal slicing, as discussed in Appendix K) are desired in the future.

One is of course free to impose essentially arbitrary boundary conditions upon the initial data (4)Y 0
|t=t0 .

We shall assume in the following that these have been chosen so that, together with the boundary behavior
of the linearized lapse function, one has

KR :=
(4)Y 0

,R|t=t0 +

∫ t

t0
dt ′

(
Ñ ′

Ñ

)
,R
∼ O

(
1
R3

)
, (86)

Kθ := (4)Y 0
,θ |t=t0 +

∫ t

t0
dt ′

(
Ñ ′

Ñ

)
,θ

∼ O
(

1
R2

)
(87)

as R→∞ with KR and Kθ both bounded as R→ R+ and with KR bounded and Kθ vanishing like

Kθ ∼ sin (θ)× (regular factor) (88)

at the axes corresponding to θ = 0, π .

For vanishing Ñ ′ these are trivial to ensure by choice of (4)Y 0
|t=t0 but would need to be verified on a

case-by-case basis for alternative time gauges. On the other hand these conditions are only sufficient for
the arguments to follow and could be somewhat relaxed without disturbing the main results.

The components of the vector field (2)Da(∂/∂xa) are given explicitly by

(2)DR
=

R4

[(r2+a2)2−a21sin2 (θ)]

×

{(
1−

R2
+

R2

)2

KR−

[(
1−

R4
+

R4

)(
(2)Y R

R

)
,R
−

4R2
+

R3

(
(2)Y R

R

)
+

cosθ
sinθ

(
1−

R2
+

R2

)2
(2)Y θ

,R

]}
, (89)

and

(2)Dθ =
R2

[(r2+ a2)2− a21 sin2 (θ)]

×

{(
1−

R2
+

R2

)2

Kθ −
[(

(2)Y R

R

)
,θ

(
1−

R4
+

R4

)
+

(
(2)Y θ cos (θ)

sin (θ)

)
,θ

(
1−

R2
+

R2

)2]}
, (90)

where 1 := r2
− 2Mr + a2

+ Q2 (see (160)). Evaluated in the asymptotic region at large R via (79)–(81)
and (84) these become

(2)DR
=

R4

[(r2+a2)2−a21sin2 (θ)]

×

{(
1−

R2
+

R2

)2

KR−

[(
1−

R4
+

R4

) ∞∑
n=2

β̃(−)n n R−n−1 cos(nθ)−4
R2
+

R3

(
−

∞∑
n=2

β̃(−)n R−n cos(nθ)
)

+

(
1−

R2
+

R2

)2(
−

∞∑
n=2

β̃(−)n n R−n−1 cos(θ)
sin(θ)

sin(nθ)
)
+2

R2
+

R2

(
3−

R2
+

R2

)
β̃
(−)
1

R2 cos(θ)
]}

(91)
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and

(2)Dθ =
R2

[(r2+ a2)2− a21 sin2 (θ)]

×

{(
1−

R2
+

R2

)2

Kθ −
[

2R2
+

R3 β̃
(−)
1 sin (θ)

(
1−

R2
+

R2

)
+

(
1−

R4
+

R4

) ∞∑
n=2

β̃(−)n n R−n sin (nθ)

+

(
1−

R2
+

R2

)2 ∞∑
n=2

β̃(−)n R−n
(

cos (θ)
sin (θ)

sin (nθ)
)
,θ

}]
, (92)

whereas for R near R+ they take the forms (see (77)–(78), (81), (83))

(2)DR
=

R4

[(r2+ a2)2− a21 sin2 (θ)]

×

{(
1−

R2
+

R2

)2

KR −

[(
1−

R2
+

R2

){(
1+

R2
+

R2

) ∞∑
n=1

α̃(+)n
Rn
+

R
n
(

Rn

Rn
+

+
Rn
+

Rn

)
cos (nθ)

}
−

4R2
+

R3

∞∑
n=1

α̃(+)n Rn
+

(
Rn

Rn
+

−
Rn
+

Rn

)
cos (nθ)

+

(
1−

R2
+

R2

)2 ∞∑
n=1

(
cos (θ)
sin (θ)

sin (nθ)
)

nα̃(+)n

R
Rn
+

(
Rn

Rn
+

−
Rn
+

Rn

)]}
(93)

and

(2)Dθ =
R2

[(r2+ a2)2− a21 sin2 (θ)]

×

{(
1−

R2
+

R2

)2

Kθ −
(

1−
R2
+

R2

){ ∞∑
n=1

α̃(+)n

(
Rn
+

R2n
+

Rn

)(
cos (θ)
sin (θ)

sin (nθ)
)
,θ

(
1−

R2
+

R2

)
−

(
1+

R2
+

R2

) ∞∑
n=1

α̃(+)n Rn
+

(
Rn

Rn
+

−
Rn
+

Rn

)
n sin (nθ)

}}
. (94)

A standard trigonometric identity shows that sin (nθ) · (cos (θ)/ sin (θ)) is expressible as a polynomial of
degree n in cos (θ) and thus is regular at the axes θ=0, π . From this same result it follows that (sin (nθ)),θ ·
(cos (θ)/ sin (θ)) vanishes like sin (θ) at these axes. In addition it is straightforward to verify that

Rn/Rn
+
− Rn

+
/Rn

R/R+− R+/R

is smooth for all R and, in particular, has the limits

lim
R→R+

Rn/Rn
+
− Rn

+
/Rn

R/R+− R+/R
= n, (95)

lim
R→R+

[
Rn/Rn

+
− Rn

+
/Rn

R/R+− R+/R

]
,R
= 0 (96)

for all n = 1, 2, . . . .
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From the explicit formulas for {γ,λ,η,ω} one finds that each of the quantities {4γ,R,λ,R,η,R, (ω,R+λη,R)}
vanishes like (1− R2

+
/R2) as R→ R+, whereas {4γ,θ , λ,θ , η,θ , (ω,θ + λη,θ )} are all regular in this limit.

Assuming that (4)Y |t=t0 and Ñ ′/Ñ have been chosen so that both KR and Kθ (see (86)–(87)) are regular
at R+ we see that each of the quantities satisfies

(2)Daχa ∼

(
1−

R2
+

R2

)
× (regular factor) (97)

as R→ R+, where χa is either of 4γ,a, λ,a, η,a and (ω,a+λη,a). Thus each of the (linearized momentum)
factors {

Ñ p̃′√
(2)g̃

,
Ñe2γ ṽ′√

(2)g̃
,

Ñe2γ√
(2)g̃

(ũ′− λr̃ ′),
Ñe4γ r̃ ′√

(2)g̃

}
(see (426)–(429)) vanishes like (1−R2

+
/R2)×(regular factor) as R→ R+. Note that in the corresponding

flux terms these are each multiplied by an “additional” factor of Ñ = R sin (θ)(1− R2
+
/R2) and paired

(respectively) with factors of the form (
√
(2)h habγ,a)

′, (
√
(2)h habe−2γλ,a)

′, etc. to yield their ultimate
contributions to the flux integrals at the various boundaries.

Recalling that our gauge conditions enforce the constraint that

(
√
(2)h hab)′ = 0, (98)

we see that (see (73) and (74))

(
√
(2)h habγ,a)

′
=

√
(2)h habγ ′,a, (99)

(
√
(2)h habe−2γλ,a)

′
=

√
(2)h habe−2γλ′,a − 2

√
(2)h habe−2γ γ ′λ,a, (100)

etc.

From the explicit formulas for the (background) metric functions (254), (257), (259) and (260), the
asymptotic forms for the (pure-gauge) perturbations, (370)–(371), and the boundary conditions for
(2)Y a(∂/∂xa), which yield

(2)Y R(R+, θ)= 0, (2)Y θ,R(R+, θ)= 0, (101)

we find that each of {γ ′, λ′, η′, ω′} has a smooth limit as R→ R+, whereas their first radial derivatives
{γ ′,R, λ

′

,R, η
′

,R, ω
′

,R} are all vanishing in this limit.2 One also finds that, in the asymptotic regions near
R = R+ and R→∞, one has {λ′, λ′,θ , η

′, η′,θ , ω
′, ω′,θ } vanishing at the axes θ → 0, π , whereas γ ′ is

regular in this limit with γ ′,θ → 0 at θ = 0, π .

Given these results it is straightforward to verify that each of the “dynamical” flux terms vanishes,
pointwise, at the horizon boundary corresponding to R → R+. One might still wonder whether the
factors of 1/sin2 θ and 1/sin4 θ occurring (respectively) in the coefficients e−2γ and e−4γ induce some
irregularity at the axes but it is not difficult to verify that such potential singularities are in fact canceled
by the rapidly vanishing angular dependences of {λ, λ′, η, η′, ω, ω′} as θ→ 0, π .

2: Note that these results allow for a symmetrical extension of the perturbations through the background spacetime’s bifurcation
2-sphere.
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Turning to the behavior at the outer boundary one finds that the linearized momentum factors decay, in
the asymptotic region as R→∞, according to

Ñ p̃′√
(2)g̃
−→ O

(
1
R4

)
, (102)

Ñe2γ ṽ′√
(2)g̃
−→ O

(
1
R5

)
sin2 θ, (103)

Ñe2γ (ũ′− λr̃ ′)√
(2)g̃

−→ O
(

1
R4

)
sin2 θ, (104)

Ñe4γ r̃ ′√
(2)g̃
−→ O

(
1
R4

)
sin4 θ. (105)

As noted earlier these are each multiplied by an “additional” factor of Ñ = R sin θ(1− R2
+
/R2) but then

paired with (the radial components) of terms of the form (99)–(100), etc. to determine the radial flux
integrands as R→∞.

The (pure-gauge) metric and wavemap perturbations, together with their needed radial derivatives, behave
asymptotically as

γ ′ −→
b(−)2 +Mb(−)1 cos (θ)

R2 + O
(

1
R3

)
, (106)

γ ′,R −→
−2(b(−)2 +Mb(−)1 cos (θ))

R3 + O
(

1
R4

)
, (107)

λ′ −→ sin2 (θ)

{
6Qab(−)1 cos (θ)

R2 + O
(

1
R3

)}
, (108)

λ′,R −→ sin2 (θ)

{
−12Qab(−)1 cos (θ)

R3 + O
(

1
R4

)}
, (109)

η′ −→ sin2 (θ)

{
2Qb(−)1

R
+ O

(
1
R2

)}
, (110)

η′,R −→ sin2 (θ)

{
−2Qb(−)1

R2 + O
(

1
R3

)}
, (111)

(ω′+ λη′)−→ sin4 (θ)

{
−6Mab(−)1

R
+ O

(
1
R2

)}
, (112)

ω′,R −→ sin4 (θ)

{
6Mab(−)1

R2 + O
(

1
R3

)}
. (113)

Combining these results one finds that the “dynamical” boundary flux terms have the asymptotic decay
properties

Ñ 2√
(2)g̃

p̃′(
√
(2)h h Raγ,a)

′
−→ O

(
1
R5

)
sin θ, (114)

Ñ 2√
(2)g̃

e2γ (ũ′− λr̃ ′)(
√
(2)h h Rae−2γ η,a)

′
−→ O

(
1
R6

)
sin3 θ, (115)
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Ñ 2e2γ√
(2)g̃

ṽ′(
√
(2)h h Rae−2γλ,a)

′
−→ O

(
1
R8

)
sin3 θ cos θ, (116)

Ñ 2e4γ r̃ ′√
(2)g̃

(e−4γ
√
(2)h h Ra(ω,a + λη,a))

′
−→ O

(
1
R8

)
sin5 θ, (117)

Ñ 2e2γ (ũ′− λr̃ ′)√
(2)g̃

λ′(
√
(2)h h Rae−4γ (ω,a + λη,a))−→ O

(
1

R11

)
sin5 θ cos2 θ. (118)

These rapid rates of decay, which clearly yield pointwise vanishing flux contributions at the outer
boundary, reflect the fact that the perturbations are pure-gauge in the asymptotic region R→∞.

Utilizing the pointwise decay rates of the perturbative quantities {γ ′, η′, λ′, ω′+λη′, ω′} at the boundaries
R ↘ R+ and R ↗ ∞ uncovered in this section, it is straightforward to verify that all of the corre-
sponding boundary integrals potentially distinguishing EAlt from EReg actually vanish for the class of
(asymptotically pure-gauge) perturbations considered here. This result follows from a detailed evaluation
of the asymptotic behavior (indeed rapid decay) of the coefficients of the perturbative expressions
{(η′)2+ (λ′)2, (ω′+ λη′)2, . . .} occurring in the associated flux integrals.

Taking into account the regularity at the axes (corresponding to θ→ 0, π ) of the perturbative quantities
{γ ′, η′, λ′, ω′+λη′, ω′} developed in detail below in Section 4D and evaluating the corresponding behavior
of their coefficients in the flux expressions that potentially distinguish EAlt from EReg, it is straightforward
to verify that these integrals also vanish for the class of perturbations considered herein. Thus, for the
class of (asymptotically pure-gauge) perturbations that we consider, EAlt

= EReg.

4B. Evaluating the “kinematical” boundary flux terms. Consider next the boundary flux contributions
from (72) that are each linear in the Lie derivative of a vector density Ṽ = Va(∂/∂xa) taken from the list

ṼI := 4Ñ
√
(2)hhacγ,c

∂

∂xa , (119)

ṼII := Ñ
√
(2)hhace−4γ (ω,c+ λη,c)

∂

∂xa , (120)

ṼIII := Ñ
√
(2)hhace−2γλ,c

∂

∂xa , (121)

ṼIV := Ñ
√
(2)hhace−2γ η,c

∂

∂xa , (122)

ṼV := λṼII =
2Qra sin2 θ

(r2+ a2 cos2 θ)
ṼII , (123)

with respect to the linearized shift vector field X ′ := Ñ c′(∂/∂xc) given, in the chosen gauge, by (377). In
the asymptotic regions where (4)kαβ vanishes this expression reduces to

X ′ = Ñ a′ ∂

∂xa = (
(4)Y a

,0− Ñ 2g̃ab(4)Y 0
,b)

∂

∂xa = (
(2)Y a

,0−
(2)Da)

∂

∂xa , (124)

where the explicit formulas for (4)Y a
=
(2)Y a and (2)Da are given by (77)–(80) and (89)–(94).
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Recalling that, for a vector density Ṽ = Va(∂/∂xa), one has

(LX ′ Ṽ)a = (X ′cVa),c− X ′a,cV
c, (125)

it is straightforward to compute LX ′ ṼI , . . . ,LX ′ ṼV and to pair these with their associated factors taken
from the list {γ ′, ω′, λ′, η′}. From the regularity of these latter quantities at the horizon and the readily
verified vanishing of each of the radial components {(LX ′ ṼI )

R, . . . , (LX ′ ṼV )
R
} at this inner boundary

it follows that the flux contributions of these Lie derivative terms are each (pointwise) vanishing at the
horizon.3

Recalling (106), (108), (110) and (112) we see that each of {γ ′, ω′, λ′, η′} decays of order O(1/R)
or faster as R → ∞. It follows that the corresponding (Lie derivative) flux integral expressions
will make no contributions at the outer boundary provided that the associated radial components
{(LX ′ ṼI )

R, (LX ′ ṼII )
R, (LX ′ ṼIII )

R, (LX ′ ṼIV )
R, (LX ′ ṼV )

R
} are all bounded as R→∞. A straightforward

computation of these quantities shows that this is indeed the case provided that (4)Y 0 and δ Ñ are chosen
so that the one-form components (4)Y 0

,a|t=t0 +
∫ t

t0
dt ′(δ Ñ/Ñ ),a and their θ-derivatives are sufficiently

regular in this limit. Since we shall eventually take δ Ñ = 0 and since (4)Y 0
|t=t0 is at our discretion, this

latter condition is trivial to arrange.

4C. Evaluating the “conformal” boundary flux terms. Consider next the boundary flux contributions
from (72) that are each linear in the perturbed conformal factor ν ′. These arise from the integrated
divergence of the vector density

Qb ∂

∂xb := {2(LX ′ Ñ )(
√
(2)hhbaν ′,a)+ 2(LX ′ν

′)
√
(2)hhba Ñ,a − 2X ′b(

√
(2)hhacν ′,a Ñ,c)}

∂

∂xb . (126)

One might first think to identify ν ′, in the asymptotic regions where the “background perturbations” (4)kαβ
and (4)`α both vanish, with the “pure-gauge perturbation”, (2)Y aν,a , of the unperturbed conformal factor ν.
Indeed one can, not surprisingly, verify directly that this choice combined with the complementary
pure-gauge perturbations {(2)Y aγ,a,

(2)Y aω,a, . . . } satisfies all of the linearized constraint equations. As
we shall see though this choice would leave an uncanceled flux contribution at the horizon boundary
corresponding to R↘ R+ and even to uncanceled, regularity violating flux terms at the symmetry axes
corresponding to θ = 0, π .

The subtlety here is that the supposed defining equation for the conformal factor ν (at the fully nonlinear
level) was the decomposition of the Riemannian metric (2)g̃, via g̃ab = e2νhab, into a conformal factor e2ν

and a “conformal metric” hab that was required to be flat (see the discussion in Appendix F). But, thanks
to a well-known conformal identity, valid in two dimensions, any metric of the form hλab = e2λhab

conformal to a flat metric hab will still be flat if and only if the function λ is harmonic (with respect
to hab or, equivalently, to any metric conformal thereto). In other words the decomposition recalled above
does not uniquely determine ν (and therefore also hab) at the nonlinear level and, of course, therefore
also at the corresponding linearized level. Indeed, as one can easily see from the explicit form of the
linearized Hamiltonian constraint (323), ν ′ is only determined, without further information, up to a
harmonic function of the metric g̃ab (or, equivalently, of any metric conformal thereto).

3: We are assuming (4)Y 0
|t=t0 and δ Ñ := Ñ ′ have been chosen so that the one-form components (4)Y 0

,a |t=t0 +
∫ t

t0 dt ′(δ Ñ/Ñ ),a
and their θ derivatives are each nonsingular at the horizon.
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As a special case of the above recall that a pure-gauge transformation of the flat metric hab generated by an
analytic change of coordinates (i.e., coordinates satisfying the Cauchy Riemann equations) automatically
preserves hab up to a conformal factor of the above type (i.e., a factor e2λ with λ in fact harmonic).
But such a conformal transformation to hab can, by convention, be absorbed unambiguously into an
inhomogeneous transformation of the logarithm ν occurring in the “unified” expression for the “physical”
2-metric g̃ab = e2νhab, wherein hab, by conventional fiat, remains fixed while ν picks up an (additive)
nontensorial complement.

At the linearized level, wherein a pure-gauge perturbation of
√
(2)g̃ has the (unambiguous) form L(2)Y

√
(2)g̃,

with
L(2)Y

√
(2)g̃ = ((2)Y a

√
(2)g̃),a = ((2)Y ae2ν

√
(2)h),a

= e2ν((2)Y a
√
(2)h),a + 2e2ν(2)Y aν,a

√
(2)h, (127)

but where (by the convention of holding
√
(2)h fixed) we regard this as a (pure-gauge) variation of

√
(2)g̃

of the form
L(2)Y

√
(2)g̃ = δ

√
(2)g̃ = 2e2ν

√
(2)h δν|pure gauge, (128)

it follows that this pure-gauge perturbation, ν ′|gauge, of ν takes the form

ν ′|gauge = δν|pure gauge =
(2)Y aν,a +

1
2

1
√
(2)h

∂a(
√
(2)h(2)Y a). (129)

In the asymptotic regions near R+ and∞ where (as discussed in Appendix H) (2)Y is a conformal Killing
field of the flat metric hab, it is straightforward to verify that the supplementary, “correction” term

1
2

1
√
(2)h

∂a(
√
(2)h(2)Y a)=

1
2
(2)
∇a(h)(2)Y a (130)

is indeed harmonic with respect to hab, i.e., to check that

(2)
∇c(h)(2)∇c(h)

[1
2
(2)
∇a(h)(2)Y a

]
= 0. (131)

It follows therefrom that satisfaction of the linearized field equations; in particular the (linearized)
Hamiltonian constraint, is not disturbed by the inclusion of this correction to ν ′.

The integrals with respect to θ of the radial component of Qb(∂/∂xb), namely

Q R
= 2ν ′,θ

[
X ′θ R sin θ

(
1+

R2
+

R2

)
− X ′R cos θ

(
1−

R2
+

R2

)]
+ 2ν ′,R

[
X ′R sin θR

(
1+

R2
+

R2

)
+ X ′θ cos θR2

(
1−

R2
+

R2

)]
, (132)

evaluated in the limits R↗∞ and R↘ R+, yield the potential flux contributions at these boundaries for
the given, specific (“corrected”, pure-gauge) choice for ν ′

ν ′→ (2)Y aν,a +
1
2
(2)
∇a(h)(2)Y a. (133)

By using only the basic Green’s function asymptotics for the vector fields (2)Y and (2)Y characterized
in Appendix H, one finds that Q R vanishes (pointwise) at least of order O(1/R) as R ↗∞. Using,
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however, the more immediately detailed Fourier expansion formulas for these quantities (see (77)–(81))
one finds that, thanks to a leading-order cancellation of some terms involving the Fourier coefficient β(−)1 ,
the actual rate of decay is O(1/R2). By either reckoning the corrected, pure-gauge perturbation,

ν ′ = (2)Y aν,a +
1
2
(2)
∇a(h)(2)Y a,

“contributes” pointwise vanishing flux at spatial infinity.

At the other limit, on the other hand, the boundary flux angular integrand reduces to

Q R
−−−−→
R↘R+

{
4R+ sin θ ν ′,R

(
(2)Y R

,0+
R4
+

(r2+ a2)2

4
R+

(
(2)Y R

R+

))}∣∣∣∣
R↘R+

. (134)

Exploiting (383) one can show that

∂

∂R

(
(2)Y aν,a +

1
2
(2)
∇a(h)(2)Y a

)
−−−−→
R↘R+

{
∂

∂R

{
−

(2)Y R

R
+
(2)Y R

(
1−

R2
+

R2

)[
2r(r2

+ a2)− a2 sin2 θ(r −M)

[(r2+ a2)2− a21 sin2 θ ]

]
+

(2)Y θ cos θ
sin θ

[(r2
+ a2)2− 2a21 sin2 θ ]

[(r2+ a2)2− a21 sin2 θ ]
+
(2)Y R

,R

}}∣∣∣∣
R↘R+

. (135)

Recalling that ∂r/∂R= 1− R2
+
/R2 and employing (384) to express (in the asymptotic regions) (2)Y θ,R via

(2)Y θ,R
cos θ
sin θ

−→ −
1
R

(
cos θ
sin θ

(
(2)Y R

R

)
,θ

)
, (136)

we can exploit the chosen boundary condition (see Appendix H),

(2)Y R
|R↘R+ −→ 0, (137)

to deduce that

ν ′,R|R↘R+ =

(
(2)Y aν,a +

1
2
(2)
∇a(h)(2)Y a

)
,R

∣∣∣
R↘R+

=
∂

∂R

{
R
( (2)Y R

R

)
,R

}∣∣∣
R↘R+

= ((2)Y θ,θR)|R↘R+ =

(
∂

∂θ
((2)Y θ,R)

)∣∣∣
R↘R+

=

(
−

1
R

( (2)Y R

R

)
,θθ

)∣∣∣
R↘R+

= 0, (138)

where we have again exploited (383) and (384) to reexpress derivatives of (2)Y R in terms of those of (2)Y θ

and vice versa and appealed to the boundary condition (137) in the final step. Recalling (134) we thus see
that the corresponding “conformal” boundary flux integrand Q R

|R↘R+ vanishes at the horizon boundary.

To give the result (138) a precise geometrical interpretation, recall that, in our notation (see (11)–(12)
and (227)), the “spatial” Riemannian metric induced on a t = constant hypersurface is given by

gi j dx i
⊗ dx j

= e−2γ g̃ab dxa
⊗ dxb

+ e2γ (dϕ+βa dxa)⊗ (dϕ+βb dxb), (139)

where, in Weyl–Papapetrou coordinates {xa
} = {R, θ},

g̃ab dxa
⊗ dxb

= e2ν(d R⊗ d R+ R2 dθ ⊗ dθ). (140)
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It is straightforward to evaluate the first fundamental form, µAB dx A
⊗ dx B, and second fundamental

form, λAB dx A
⊗ dx B, induced thereby upon a (topologically spherical) surface R = R0 = constant and

to calculate the mean curvature trµ λ := µABλAB of the latter (where {x A
} = {θ, ϕ}). The result is

trµ λ= − eγ−ν 1
Reν

∂

∂R
(Reν), (141)

which of course vanishes at the event horizon, R↘ R+, of a Kerr–Newman black hole, the latter being a
minimal surface. Linearizing (141) about this background one finds that

(trµ λ)′ −−−−→
R↘R+

−

(
eγ−ν ∂

∂R
ν ′
)∣∣∣

R=R+
. (142)

Thus the boundary condition ν ′,R|R=R+ = 0 corresponds precisely to preserving minimality of the surface
R = R+ at the linearized level.

4D. Axis regularity and evaluation of flux terms at the “artificial boundaries”. The sections above
have dealt with the evaluation of (potential) energy flux contributions at the actual boundaries correspond-
ing to R ↗∞ and R ↘ R+ and established the pointwise vanishing of these flux expressions for the
boundary conditions chosen. But the full flux integral formula (72) also includes a potential contribution
from the “artificial boundaries” provided by the axes of symmetry corresponding to θ = 0, π . Needless
to say the evaluation of these potentially energy-violating flux contributions hinges upon the regularity of
the various fields involved at these axes of symmetry. Since, by assumption, we begin with a globally
regular solution to the linearized field equations expressed in (say) a “hyperbolic gauge” (see Appendix B)
and transform this solution to the desired gauge with an everywhere smooth gauge transformation (see
Appendix H) the regularity of the resulting perturbations (as smooth tensorial fields on the spacetime
manifold) is not in question.

But is this smoothness and its implicit axial regularity sufficient to ensure the vanishing of the potential
flux contributions? In this section we shall verify that this is indeed the case.

An especially useful resource in this regard is the article [70] by Rinne and Stewart which derives the
natural regularity conditions satisfied (at an axis of symmetry) by various smooth tensor fields (including
scalar fields, vector fields, one-forms and symmetric, second-rank tensor fields) on a smooth, axisymmetric
spacetime under the assumption that the various “perturbations” are themselves axisymmetric. Exploiting
their results in conjunction with our linearized field equations, it is straightforward to evaluate the various
“dynamical” boundary flux terms and establish their (pointwise) vanishing at the symmetry axes to the
following orders:

Ñ
(

Ñ p̃′

µ(2) g̃

)
(
√
(2)hhθaγ,a)

′
→ O(sin2 θ), (143)

Ñ
(

Ñe4γ r̃ ′

µ(2) g̃

)
(e−4γ

√
(2)hhθa(ω,a + λη,a))

′
→ O(sin2 θ), (144)

Ñ
(

Ñe2γ ṽ′

µ(2) g̃

)
(
√
(2)hhθae−2γλ,a)

′
→ O(sin2 θ), (145)
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Ñ
(

Ñe2γ (ũ′− λr̃ ′)
µ(2) g̃

)
(
√
(2)hhθae−2γ η,a)

′
→ O(sin2 θ), (146)

Ñ
(

Ñe2γ (ũ′− λr̃ ′)
µ(2) g̃

)
λ′
√
(2)hhθae−4γ (ω,a + λη,a)→ O(sin4 θ). (147)

Thus these various “dynamical” flux terms provide no (energy violating) contributions at the axes of
symmetry, θ = 0, π .

Turning to the “kinematical” flux terms involving the Lie derivatives of the vector densities (119)–(123),
one finds, in the analogous way, that each of the factors LX ′ ṼI , . . . ,LX ′ ṼV has a regular (but, in general
nonvanishing) limit at the axes of symmetry corresponding to θ = 0, π . On the other hand, as discussed
fully in Appendix E, each of the multiplicative factors {ω′, λ′, η′} is, for the class of perturbations
considered herein, required to vanish on these axes of symmetry. In fact, as smooth scalar fields, they
must vanish at least of order O(sin2 θ) as θ→ 0, π . Thus the corresponding energy flux terms vanish
(pointwise) at these artificial boundaries.

The remaining factor, γ ′, however has a smooth (but in general, nonvanishing) limit as θ→ 0, π . The
corresponding flux term has the limiting values

(γ ′LX ′, ṼI )
θ
θ→0,π →

{
4γ ′

(
X ′R cos θ

(
1−

R2
+

R2

)
,R

)}∣∣∣∣
θ=0,π

(148)

at the respective axes θ = 0, π over which it is to be integrated from R+ to∞.

Fortunately, however, this (in general nonvanishing) net flux contribution combines naturally with the
remaining “conformal” flux contribution comprised of the integrals (over the two axes) of (see (126))

Qθ
θ→0,π →

{
2ν ′,R X ′R cos θ

(
1−

R2
+

R2

)}∣∣∣∣
θ=0,π

=

{(
2ν ′X ′R cos θ

(
1−

R2
+

R2

))
,R
− 2ν ′

(
X ′R cos θ

(
1−

R2
+

R2

))
,R

}∣∣∣∣
θ=0,π

. (149)

The integrals with respect to R of the total derivative terms (evaluated at θ = 0, π) from R+ to∞ are
readily shown to vanish by virtue of the limiting behavior of the factor (2ν ′X ′R) along the axes, namely

(2ν ′X ′R)|θ=0,π −−−→
R↗∞

O
( 1

R2

)
, (150)

with this same quantity vanishing in the limit as R↘ R+. In deriving this result one needs to exploit
(383) together with L’Hospital’s rule to show that, in the asymptotic regions along the axes, one has

ν ′ −−−−→ (2)Y aν,a +
1
2
(2)
∇a(h)(2)Y a (151)

−−−−→
θ→0,π

{
2(2)Y R

,R −
2
R
(2)Y R

+
(2)Y R

(
1−

R2
+

R2

)[
2r

r2+ a2

]}∣∣∣∣
θ=0,π

. (152)

The vanishing at R+ follows from the vanishing of (X ′R|θ=0,π ) there together with the regularity of ν ′ in
this limit. Note also the additional factor of (1− R2

+
/R2) in the resulting “end-point” expression.
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It follows from the above that the full integrated flux expression will vanish provided that

ν ′ = 2γ ′ (153)

along the axes of symmetry. One can, however, again appeal to the Rinne/Stewart results [70] to verify
that (expressed in our notation)

ν ′|θ=0,π = 2γ ′|θ=0,π (154)

for any regular (axisymmetric) metric perturbation. This equivalence can also be checked explicitly in the
asymptotic regions (along the axes) where the perturbations are pure-gauge.

It then follows that we have proven:

Theorem 4.1. For the class of axisymmetric, asymptotically pure-gauge Kerr–Newman perturbations
considered herein (see Appendices H and I) the positive definite energy functional defined by (69)–(70) is
strictly conserved when the Weyl–Papapetrou and 2+1-dimensional maximal slicing gauge conditions are
imposed.

Remarks. It is somewhat curious to note that the ultimate vanishing of the net (potentially energy-
conservation violating) flux terms along the artificial boundaries provided by the axes of symmetry is
obtained only after the “integration-by-parts” procedure outlined above is carried out. Note also that
the additional boundary flux terms from (72) that are linear in the perturbed lapse function Ñ ′ vanish
identically in our (2+1-dimensional maximal slicing) gauge for which Ñ ′ ≡ 0. Such terms would
need to be considered, however, in alternative gauges for which Ñ ′ is nonvanishing. Perhaps the most
interesting such choice is the 3+1-dimensional maximal slicing gauge, which is discussed in some detail
in Appendix K. In particular we show therein that these additional (potentially energy-conservation
violating) boundary flux terms do indeed vanish as desired. While we do not actually prove the existence
of this gauge for our problem (the necessary elliptic theory being rather technically involved), we thus
nevertheless show that, if this gauge does indeed exist (as is most plausible), then our energy functional
continues to be conserved upon employing it.

It is clear from the form of (72) though that conservation of the energy depends only upon Ñ ′ through the
vanishing of its (potential) boundary flux contributions and not upon the behavior of this quantity in the
DOC’s “interior”. Thus any choice of linearized time gauge which secures the vanishing of these boundary
flux terms would yield a corresponding conservation result. This is the essential gauge invariance of our
energy expression alluded to previously.

5. Summary, concluding remarks, and outlook

The mathematical problem of stability of black hole spacetimes is the subject of a long-standing research
program that dates back to the 1960s. Historically, an essential first step was to study the stability of such
spacetimes with respect to linear scalar wave, Maxwell and linearized Einstein perturbations. To establish
the stability of such black hole “backgrounds” it is necessary to verify the boundedness and decay of the
perturbations.

Arguably, the most important obstacle to controlling the perturbations of rotating black holes is the fact
that the energy of even linear waves propagating in such a spacetime is not necessarily positive definite
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due to the ergoregion that always surrounds a black hole with nonvanishing angular momentum. This
issue, which has both technical and physical ramifications, limits the immediate use of standard techniques
for proving the decay of waves.

From a mathematical perspective one should recall that the energy of the waves being not necessarily
positive definite is a consequence of the fact that the Killing vector ∂t is not globally timelike throughout
a (rotating) black hole’s DOC, becoming instead spacelike within its ergoregion. An example of this
phenomenon can be seen in the linear, scalar wave perturbations of Kerr black holes which fail to admit a
conserved and positive definite energy. In the special case of axially symmetric scalar wave perturbations,
however, this problem evaporates since the troublesome, indefinite term in the energy density actually
vanishes but the problem reappears for both axially symmetric Maxwell and linearized Einstein waves.4

Indeed, the lack of a positive definite energy and the related so-called “superradiance effect” could in
principle allow the perturbations to blow up exponentially, even in the axisymmetric case [65]. A common
technique to exclude this possibility is to introduce a “blended” vector field Tχ such as

Tχ = ∂t +χ∂ϕ, (155)

where χ is a suitable “cutoff function” chosen so that Tχ is globally timelike and the corresponding
energy is positive definite. However, since this energy is not in general conserved, suitable Morawetz-type
spacetime integral estimates are needed to establish its boundedness and for the cases of Maxwell and
linearized Einstein waves propagating on Kerr backgrounds, these techniques seem to be currently limited
to the treatment of small, subextremal angular momentum, |a| � M, and little is known about the stability
of Kerr or Kerr–Newman spacetimes with respect to Maxwell and linearized Einstein perturbations in the
case of arbitrary (subextremal) angular momentum, |a|< M.

In this work, using Hamiltonian methods, we establish the existence of a conserved and positive definite
total energy for the fully coupled, axially symmetric Einstein–Maxwell perturbations of Kerr–Newman
spacetimes for the entire subextremal range (|a|, |Q| < M, a2

+ Q2 < M2). Our proof of energy
conservation has necessitated a demonstration that a plethora of (potentially conservation-violating)
boundary flux terms actually all vanish. This argument was quite intricate in view of the elliptic nature of
our chosen (Weyl–Papapetrou) gauge conditions which, in turn, were needed for the employment of the
famous Carter–Robinson identities in their traditional form. These identities were needed to transform
our energy expression into its desired positive definite form.

Our use of the Carter–Robinson identities exploits, of course, the wavemap structure resulting, in a
well-known way, from the dimensional reduction of the Einstein–Maxwell equations with one rotational
isometry. The general methods developed herein can be used to study the stability of a variety of black hole
spacetimes which exhibit analogous wavemap structure. In [39] for example, it was shown that Lorentzian
Einstein manifolds (i.e., those satisfying the Einstein equations with a nonvanishing cosmological constant)
with one rotational isometry admit a Lagrangian dimensional reduction to the (2+1-dimensional) Einstein
equations coupled to a “modified” wavemap system, wherein the traditional wavemap is shifted by a
term in the cosmological constant. A crucial observation in this work was that the cosmological constant

4: Indeed, as shown in Section 2, the conventional local energy density for axisymmetric Maxwell fields can be negative inside
the ergoregion.
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effectively decouples in such a way that it acts as a “source term” for the wavemap without destroying its
essential geometric structure.

Another application of the ideas developed herein is that one can use them to derive, for the axisymmetric,
purely Maxwellian perturbations of a Kerr spacetime, a conserved, positive definite energy functional
expressible, albeit nonlocally, in terms of the Newman–Penrose scalars for the Maxwell field [42]. By
contrast the conventional energy expression for these quantities, while local, fails to have the corresponding
positivity. A first step towards extending this result to deal with the gravitational perturbations of Kerr
black holes is presented in Appendix L, wherein the Weyl tensor for vacuum axisymmetric spacetimes is
expressed in terms of the wavemap and 2+1-dimensional metric variables. For this special case of (axisym-
metric, gravitational) Kerr perturbations one of us (N.G.) has shown how to correlate positive definiteness
of the perturbative energy to the negativity of the curvature of the corresponding wavemap target space
(hyperbolic 2-space) [41]. This argument is naturally covariant with respect to the target space geometry.

As is well known, for sufficiently smooth but nonstationary solutions to the linearized equations on a
stationary background, one can derive a sequence of new solutions to the same equations by sequentially Lie
differentiating a given solution with respect to the (asymptotically timelike) Killing field of the background.
In standard coordinates adapted to the stationarity of the background, wherein the relevant Killing field, ζ ,
takes the form ζ = ∂t , this simply amounts to time differentiating the chosen, linearized solution as many
times as its smoothness allows. At each stage of this procedure one can apply the linearized field equations
themselves to reexpress time derivatives in terms of spatial ones, thus generating a family of solutions
to the linearized equations built from sequentially higher-order spatial derivatives of the initial one.

For the Kerr–Newman problem in particular, one can thus derive a sequence of higher-order (conserved,
positive definite) energy expressions which, combined with standard Sobolev inequalities, could, in
principle, be exploited to derive corresponding uniform bounds on the perturbations.

A well-known complication in this procedure, however, is the sequential occurrence, in each of these
higher-order energy expressions, of certain “weight factors” arising from the background spacetime’s
(2+1-dimensional) lapse function, Ñ,

Ñ = R sin θ
(

1−
R2
+

R2

)
, (156)

which vanishes at the black hole’s horizon (R↘ R+) and at the axes of symmetry (θ→ 0, π ) and which
blows up (linearly) at spatial infinity (R↗∞). One can see this phenomenon occurring already at the
lowest order wherein the formula (69) for EReg has an overall, multiplicative factor of Ñ. New such
factors arise from each sequential time differentiation of the chosen perturbation when one applies the
linearized field equations to replace time derivatives with spatial ones.

Fortunately, however, the associated, so-called redshift effect arising from the vanishing of Ñ at the
black hole’s horizon is a familiar one and has been analyzed in other, “model” stability problems. Even
so, the use of Sobolev inequalities for the extraction of optimal uniform bounds on the perturbations
from the higher-order energy expressions is a technically intricate problem which we shall not pursue
here. It is worth remarking though that, since the particular class of perturbations that we consider is, by
construction, pure-gauge in the asymptotic regions near the horizon and “near” infinity, not to mention
constructively regular at the axes of symmetry, the behavior of these perturbations in these asymptotic
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regions (and at the axes of symmetry) is not expected to be problematic. On the other hand the natural
longer-range aim of applicability of our (higher-order) energies would encompass the treatment of more
general classes of perturbative solutions and thus necessitate a more detailed analysis of this redshift
effect in the asymptotic region near the horizon, as well as one of the behavior at infinity and near the axes
of symmetry. An interesting first step in this direction would be to carry out the corresponding analysis
for the purely Maxwellian perturbations of the Kerr backgrounds considered in Section 2.

Another potentially interesting application of our approach would be to the perturbations of (arbitrarily
rapidly rotating) Kerr–Newman-de Sitter black holes arising through the inclusion of a positive cosmolog-
ical constant 3 in the Einstein–Maxwell equations. As we have already mentioned in the Introduction, a
fortuitous feature of the Carter–Robinson identity that plays such a crucial role in our program, but which
is normally applied to purely electrovacuum problems (i.e., those having 3= 0), is that it only generates,
thanks to a favorable sign in one of its terms that vanishes for electrovacuum backgrounds, a new term of
positive sign in the presence of a positive cosmological constant. This feature (of the Carter–Robinson
identity) has already been exploited by one of us (N.G.) to extend the arguments of Section 2 above to
the treatment of the purely Maxwellian perturbations of Kerr–de Sitter black hole backgrounds [40].

As we have also alluded to in the Introduction there is the interesting potential of applying our approach to
the analysis of stability of black holes in higher than four spacetime dimensions. The most significant open
question in this regard would seem to be the stability of the famous 5-dimensional Myers–Perry rotating
black hole solution in [64] and its (still not explicitly known) electrovacuum generalization [43]. For pertur-
bations preserving the T 2, “axial” isometry of such an axially symmetric background (see [46; 62]), one can
apply well-known Kaluza–Klein reduction techniques to reduce the field equations to those of a wavemap
coupled to a 2+1-dimensional Lorentzian metric that closely resembles the system we have already treated
[51; 54]. Furthermore the needed Carter–Robinson-type identities for these (higher-dimensional, reduced)
field equations have already been derived and systematically applied to the development of corresponding
black hole uniqueness theorems [21; 45; 48; 49]. In addition, the relevant linearization stability (LS)
“technology” can be readily extended to the higher-dimensional setting of interest so that one should be
able to generalize the arguments given herein to the treatment of such higher-dimensional black holes.

An attractive feature of the LS “machinery” alluded to above is that, being essentially spacetime covariant
in nature, it lends itself to the treatment of alternative slicings of the background such as those foliated
by hypersurfaces that either intersect the future horizon or future null infinity, Scri+, or both instead of
being “locked down” at the bifurcation 2-sphere and at spacelike infinity, i0, as ours were required to do.
Such alternative slices are not true Cauchy surfaces for the full DOC of a Kerr–Newman black hole but
perturbative data given on them does uniquely control the evolution of such data to their causal futures.
Furthermore the corresponding energy fluxes at the future horizon and at Scri+ are expected to have good
signs (for the axisymmetric perturbations to which our formalism naturally applies) and thus to yield
decaying (as opposed to strictly conserved) energy expressions (and their higher-order generalizations).

Appendix A: Explicit representations of Kerr–Newman spacetimes

Several different coordinate systems for the Kerr–Newman, black hole spacetimes are employed in
the present paper. We give these coordinate expressions here together with the explicit transformations
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connecting them. Except for the elementary degeneracies of the familiar angular coordinates for topological
2-spheres, each of these covers the domain of outer communications of the corresponding black hole
in a nonsingular way. They each, however, break down at the black hole’s event horizon, which would
necessitate a further transformation to be properly covered. We shall work throughout in “geometrical”
units for which Newton’s constant G and the speed of light c are both set to unity.

Each Kerr–Newman black hole is characterized by three parameters, (M, a, Q), where M designates the
mass, Q denotes its electric charge and a determines its angular momentum S, along its axis of rotational
symmetry, through S = aM. These are subject to the inequalities M > 0 and M2

≥ a2
+ Q2, with

M2
= a2
+ Q2 corresponding to the extremal case. Solutions violating either of these do not correspond

to black holes.

In Boyer–Lindquist coordinates the line element and vector potential are given by

ds2
=−

(
1− a2 sin2 θ

6

)
dt2
−

2a sin2 θ(r2
+ a2
−1)

6
dt dϕ

+

[
(r2
+ a2)2−1a2 sin2 θ

6

]
sin2 θ dϕ2

+
6

1
dr2
+6 dθ2, (157)

A =
−Qr
6
[dt − a sin2 θ dϕ], (158)

where
6 := r2

+ a2 cos2 θ, (159)

1 := r2
− 2Mr + a2

+ Q2. (160)

The domain of the outer communications (or black hole “exterior”) is the region for which t ∈ R,

r > r+ := M +
√

M2− (a2+ Q2) (161)

and where the angles {θ, ϕ}, with θ ∈ [0, π] and ϕ ∈ [0, 2π), label the points of topological 2-spheres
having t = constant and r = constant. The black hole’s event horizon (not properly covered by these
coordinates) lies at the limiting coordinate radius r = r+.

When a 6= 0, the spacetime has precisely two independent Killing fields,

ζ =
∂

∂t
and ψ =

∂

∂ϕ
, (162)

which correspond to its stationarity and axial symmetry, whereas the special cases (a = 0, Q 6= 0) and
(a = 0, Q = 0) yield the Reissner–Nordström and Schwarzschild solutions (respectively), which, each
being spherically symmetric, admit two additional, rotational Killing fields. When a 6= 0 the Killing field ζ ,
which is timelike at large radius, becomes spacelike inside the so-called “ergoregion” characterized by

r > r+, 1− a2 sin2 θ < 0. (163)

The presence of this region in these rotating cases causes serious difficulties for the task of finding positive
energy expressions for the gravitational and electromagnetic perturbations. The main aim of this article
is to construct such an energy for axisymmetric perturbations and to analyze its implications for the black
hole stability problem in linear approximation.
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A transformation of the radial coordinate given by

R = 1
2(r −M +

√
r2− 2Mr + (a2+ Q2)), (164)

with inverse

r = R+M +
(M2
− a2
− Q2)

4R
, (165)

combined with the introduction of “isothermal” coordinates defined via

ρ = R sin θ, z = R cos θ, (166)

puts the line element into Weyl–Papapetrou form

ds2
=

(
6

[(r2+ a2)2− a21 sin2 θ ]

){
−1dt2

+

[
(r2
+ a2)2− a21 sin2 θ

R2

]
(dρ2
+ dz2)

}
+

sin2 θ

6
[(r2
+ a2)2− a21 sin2 θ ]

[
dϕ−

(
a(2Mr − Q2)dt

[(r2+ a2)2− a21 sin2 θ ]

)]2

, (167)

where
R =

√
ρ2
+ z2, sin θ =

ρ
√

ρ2
+ z2

, cos θ =
z

√

ρ2
+ z2

, (168)

and

r =
√
ρ2
+ z2
+M +

(M2
− a2
− Q2)

4
√

ρ2
+ z2

. (169)

In these coordinates the domain of outer communications corresponds to

R =
√
ρ2+ z2 > 1

2(r+−M)= 1
2

√
M2− (a2+ Q2)

:= R+ ≥ 0. (170)

Note that R+ = 0 only in the extremal case.

The Carter [15] and Robinson [71] identities, which play a crucial role in the present paper, are traditionally
expressed in alternative variations of Weyl–Papapetrou coordinates in which the event horizon at r = r+ is
mapped to an interval (or “cut”) along the symmetry axis. Recalling that solutions of the Cauchy–Riemann
equations preserve the “isothermal” form of the Riemannian 2-metric dρ2

+ dz2, one easily shows that
the transformation defined by (conjugate harmonic functions)

ρ̄ = ρ−
(M2
− a2
− Q2)ρ

4(ρ2+ z2)
, (171)

z̄ = z+
(M2
− a2
− Q2)z

4(ρ2+ z2)
(172)

induces the conformal mapping

dρ̄2
+ dz̄2

=

(
1+

C(ρ2
− z2)

2(ρ2+ z2)2
+

C2

16(ρ2+ z2)2

)
× (dρ2

+ dz2), (173)
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where C = M2
− Q2

− a2. The inverse transformation can be readily derived by exploiting the identity

(ρ2
+ z2)+

C2

16(ρ2+ z2)
=

1
2

{
(ρ̄2
+ z̄2)+

√
(ρ̄2
+ z̄2)2+ 2C

[
(ρ̄2
− z̄2)+

C
2

]}
(174)

to solve a quadratic equation for ρ2
+ z2 in terms of ρ̄ and z̄.

It is easily verified (for the nondegenerate cases having C > 0) that the horizon “semicircle” defined by

ρ2
+ z2
= R2

+
=

1
4(M

2
− (a2

+ Q2)) > 0 (175)

gets mapped to a “cut” on the z̄ axis given by

ρ̄ = 0, z̄ ∈ [−
√

M2− (a2+ Q2),
√

M2− (a2+ Q2)]. (176)

For the degenerate cases (having C = 0), transformation (171)–(172) reduces to the identity and the
horizon, in these coordinates, “collapses” to a point.

Finally, setting c :=
√

M2− (a2+ Q2), consider the transformation defined by

ρ̄ = (λ2
− c2)1/2(1−µ2)1/2,

z̄ = µλ,
(177)

where c < λ <∞, −1≤ µ≤ 1. It is readily verified that

dρ̄2
+ dz̄2

= (λ2
− c2µ2)

[
dλ2

λ2− c2 +
dµ2

1−µ2

]
. (178)

In these coordinates the two symmetry axis components correspond to µ = ±1, whereas the horizon
occurs at λ↘ c. The transformation in (177) is readily inverted through the use of the identity

λ2
+

c2 z̄2

λ2 = c2
+ ρ̄2
+ z̄2, (179)

and the {λ,µ} coordinates play a key role in the Robinson identity presented in [71].

Appendix B: The global Cauchy problem for the linearized Einstein–Maxwell equations

The Einstein–Maxwell equations, in the absence of a charged current source, are expressible, in their
most general 4-dimensional form, as

[
(4) Ein((4)g)]αβ :=

[
(4) Ric((4)g)− 1

2
(4)g (4)R((4)g)

]
αβ

= 8π [(4)T ((4)g, (4)F)]αβ = 2
{
(4)Fαµ (4)Fβν (4)gµν − 1

4
(4)gαβ (4)Fµν (4)Fµν

}
, (180)

[δ(4)g ·
(4)F]α := (4)

∇β
(4)Fαβ = 0, (181)

[d (4)F]αβγ := (4)Fαβ,γ + (4)Fβγ,α + (4)Fγα,β = 0, (182)

where (4)g = (4)gµν dxµ⊗dxν is the spacetime-metric, (4) Ric((4)g) and (4)R((4)g) are its associated Ricci
tensor and scalar curvature, (4)F = (4)Fµν dxµ⊗ dxν is the electromagnetic two-form field, and (4)

∇α (or,
equivalently “;α”) designates covariant differentiation with respect to (4)g. In the above and throughout,
we have set Newton’s constant of gravitation, G, and the speed of light, c, equal to unity by choice of units.
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We shall assume here and throughout that the field tensor (4)F is derived from a “vector potential”
(4)A = (4)Aµ dxµ such that (4)F = d (4)A or, in coordinates,

(4)Fµν = [d (4)A]µν = (4)Aν,µ− (4)Aµ,ν, (183)

so that (182) is satisfied identically. Henceforth we regard (4)F as expressed, as above, in terms of (4)A
and regard the pair {(4)g, (4)A} as the “fundamental fields” upon which the field equations are imposed.

Designating the first variations (δ (4)g, δ (4)A) of ((4)g, (4)A) by

((4)h, (4)A′)= ((4)hµν dxµ⊗ dxν, (4)A′µ dxµ), (184)

we can express the corresponding linearized equations as

D (4) Ein((4)g) · (4)h = 8πD (4)T ((4)g, (4)A) · ((4)h, (4)A′), (185)

D(δ(4)g ·
(4)F) · ((4)h, (4)A′)= 0, (186)

where

(D Ein((4)g) · (4)h)αβ = 1
2

{
(4)h̄ ;µ

αµ;β +
(4)h̄ ;µ

βµ;α −
(4)h̄ ;µ

αβ;µ −
(4)gαβ (4)h̄ ;µν

µν

−
(4)R((4)g) (4)h̄αβ + (4)gαβ[(4) Ric((4)g)]µν(4)h̄µν

}
(187)

and

[D(δ(4)g ·
(4)F) · ((4)h, (4)A′)]α

= −
(4)hµν (4)F µ;ν

α −
1
2
(4)Fβγ ((4)hαβ;γ − (4)hαγ ;β)

−
(4)F β

α

(
(4)hνβ − 1

2
(4)gνβ (4)hγγ

);ν
− ((4)A′α)

;µ

;µ + (
(4)A′ ;νν );α + (

(4) Ric((4)g)) ν
α

(4)A′ν, (188)

with D (4)T ((4)g, (4)A) · ((4)h, (4)A′) readily computable algebraically in terms of (4)h and

[D (4)F((4)A) · (4)A′]µν = ∂µ (4)A′ν − ∂ν
(4)A′µ. (189)

In the above, (4)h̄ = (4)h̄µν dxµ⊗ dxν designates the “trace-reversed” metric perturbation defined by
(4)h̄µν := (4)hµν − 1

2
(4)gµν (4)hαβ (4)gαβ = (4)hµν − 1

2
(4)gµν (4)h γ

γ , (190)

which is readily inverted to yield
(4)hµν = (4)h̄µν − 1

2
(4)gµν (4)h̄ γ

γ , (191)

with (4)h γ
γ :=

(4)hµν (4)gµν =−(4)h̄
γ
γ := −

(4)h̄µν (4)gµν.

As is well known, when the background field equations (180)–(182) are satisfied, the corresponding
linearized equations (185)–(186) are invariant with respect to an Abelian group of gauge transformations
generated by pairs of the form {(4)3, (4)Y }, where (4)3 is a scalar field and (4)Y = (4)Yµ(∂/∂xµ) is a
vector field on the given background spacetime. The fundamental linearized variables ((4)h, (4)A′) undergo
the gauge transformations

(4)A′µ→
(4)A′µ+ ∂µ

(4)3+ (L(4)Y
(4)A)µ, (192)

(4)F ′µν := ∂µ
(4)A′ν − ∂ν

(4)A′µ→
(4)F ′µν + (L(4)Y

(4)F)µν, (193)
(4)hµν→ (4)hµν + (4)

∇µ
(4)Yν + (4)

∇ν
(4)Yµ = (4)hµν + (L(4)Y

(4)g)µν, (194)
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where L(4)Y designates Lie differentiation with respect to (4)Y and where (4)Yµ := (4)gµν (4)Y ν is the
latter’s covariant form. One can exploit this gauge invariance to impose the electromagnetic “Lorenz”
and gravitational “harmonic” (or de Donder) gauge conditions given (respectively) by

(4)h̄ ;ν
µν = 0, (195)

(4)A′ ;νν = 0. (196)

This is accomplished by solving the inhomogeneous wave equations

(4)Y ;ν
µ;ν + [

(4) Ric((4)g)] νµ
(4)Yν =−(4)h̄ ;ν

µν (197)

and
(4)3

;µ

;µ =−
(4)A′ ;µµ − [(L(4)Y

(4)A)µ];µ (198)

for (4)Yµ dxµ and (4)3 respectively. Theorems guaranteeing the global existence and uniqueness of
solutions to the corresponding linear Cauchy problems, formulated on a globally hyperbolic spacetime,
are proven in [69]. The solutions to (197) and (198) are, of course, only unique up to the addition of
arbitrary solutions to the corresponding homogeneous equations.

When the foregoing gauge conditions are imposed, the linearized field equations (185) and (186) reduce
to the manifestly hyperbolic, coupled system

1
2

{
−
(4)h̄ ;µ

αβ;µ +[
(4) Riem((4)g)] ρµα β

(4)h̄ρµ+[(4) Ric((4)g)]ρβ
(4)h̄αρ+[(4) Riem((4)g)] ρµβ α

(4)h̄ρµ

[
(4) Ric((4)g)]ρα

(4)h̄βρ − (4)R((4)g) (4)h̄αβ + (4)gαβ [(4) Ric((4)g)]µν (4)h̄µν
}

= 8π [D (4)T ((4)g, (4)A) · ((4)h, (4)A′)]αβ (199)

and

−
(4)A′ ;ν

µ;ν + [
(4) Ric((4)g)] νµ

(4)A′ν −
(4)hαβ (4)F α;β

µ

−
(4)F β

µ

(
(4)hνβ − 1

2
(4)gνβ (4)hγ γ

);ν
−

1
2
(4)Fβγ ((4)hµβ;γ − (4)hµγ ;β)= 0, (200)

where [(4) Riem((4)g)]αβγ δ (∂/∂xα)⊗ dxβ ⊗ dxγ ⊗ dxδ is the Riemann curvature tensor of (4)g.

To ensure satisfaction of the gauge conditions, however, one must restrict the choice of allowed Cauchy
data for the above system accordingly. If 6 is a Cauchy hypersurface of the background spacetime
(assumed here to be globally hyperbolic and time-orientable) then one must impose

(4)A′ ;νν |6 = 0, nα((4)A′ ;νν );α|6 = 0, (201)
(4)h̄ ;ν

µν |6 = 0, nα((4)h̄ ;ν
µν );α|6 = 0, (202)

where nα(∂/∂xα) is the unit, future-pointing normal field to 6.

To show that (201)–(202) are both necessary and sufficient for the implementation and preservation of the
gauge conditions, we first derive wave equations satisfied by the quantities (4)A′ ;νν and (4)h̄ ;ν

µν . These
are most easily obtained by computing the first variations of the identities

((4)F ;ν
µν );µ ≡ 0, (4) Ein((4)g) ;ν

µν ≡ 0. (203)
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Reducing the resultant variational identities through imposition of the gauge-fixed field equations (199)
and (200) leads directly to

((4)A′ ;νν )
;µ

;µ =
(4)hαβ (4)K α;β

+
(4)K β

(
(4)hνβ − 1

2
(4)gνβ (4)h γ

γ

);ν (204)

and
((4)h̄ ;µ

αµ )
;β

;β + [
(4) Ric((4)g)] βα

(4)h̄ ;µ
βµ = 0, (205)

where
(4)Kµ :=

(4)F ;ν
µν , (206)

which of course vanishes when the background (Maxwell) field equations are satisfied. In deriving (205)
we have exploited the fact that

D (4)T ;ν
µν ((4)g, (4)A) · ((4)h, (4)A′)= 0 (207)

when the background and the linearized (Maxwell) field equations are satisfied.

Under these circumstances we thus arrive at the homogeneous wave equations

((4)A′ ;νν )
;µ

;µ = 0 (208)

and
((4)h̄ ;µ

αµ )
;β

;β + [
(4) Ric((4)g)] βα

(4)h̄ ;µ
βµ = 0 (209)

satisfied by the gauge-fixing quantities (4)A′ ;νν and (4)h̄ ;µ
αµ . By standard results [69] one concludes that

both (4)A′ ;νν and (4)h̄ ;µ
αµ vanish throughout the globally hyperbolic, background spacetime with Cauchy

surface 6 if and only if conditions (201)–(202) are satisfied on 6.

While it may seem that we have thus reduced the linearized field equations to a purely hyperbolic problem,
this conclusion is slightly misleading for the following reason. By combining the gauge-fixed, linearized
Maxwell equation (200) with the constraint upon the gauge-fixing initial conditions (201) one arrives at

((4)A′ ;νν );µ nµ|6 = nµ K ′µ|6 = 0, (210)

where the latter equality is precisely the usual, elliptic constraint upon linearized Maxwell initial data
expressed in 4-dimensional notation (with K ′µ the first variation of Kµ given explicitly by (188)). In
a similar way, by combining the gauge-fixed, linearized Einstein equation (199) with the gauge-fixing
initial condition (202) one arrives at

{(D (4) Ein((4)g) · (4)h)µν − 8π (D (4)T ((4)g, (4)A) · ((4)h, (4)A′))µν} nµ|6
=

1
2{
(4)Cν;µ nµ+ (4)Cµ;ν nµ− nν (4)C ;µ

µ }|6 = 0, (211)

where
(4)Cα := (4)h̄ ;β

αβ (212)

and where the final equality follows from the imposition of the gauge-fixing initial data constraints (202).
But the resulting equation is precisely the usual, elliptic constraint upon the linearized Einstein initial
data expressed in 4-dimensional form.
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Since we have already shown that the gauge conditions are preserved in time by the gauge-fixed field
equations, it follows that the (linearized) Einstein–Maxwell constraint equations

{(D (4) Ein((4)g) · (4)h)µν − 8π (D (4)T ((4)g, (4)A) · ((4)h, (4)A′))µν} nµ = 0 (213)

and
K ′µ nµ = 0 (214)

hold on an arbitrary Cauchy surface (with unit normal field nµ∂µ) and not merely on the “initial” one.

The results given in this appendix are, of course, simply a linearized version of the local existence and
uniqueness theorem for the fully nonlinear Einstein–Maxwell equations proven by Choquet-Bruhat in [19].
But in view of the linear character of our field equations one can adapt arguments of the type presented
in [69] to establish the global extendibility of solutions to the full, maximal Cauchy development of
a chosen initial data surface. Thus, in particular, solutions generated from appropriate initial data will
automatically extend to the full domain of outer communications of a background black hole solution that
we choose to perturb.

A well-known, important feature of the hyperbolic form of the perturbation equations is that it guarantees
the strictly causal propagation of the corresponding solutions. For a Kerr–Newman background, for
example, this ensures that Cauchy data having “initially” compact support, bounded away from the
horizon and from spatial infinity, will retain this property for all finite Boyer–Lindquist time, t. This
reflects the fact that Boyer–Lindquist time slices are “locked down” at i0 (spacelike infinity) and at the
bifurcation 2-sphere lying in the horizon. For the (causally propagating) purely Maxwellian perturbations
of the Kerr spacetime analyzed in Section 2 it follows that, for such compactly supported initial data,
the potential energy flux contributions at spatial infinity and the horizon, arising from the “continuity”
equation (45), will vanish identically. This leaves only the possibility of a nonvanishing energy flux at the
“artificial” boundary provided by the axes of symmetry at θ = 0, π . To verify that these also vanish for
regular perturbations one needs to evaluate J θ

reg (see (43)) at these axes.

From the discussion in Appendix E we know that the perturbative quantities, λ′ and η′ both vanish along
the axes of symmetry, a fact that results from our demand that the electric and magnetic charges of the
“background” spacetime remain unperturbed. It then follows from the smoothness criteria developed in [70]
that each of these functions vanishes ∼ sin2 θ at these axes. From (21), (22) and (37) it then follows that
each of ũ′ and ṽ′ also vanishes ∼ sin2 θ at the axes and thus, after a straightforward calculation, that J θ

reg
vanishes ∼ sin2 θ as well. Consequently the energy H Reg defined via (35)–(38) is strictly conserved for
this class of (spatially compactly supported) perturbations. A more comprehensive treatment would allow
the Maxwellian perturbations to lie in suitable (weighted) Sobolev spaces and appeal to their (presumed)
dense filling by the compactly supported solutions to establish the corresponding energy conservation
result. While this would seemingly be straightforward to carry out, we shall not pursue it further here.

Appendix C: The reduced Hamiltonian formalism for axisymmetric spacetimes

This article deals primarily with the linearized Einstein–Maxwell equations restricted to the domain
of the outer communications, V, of a charged (if Q 6= 0), rotating (if a 6= 0) Kerr–Newman black
hole. The coordinate systems discussed in Appendix A cover such domains and are adapted to the
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stationarity and axial symmetry of the Kerr–Newman solutions. Each such domain is a product of the
form V = R× (R3

\Bb), where Bb is a closed ball (or exceptionally a point) of coordinate radius b ≥ 0.
In the spatially cylindrical (Weyl–Papapetrou) coordinates {t, ρ, z, ϕ} introduced in that appendix, for
example,

Bb =

{
(ρ, z, ϕ)

∣∣∣ ρ2
+ z2
≤ b2
=

M2
− a2
− Q2

4
≥ 0

}
(215)

and the corresponding Kerr–Newman spacetime (restricted to V) admits ψ = ∂/∂ϕ as a spacelike Killing
field.

Since we shall only consider perturbations that preserve this axial Killing symmetry it will be natural to
pass to the corresponding quotient space V/U (1) (where U (1) is the circle action generated by ψ) and
to formulate the linearized equations thereon. Since points on the symmetry axis are invariant under this
group action (since ψ vanishes there) the resulting quotient space is a manifold with boundary of the form

V/U (1)= R×Mb, (216)

where Mb is the half-plane {(ρ, z) |ρ≥ 0, z ∈R} with the half-disk Db={(ρ, z) |ρ≥ 0, ρ2
+z2
≤ b2> 0}

or point (ρ = z = 0) removed. The boundary points of Mb (i.e., those on the z-axis with z2 > b2
≥ 0)

correspond to those on the spacetime’s axis of symmetry. In this appendix we shall focus on deriving
the requisite linearized field equations at interior points of the quotient space R×Mb (i.e., points in the
complement of the boundary), keeping in mind that certain geometrically natural regularity conditions
will need to be imposed on the linearized fields, not only at the boundary axis but also at the background
black hole’s event horizon (corresponding to ρ2

+ z2
↘ b2

=
1
4(M

2
− a2
− Q2)≥ 0) and, asymptotically,

at “infinity”. Such regularity conditions will be necessary to ensure that linearized solutions on R×Mb

can be “lifted” to yield sufficiently smooth and asymptotically acceptable perturbations on V.

In coordinates {xµ} = {t, xa, x3
} of the aforementioned type for the 4-manifold V =R× (R3

\Bb), where
x0
= t , {xa

} = {x1, x2
} = {ρ, z} and x3

= ϕ, we begin by expressing the spacetime line element in
Arnowitt, Deser and Misner (ADM) form [55]:

ds2
=
(4)gµν dxµ dxν =−N 2 dt2

+ gi j (dx i
+ N i dt)(dx j

+ N j dt), (217)

where µ, ν, . . . range over {0, 1, 2, 3}, while i, j, . . . range over {1, 2, 3}. To ensure that the metric (4)g =
(4)gµν dxµ⊗ dxν is properly Lorentzian, it is essential that the “lapse function” N be nowhere-vanishing
and that the induced metric, (3)g= gi j dx i

⊗dx j , and t = constant hypersurfaces be Riemannian. To avoid
confusion with the lapse function N we shall designate the “shift vector field”, N i (∂/∂x i ), in coordinate
free notation, by X. When the spacetime (V, (4)g) admits an electromagnetic field (4)F = (4)Fµν dxµ∧dxν

that is globally derivable from a “vector potential” (4)A = (4)Aµ dxµ then we have

(4)Fµν = (4)Aν,µ− (4)Aµ,ν (218)

and introduce an ADM parametrization for (4)A by setting

(4)A = A0 dt + Ai dx i . (219)
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Let � ⊂ V be an arbitrary compact domain in V with (at least piecewise) smooth boundary ∂�. The
Einstein–Maxwell equations (at interior points of �) follow from the ADM variational principle

δgi j I� = δπ i j I� = δAi I� = δE i I�

= δN I� = δN i I� = δA0 I� = 0 (220)

(subject to suitable boundary conditions on the variations of the fields on ∂�) with

I� :=
∫
�

d4x{π i j gi j,t + AiE i
,t − NH− N iHi − A0E i

,i }, (221)

where

H= 1
µ(3)g

(
π i jπi j −

1
2
(π i

i )
2
)
−µ(3)g

(3)R+ 1
2

gi j

µ(3)g
(E iE j

+BiB j ), (222)

Hi =−2π j
i | j − εi jkE jBk, (223)

with

Bi
=

1
2
εi jk(Ak, j − A j,k). (224)

Here µ(3)g and (3)R are the volume element (µ(3)g =
√

det |gi j |) and scalar curvature of the Riemannian
metric (3)g = gi j dx i

⊗ dx j , | designates covariant differentiation with respect to this metric and spatial
indices i, j, . . . are raised and lowered using (3)g and its inverse,

(3)g−1
= gi j ∂

∂x i ⊗
∂

∂x j .

The (contravariant) symmetric tensor density

(3)π = π i j ∂

∂x i ⊗
∂

∂x j

is the momentum canonically conjugate to (3)g, whereas the vector density (3)E = E i (∂/∂x i ) is (up to sign)
that conjugate to (3)A = Ai dx i. The Levi-Civita symbols εi jk and εi jk are covariant and contravariant,
completely antisymmetric tensor densities (such that µ(3)gεi jk and (1/µ(3)g)ε

i jk are tensor fields) satisfying
ε123 = ε

123
= 1.

A derivation of this action principle from its (perhaps more familiar) Lagrangian form is presented in
Chapter 21 of the text Gravitation by Misner, Thorne and Wheeler (MTW) [55]. Our notation differs
somewhat from theirs in that we have absorbed a factor of 2 into the symbols (4)A, (4)F, A0, (3)A= Ai dx i ,
(3)E = E i (∂/∂x i ) and (3)B = Bi (∂/∂x i ) in order to simplify the forms of the electromagnetic Hamiltonian
equations. In addition we write µ(3)g for their

√
g and use εi jk and εi jk instead of [i jk] to designate the

Levi-Civita tensor densities. To recover the expressions of MTW one should replace our A0, Ai dx i ,
E i (∂/∂x i ) and Bi (∂/∂x i ) by 2A0, 2Ai dx i , 2E i (∂/∂x i ) and 2Bi (∂/∂x i ) respectively, write

√
g in place

of our µ(3)g and substitute [i jk] for our εi jk and εi jk .

Now restrict attention to those Lorentzian metrics on V which have the circle action generated byψ=∂/∂ϕ
as a (spacelike) isometry group and impose the corresponding (U (1)) invariance on (4)A by demanding that

(L∂/∂ϕ(4)g)µν =
∂

∂ϕ
(4)gµν = 0, (225)

(L∂/∂ϕ(4)A)µ =
∂

∂ϕ
(4)Aµ = 0. (226)
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One can now express the field equations alluded to above entirely in terms of fields induced on the
quotient space R× Mb. To this end it is convenient to reparametrize the (U (1)-invariant) Lorentzian
metric (4)g on V by setting

ds2
=
(4)gµν dxµ dxν

= e−2γ
{−Ñ 2 dt2

+ g̃ab(dxa
+ Ñ a dt)(dxb

+ Ñ bdt)}+ e2γ
{dϕ+β0 dt +βa dxa

}
2 (227)

and, correspondingly, to write
(4)Aµ dxµ = A0 dt + Aa dxa

+ A3 dϕ (228)

for the (U (1)-invariant) vector potential. Here, a, b, . . . range only over {1, 2} the indices for coordinates
for Mb. Abusing notation slightly we shall employ the same symbols to designate the fields induced, in
Kaluza–Klein fashion, on the quotient space.

At interior points of the quotient space (i.e., on the complement of the symmetry axis) we may regard

dσ 2
:= {−Ñ 2 dt2

+ g̃ab(dxa
+ Ñ a dt)(dxb

+ Ñ b dt)} (229)

as the ADM form of the line element for an induced, 2+1-dimensional, Lorentz metric and view
e2γ
=
(4)g(∂/∂ϕ, ∂/∂ϕ) and A3=〈

(4)A, ∂/∂ϕ〉 as induced functions and β0 dt+βa dxa and A0 dt+Aa dxa

as induced one-forms on (interior points of) the quotient space R× Mb. Note however that since e2γ

must vanish at boundary points of this quotient (which corresponds to points on the symmetry axis
in V ), the function γ must lead to a logarithmic singularity in this limit and, accordingly, Ñ and g̃ab

must incorporate a singular (vanishing at the boundary) conformal factor to cancel the singularity
coming from e−2γ. While one could explicitly remove these singularities from the base fields by
a change of parametrization, the elegant form of the projected field equations (at interior points of
R × M) would thereby be disturbed. To avoid this we shall retain the notation introduced above,
keeping in mind that certain fields induced on the quotient must exhibit well-defined singular be-
haviors at the boundary in order to “lift” naturally to yield smooth fields on V. The background
Kerr–Newman solutions of course automatically exhibit this (geometrically natural) singular behavior
when parametrized as above (see (167)–(169) of Appendix A) and we shall need to impose suitable
regularity conditions on their perturbations in order that such perturbations lift smoothly back to V.
For the moment, however, we shall focus on transforming the projected field equations at interior
points of the quotient and postpone the discussion of the regularity conditions needed at the boundary
until later.

Letting D represent an arbitrary compact domain in Mb, disjoint from the boundary, define momenta
{ p̃, ẽa, π̃ab

} conjugate to {γ, βa, g̃ab} by setting∫
D×S1

d3x{π i j gi j,t } =

∫
D×S1

d3x{π̃ab g̃ab,t + ẽaβa,t + p̃γ,t }

= 2π
∫
D

d2x{π̃ab g̃ab,t + ẽaβa,t + p̃γ,t }. (230)

This leads, together with (217) and (227) to relations such as

π̃ab
= e−2γπab, gab = e−2γ g̃ab+ e2γβaβb, etc., (231)
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which can be read off from the above defining expression. To incorporate the electromagnetic terms, we
introduce also the definitions

f̃ a
= (ẽa

− Ea A3), F3
=−(E3

+βaEa), (232)

Ca =−(Aa −βa A3), C0 =−(A0−β0 A3) (233)

and reexpress the ADM action in terms of the new variables. The result (modulo an inessential boundary
term) is expressible (on domains of the form �= [t0, t1]×D× S1) as

Ĩ� :=
∫ t1

t0
dt
∫
D

d2x{π̃ab g̃ab,t + p̃γ,t + f̃ aβa,t + F3 A3,t + EaCa,t +β0 f̃ a
,a +C0Ea

,a − ÑH̃− Ñ aH̃a}

= (I�/2π)− (boundary term), (234)

where

H̃=
( 1
µ(2)g̃

)[
π̃abπ̃ab−(π̃

a
a)

2
+

1
8 p̃2
+

1
2 e−4γ g̃ab( f̃ a

+Ea A3)( f̃ b
+Eb A3)

]
+µ(2)g̃

[
−
(2)R̃+2g̃abγ,aγ,b+

1
4 e4γ g̃ac g̃bd(βa,b−βb,a)(βc,d−βd,c)

]
+

( 1
2µ(2)g̃

)
[e2γ (F3)2+e2γ (εab(Ca,b−A3βa,b))

2
+e−2γ g̃ab(EaEb

+εac A3,cε
bd A3,d)], (235)

H̃a =−2 (2)∇̃bπ̃
b
a+ p̃γ,a+F3 A3,a+ f̃ b(βb,a−βa,b)+Eb(Cb,a−Ca,b). (236)

In these formulas indices a,b, . . . are raised and lowered using the Riemannian 2-metric (2)g̃= g̃ab dx2
⊗dxb,

(2)R̃ is the scalar curvature of this metric, (2)∇̃a its covariant derivative operator and µ(2)g̃ its volume
element (µ(2)g̃ :=

√
det |g̃ab|). In addition εab is the antisymmetric tensor density (such that εab/µ(2)g̃ is a

tensor) satisfying ε12
= 1.

The constraint equations are obtained by varying Ĩ� with respect to Ñ , Ñ a, β0 and C0 and are thus given by

H̃= H̃a = f̃ a
,a = Ea

,a = 0. (237)

The evolution equations are obtained by varying Ĩ� with respect to the canonical variables {g̃ab, π̃
ab, γ, p̃,

βa, f̃ a, A3, F3,Ca, Ea
}. There are neither constraints nor evolution equations for the quantities Ñ , Ñ a, β0

and C0 which must be fixed (either explicitly or implicitly) by a choice of gauge.

At fixed t the constraint equations f̃ a
,a = 0 and Ea

,a = 0 may, on the topologically trivial space Mb, be
solved in generality by setting

f̃ a
= εabω,b, (238)

Ea
= εabη,b, (239)

where ω and η are uniquely determined up to additive constants (that can vary with t). The Hamiltonian
equations for Ea

,t and f̃ a
,t may be manipulated to yield

η,t =
Ñe2γ

µ(2)g̃
εab(Ca,b− A3βa,b)+ εab Ñ bEa

+ f (t), (240)

ω,t =
Ñe2γ

µ(2)g̃
A3ε

ab(A3βa,b−Ca,b)+
Ñe4γ

µ(2)g̃
εabβa,b+ εab Ñ b f̃ a

+ k(t), (241)
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where f (t) and k(t) are certain undetermined functions of t which arise from passing from the equations
for Ea

,t = (ε
abη,t),b and f̃ a

,t = (ε
abω,t),b to those for η,t and ω,t . Since, however, ω and η are only

determined by (238) and (239) up to arbitrary additive functions of t, we may smoothly resolve the
ambiguity in their definitions (up to additive, true constants) by demanding that f (t)= k(t)= 0.

Defining
r̃ = εabβa,b, ũ = εabCa,b, (242)

we therefore fix the equations of motion for the twist potentials η and ω to be

η,t =
Ñe2γ

µ(2)g̃
(ũ− A3r̃)+ Ñ bη,b, (243)

ω,t =
Ñe2γ

µ(2)g̃
A3(A3r̃ − ũ)+

Ñe4γ

µ(2)g̃
r̃ + Ñ aω,a. (244)

These equations, together with all the remaining evolution and constraint equations, may be derived from
the reduced action J̃� obtained from Ĩ� by substituting the expressions (238), (239) and (242) into (234)
and discarding an inessential boundary term. Upon defining

λ= A3, ṽ = F3, (245)
we get, for the reduced action,

J̃� =
∫ t1

t0
dt
∫
D

d2x{π̃ab g̃ab,t + p̃γ,t + r̃ω,t + ũη,t + ṽλ,t − ÑH̃− Ñ aH̃a}, (246)

where H̃ and H̃a now take the forms

H̃= 1
µ(2)g̃

[
π̃abπ̃ab−(π̃

a
a)

2
+

1
8( p̃)

2
+

1
2 e4γ (r̃)2+ 1

2 e2γ (ṽ2
+(ũ−λr̃)2)

]
+µ(2)g̃

[
−
(2)R̃+2g̃abγ,aγ,b+

1
2 e−2γ g̃ab(η,aη,b+λ,aλ,b)+

1
2 e−4γ g̃ab(ω,a+λη,a)(ω,b+λη,b)

]
, (247)

H̃a =−2 (2)∇̃bπ̃
b
a+ p̃γ,a+r̃ω,a+ṽλ,a+ũη,a. (248)

Variation of J̃� with respect to Ñ and Ñ a yields the remaining constraints H̃= 0 and H̃a = 0, whereas
variation with respect to the canonical pairs {(g̃ab, π̃

ab), (γ, p̃), (ω, r̃), (η, ũ), (λ, ṽ)} yields the Hamil-
tonian evolution equations for the reduced system. It is well-known, though perhaps less evident in
the present Hamiltonian setting, that this set of reduced field equations is (at interior points of R×Mb)
equivalent to the 2+1-dimensional Einstein equations (for the Lorentz metric given in (229)) minimally
coupled to a wavemap defined by the four scalar fields {γ, ω, λ, η}. The naturally occurring target space
for this wavemap (whose metric can be read off from the expression (247) for H̃) is the Riemannian
4-manifold (R4, dk2) with line element

dk2
= 4(dγ )2+ e−2γ (dη2

+ dλ2)+ e−4γ (dω+ λ dη)2, (249)

which can be recognized as a (global) coordinate representation of complex hyperbolic space. If the
Maxwell field is “turned off” so that only vacuum spacetimes are considered then

dk2
−→ 4(dγ )2+ e−4γ (dω)2, (250)
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which, defined over R2, is nothing but a coordinate representation for real hyperbolic space. Some
background on this 4-dimensional target space and its 8-dimensional isometry group SU (2, 1) is given in
[61] and in further references cited therein, and will not be included here. In particular though (2.60) of
this reference lists, explicitly, a set of eight (locally) conserved quantities that one builds appealing to
Noether’s theorem from the eight independent Killing fields of the target metric.

To reconstruct an Einstein–Maxwell field on V from a solution to the reduced field equations on R×Mb,
one needs to reconstruct the one forms β0dt +βadxa and C0dt +Cadxa of which only the “transverse
projections” r̃ = εabβa,b and ũ = εabCa,b directly survive (as momenta conjugate to the wavemap
variables ω and η) in the reduced formulation. The time components, β0 and C0, of the one-forms
are essentially gauge variables and can be chosen arbitrarily together with initial data for βa and Ca

compatible with (242). To recover βa and Ca one integrates the Hamiltonian equations for these quantities,
which, expressed in terms of wavemap variables, take the form

βa,t = β0,a + Ñ bεabr̃ + Ñ
µ(2)g̃

e−4γ g̃abε
bc(ω,c+ λη,c), (251)

Ca,t = C0,a +
Ñe−2γ

µ(2)g̃
g̃abε

bcη,c+ Ñ bεabũ+ Ñe−4γ

µ(2)g̃
g̃abλ[ε

bc(ω,c+ λη,c)]. (252)

Upon reverting to the original notation, one finds that (251) and (252) are indeed equivalent to the original
Hamiltonian equations for these fields (derivable from the action Ĩ�) and that they guarantee preservation
of the defining equations given in (242). The remaining Hamiltonian evolution and constraint equations
also revert to their original forms.

Needless to say all of the above equations are automatically satisfied by the Kerr–Newman fields. Our
main aim is to study linear perturbations of these “backgrounds” and, in particular, to do so within the
reduced Hamiltonian framework sketched above. To this end, however, it is first necessary to compute
the twist potentials ω and η for these Kerr–Newman backgrounds since these potentials cannot be simply
read off the explicit formulas for (4)g and (4)A.

From the formulas given in Appendix A one sees immediately that, in the chosen coordinate systems,
βa= Aa=0 from which it follows, via the definitions (233) and (242), that Ca=0, r̃ =0 and ũ=0. Noting
also that the (2+1-dimensional) shift vector field X= Ñ a(∂/∂xa) vanishes as well one sees, from (243) and
(244) that ω,t = η,t = 0, as one should have expected for a stationary solution. From the Hamiltonian equa-
tions for g̃ab, γ and λ it also follows that π̃ab

= p̃= ṽ=0 for these (stationary) Kerr–Newman backgrounds.

Reading off the (Boyer–Lindquist) coordinate expressions

β0 =
−a(2Mr − Q2)

[(r2+ a2)2− a21 sin2 θ ]
, (253)

λ=
2Qra sin2 θ

r2+ a2 cos2 θ
, (254)

C0 =
2Qr(r2

+ a2)

[(r2+ a2)2− a21 sin2 θ ]
, (255)

Ñ =11/2 sin θ, (256)

e2γ
=

(
sin2 θ

r2+ a2 cos2 θ

)
[(r2
+ a2)2− a21 sin2 θ ] (257)
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and ( 1
µ(2)g̃

)
g̃ab dxa dxb

=1−1/2 dr2
+11/2 dθ2, (258)

where 1= r2
− 2Mr + a2

+ Q2, and substituting these expressions into (251) and (252) one arrives at
a system of first-order linear equations for the unknowns ω and η. The integrability conditions for this
system are readily verified and the system integrated to yield (with a particularly simple choice for the
arbitrary additive constants)

η =
−4Q(a2

+ r2) cos (θ)
a2+ 2r2+ a2 cos (2θ)

, (259)

ω = aM cos (θ)(5− cos (2θ))+
(

4a3 cos (θ) sin4 (θ)[a2 M + 2r(Q2
+Mr)+ a2 M cos (2θ)]

(a2+ 2r2+ a2 cos (2θ))2

)
. (260)

Note that these yield
η(r, 0)− η(r, π)=−4Q, (261)

ω(r, 0)−ω(r, π)= 8aM (262)

for the (unambiguous) differences of these functions on the upper and lower symmetry axes (which thread
through “wormholes” in the analytically extended black hole spacetimes and are actually disjoint).

Though one can readily derive the reduced field equations by variation of the reduced action J̃� (see
(246)–(248)), we present them here explicitly to lay the groundwork for their linearization. The evolution
equations for the canonical pairs {(γ, p̃), (ω, r̃), (η, ũ), (λ, ṽ), (g̃ab, π̃

ab)} are given by

γ,t =
Ñ p̃

4µ(2)g̃
+LXγ, (263)

p̃,t =
{
−2Ñ
µ(2)g̃

e4γ (r̃)2−
Ñ
µ(2)g̃

e2γ (ṽ2
+(ũ−λr̃)2)+4(Ñµ(2)g̃ g̃abγ,a),b

+Ñµ(2)g̃ e−2γ g̃ab(η,aη,b+λ,aλ,b)+2Ñµ(2)g̃ e−4γ g̃ab(ω,a+λη,a)(ω,b+λη,b)+LX p̃
}
, (264)

ω,t =
Ñe4γ

µ(2)g̃
r̃+

Ñe2γ

µ(2)g̃
λ(λr̃−ũ)+LXω, (265)

r̃,t ={(Ñµ(2)g̃ e−4γ g̃ab(ω,a+λη,a)),b+LX r̃}, (266)

η,t =
Ñe2γ

µ(2)g̃
(ũ−λr̃)+LXη, (267)

ũ,t ={(Ñµ(2)g̃ e−2γ g̃abη,a),b+(Ñµ(2)g̃ e−4γ g̃abλ(ω,a+λη,a)),b+LX ũ}, (268)

λ,t =
Ñe2γ ṽ

µ(2)g̃
+LXλ, (269)

ṽ,t =

{
Ñ
µ(2)g̃

e2γ r̃(ũ−λr̃)+(Ñµ(2)g̃ e−2γ g̃abλ,a),b−Ñµ(2)g̃ e−4γ g̃ab(ω,a+λη,a)η,b+LX ṽ

}
, (270)
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g̃ab,t =
2Ñ
µ(2)g̃

(g̃ac g̃bd−g̃ab g̃cd)π̃
cd
+(LX

(2)g̃)ab, (271)

π̃ab
,t =

{
−2Ñ
µ(2)g̃
[π̃acπ̃bd g̃cd−π̃

abπ̃ c
c ]+(LX π̃)

ab

+
1
2

Ñ
µ(2)g̃

g̃ab
[π̃ cd π̃cd−(π̃

c
c )

2
]+µ(2)g̃(Ñ

|ab
−g̃ab Ñ |c

|c)

+
1
2

Ñ
µ(2)g̃

g̃ab
[1

8
( p̃)2+1

2
e4γ (r̃)2+1

2
e2γ (ṽ2

+(ũ−λr̃)2)
]

+Ñµ(2)g̃

(
g̃ac g̃bd

−
1
2

g̃ab g̃cd
)

×

[
2γ,cγ,d+

1
2

e−2γ (η,cη,d+λ,cλ,d)+
1
2

e−4γ (ω,c+λη,c)(ω,d+λη,d)
]}
, (272)

whereas the constraints are now simply

H̃= 0 and H̃a = 0, (273)

with H̃ and H̃a defined by (247) and (248). In the above formulas the Lie derivatives with respect to
X = Ñ a(∂/∂xa) of scalars (γ, ω, η, λ) are simply their directional derivatives with, for example,

LXγ = Ñ aγ,a, (274)

whereas those of the scalar densities ( p̃, r̃ , ũ, ṽ) are

LX p̃ = (Ñ a p̃),a, etc., (275)

while those for the tensor (2)g̃ = g̃ab dxa
⊗ dxb and tensor density (2)π̃ := π̃ab(∂/∂xa)⊗ (∂/∂xb) are

(LX
(2)g̃)ab = Ñ c g̃ab,c+ Ñ c

,a g̃cb+ Ñ c
,b g̃ac = Ña|b+ Ñb|a, (276)

(LX
(2)π̃)ab

= (Ñ cπ̃ab),c− Ñ a
,cπ̃

cb
− Ñ b

,cπ̃
ac (277)

respectively. The 2-dimensional indices a, b, . . . are raised and lowered using (2)g̃ and (2)g̃−1
:=

g̃ab(∂/∂xa)⊗(∂/∂xb), whereas covariant differentiation with respect to (2)g̃ is designated by a vertical bar.

The last two of (263)–(272) together with the constraints (273) comprise the 2+1-dimensional Einstein
equations with a wavemap source, whereas the first eight of these equations are the corresponding (curved
space) wavemap equations in Hamiltonian form.

The Kerr–Newman solutions given explicitly in Appendix A are of course stationary and have vanishing
(2+1-dimensional) shift, X = Ñ a(∂/∂xa)= 0. It follows immediately from (263)–(272) that all of the
canonical momenta vanish, i.e., that

p̃ = r̃ = ũ = ṽ = π̃ab
= 0 (278)

and therefore that the evolution equations reduce to the stationary form{
4(Ñµ(2)g̃ g̃abγ,a),b+ Ñµ(2)g̃ e−2γ g̃ab(η,aη,b+ λ,aλ,b)

+ 2Ñµ(2)g̃ e−4γ g̃ab(ω,a + λη,a)(ω,b+ λη,b)
}
= 0, (279)

{(Ñµ(2)g̃ e−4γ g̃ab(ω,a + λη,a)),b} = 0, (280)
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{(Ñµ(2)g̃ e−2γ g̃abη,a),b+ (Ñµ(2)g̃ e−4γ g̃abλ(ω,a + λη,a)),b} = 0, (281)

{(Ñµ(2)g̃ e−2γ g̃abλ,a),b− Ñµ(2)g̃ e−4γ g̃ab(ω,a + λη,a)η,b} = 0, (282){
µ(2)g̃(Ñ

|ab
− g̃ab Ñ |c

|c)+ Ñµ(2)g̃(g̃
ac g̃bd

−
1
2 g̃ab g̃cd)

×[2γ,cγ,d + 1
2 e−2γ (η,cη,d + λ,cλ,d)+

1
2 e−4γ (ω,c+ λη,c)(ω,d + λη,d)]

}
= 0, (283)

whereas the Hamiltonian constraint, H̃= 0, takes the form

µ(2)g̃
[
−
(2)R̃+2g̃abγ,aγ,b+

1
2 e−2γ g̃ab(η,aη,b+λ,aλ,b)+

1
2 e−4γ g̃ab(ω,a+λη,a)(ω,b+λη,b)

]
= 0, (284)

while the momentum constraint, H̃a = 0, is satisfied identically.

Note especially that the trace of (283) results in the formula

Ñ |c
|c = 0. (285)

This fact that the (2+1-dimensional) lapse for Kerr–Newman solutions is harmonic will play an important
role in our treatment of the linearized equations.

Appendix D: Covariance and regularity of the fundamental wavemap fields

It is clear from their definitions in terms of the axial Killing field, ψ = ψµ(∂/∂xµ)→ ∂/∂ϕ, that the
wavemap variables

e2γ
:=

(4)gµν ψµψν→ (4)gϕϕ, (286)

λ := ψµ (4)Aµ→ A3 = Aϕ (287)

both transform as spacetime scalars.5 On the other hand the covariance properties of the complementary
variables, ω and η, are not immediately evident from our (reduced Hamiltonian framework) introduction
of these objects in Appendix C. As we shall show herein, however, all the wavemap fields do indeed
transform as spacetime scalars. It will then follow that their corresponding first variations, {γ ′, λ′, ω′, η′},
undergo linearized gauge transformations of the familiar form

γ ′→ γ ′+L(4)Yγ, λ′→ λ′+L(4)Yλ, (288)

ω′→ ω′+L(4)Yω, η′,→ η′+L(4)Yη, (289)

where (4)Y = (4)Yµ(∂/∂xµ) is an arbitrary spacetime vector field that commutes with ψ.

Recall that, in the absence of sources, both the electromagnetic two-form field (4)F and its Hodge dual
?(4)F are closed,

d (4)F = 0, d ? (4)F = 0. (290)

Combined with its invariance under axial rotations,

Lψ ? (4)F = 0, (291)

5: Note that λ is in fact also invariant with respect to electromagnetic gauge transformations since we only admit those
transformations that preserve explicit axial symmetry.
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the closure of ?(4)F implies the closure of the corresponding one-form field

(4)�= (4)�µ dxµ := ψµ ? (4)Fµν dxν = 1
2

(
1

√

− det (4)g

)
ψµ ε

µναβ (4)Fαβ(4)gνγ dxγ , (292)

and thus, on any simply connected domain such as the domain of outer communications (DOC) of a
black hole, the exactness of (4)�.

In fact, by direct evaluation of the right-hand side of the defining formula (292) in terms of our variables
one arrives at

(4)�= dη = η,γ dxγ , (293)

and thus concludes that our wavemap field η is indeed a spacetime scalar.

Finally, consider the one-form field

(4)1= (4)1γ dxγ := 1
2

1
√

− det (4)g
εµναβψµ(∂αψβ − ∂βψα)

(4)gνγ dxγ (294)

constructed covariantly from the Killing one-form ψµdxµ and its exterior derivative. Evaluating the
right-hand side of this expression in terms of our variables one arrives at

(4)1=−{dω+ λ dη} = − {ω,µ dxµ+ λη,µ dxµ} (295)

and thus concludes that the remaining wavemap field, ω, does indeed transform as a spacetime scalar.

Appendix E: Electric charge and angular momentum conservation laws

The electric flux of a Maxwell field (4)F through a closed, connected and orientable 2-surface (2)6 is
defined by the integral of its dual two-form, ?(4)F , over (2)6 where, in coordinates,

?(4)F = 1
2(?

(4)F)µν dxµ ∧ dxν, (296)

with
(?(4)F)µν = 1

2

√
− det (4)g εµναβ (4)Fαβ . (297)

If, for example, (2)6 bounds a 3-ball B lying in a spacelike hypersurface then the electric charge Q B

contained in that ball would be given, in our slightly nonstandard conventions,6 by

8πQ B =

∫
(2)6=∂B

?(4)F . (298)

In the case of a black hole, however, the presence of nonvanishing flux through a 2-surface surrounding
its event horizon may simply be a measure of “field lines trapped in the topology of space” with no
actual source current ? j for the Maxwell field necessarily existing in the spacetime (Wheeler’s “charge
without charge”). This is indeed the case for the maximally analytically extended Kerr–Newman black
hole spacetimes which are global solutions to the pure electrovacuum field equations.

6: Recall that we have absorbed a factor of 2 into (4)F and its ADM representatives {(4)A, (3)E, (3)B} to “normalize” the form of
Hamilton’s equations.
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By the same (topological trapping) mechanism a stationary black hole solution can exhibit a nonvanishing
magnetic flux (the integral of (4)F itself over a surface surrounding the event horizon) without the necessity
of actual magnetic monopoles existing in the (topologically nontrivial) spacetime. But since one expects,
on astrophysical grounds, that actual black holes in the Universe are created from the collapse of ordinary
material sources preexisting in topologically trivial space (e.g., rotating stars), such objects could certainly
be electrically, but presumably not magnetically, charged. For this reason we herein exclude the consider-
ation of a nonvanishing magnetic flux, both for the background black hole spacetime and its perturbations.

In view of the axial symmetry of the Kerr–Newman black holes, we can exploit the formalism developed
herein to evaluate the (electric) charge integral,

8πQ =
∫
(2)6

?(4)F, (299)

(over a surface (2)6 surrounding the event horizon) in terms of the values of the wavemap potential
function η taken on the axes of symmetry. For simplicity let us evaluate this integral over the (topologically
spherical) surface (2)6 defined in the Boyer–Lindquist-type coordinates of Appendix A by R = R0 =

constant> R+ and t = t0. Recalling that, in these coordinates, the axial Killing field ψ =ψµ(∂/∂xµ)→
∂/∂ϕ we get, by direct calculation∫

(2)6

?(4)F =
∫
(2)6

1
2

√
− det (4)g εθϕαβ (4)Fαβ dθ ∧ dϕ

=−
1
2

∫
(2)6

1√
− det (4)g

(4)Fαβ εµναβ (4)gθµ ψν dθ dϕ

= 2π
∫ π

0

1
2

1√
− det (4)g

ψν ε
νµαβ (4)Fαβ (4)gµθ dθ

= 2π
∫ π

0
η,θ dθ = 2π(η(R0, π)− η(R0, 0)), (300)

where we have, in the final steps, appealed to (292) and (293). This result reproduces the observation
made incidentally in (261) while now justifying the identification of the parameter Q occurring in the
Kerr–Newman solution with electric charge.

From the defining formula (239) and the fact that the electric vector density Ea(∂/∂xa) must, for reasons
of regularity, have a vanishing θ -component along the axes of symmetry it follows that η must be constant
along each of these axes so that both η(R, π) and η(R, 0) are independent of R.

A straightforward linearization of the above argument leads to the corresponding perturbative formula

4Q′ = η′(t, θ=π)− η′(t, θ=0), (301)

which, at first glance, would seem to allow for a time-dependent perturbed charge. However, by combining
the linearizations of (242) and (243) with the axis regularity results of [70] one finds that both r̃ ′ and ũ′ van-
ish to order O(sin θ) at the axes of symmetry and, combined with a decay result for LX ′η, that η′,t actually
vanishes to order O(sin2 θ) at these axes. It follows that η′(t, π) and η′(t, 0) are both independent of t .

While one could thus allow the perturbation of η to incorporate a corresponding perturbation of the
conserved electric charge, there is little or no reason for doing so. One can simply insist that the given
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“unperturbed” black hole have the full charge desired for the final, perturbed object and thus demand,
without serious loss of generality, that η′ actually vanish on both symmetry axes. Only this choice
is compatible with the natural perturbative boundary condition that η′ should vanish at infinity — an
assumption that we shall impose herein.

A similar argument can be given for the evaluation of the total angular momentum of a Kerr–Newman
black hole and for that of its axisymmetric perturbations by appealing to Komar’s famous flux formula
for such cases [75]. Komar’s formula states the total angular momentum J is given by the flux integral

16π J =
∫
(2)6

?dψ, (302)

where ψ = ψµ dxµ, the covariant form of the axial Killing field, with the proviso that now, in order
to include contributions from material sources such as the electromagnetic field, the integral should be
evaluated in the limit that the “radius” of the integration surface (2)6 tends to infinity. Note that the
Killing one-form ψµ dxµ plays here a role analogous to that of the “vector potential” Aµ dxµ in the case
of electric charge.

A direct evaluation of this flux integral over the (topologically spherical) surface (2)6R0 of Boyer–Lindquist
“radius” R0 gives∫

(2)6R0

?dψ = 1
2

∫
(2)6R0

1√
− det (4)g

(∂αψβ − ∂βψα) ε
νµαβ ψν

(4)gθµ dθ dϕ

= 2π
∫ π

0

1
2

{
1√

− det (4)g
ψν ε

νµαβ(∂αψβ − ∂βψα)
(4)gµθ

}
R=R0

dθ

= 2π
∫ π

0
{−(ω,θ + λη,θ )}|R=R0 dθ, (303)

where we have, in the final step, appealed to (294) and (295).

In the limit R0→∞ the contribution proportional to λ (see (254)) drops out leaving

8J = lim
R0→∞

{ω(R0, 0)−ω(R0, π)}. (304)

By an argument completely analogous to that given above for η though one finds that ω(R0, θ = π) and
ω(R0, θ = 0) are both independent of R0 so that one recovers (262) together with the identification that
J = aM in terms of the Kerr–Newman parameter a.

A straightforward linearization of the above argument leads to the corresponding perturbation formula

8J ′ = {ω′(t, θ=0)−ω′(t, θ=π)}, (305)

which would seem to allow for a time-dependent perturbed angular momentum. But a straightforward
linearization of (244), combined with the aforementioned results for r̃ ′ and ũ′ and an appeal to [70] for
the evaluation of LX ′ω, shows that ω′,t vanishes to order O(sin4 θ) at the axes of symmetry. It follows
that ω′(t, 0) and ω′(t, π) are both independent of t.

While one could thus allow the perturbation of ω to reflect a corresponding perturbation in the conserved
angular momentum, there is, as was already noted for the case of electric charge, no reason for doing
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so. Again one can simply demand that the given “unperturbed” Kerr–Newman black hole have the total
angular momentum desired for the final, perturbed object and thus take ω′ to actually vanish on both
symmetry axes. We thus assume herein, without any essential loss of generality, that the perturbations are
taken to satisfy J ′ = 0 and Q′ = 0.

The formulas, corresponding to (299) and (300) above, for the magnetic flux threading through a 2-surface
(2)6 surrounding (at t = t0 and R = R0 > R+) the black hole’s event horizon are given (again in our
slightly nonstandard conventions) by

8πQmag
=

∫
(2)6

(4)F =
∫
(2)6

(4)Fθϕ dθ dϕ

=

∫
(2)6

(∂θλ) dθ dϕ = 2π
∫ π

0
∂θλ dθ = 2π(λ(R0, π)− λ(R0, 0)). (306)

This expression of course vanishes for our (nonmagnetically charged) background solution since λ
vanishes on the axes of symmetry .

Linearizing the ADM formula for the magnetic field,

Bi
=

1
2ε

i jk(∂ j Ak − ∂k A j ), (307)

one arrives at the 2-dimensional vector density

Ba′
= εab∂b A′ϕ = ε

ab∂bλ
′, (308)

which, for reasons of regularity, must have a vanishing θ-component along the axes of symmetry. It
follows that λ′ must be independent of R along each of these axes and thus that the linearization of (306)
yields

4Qmag′
= λ′(t, θ = π)− λ′(t, θ = 0), (309)

which, at first glance, would seem to allow for a time-dependent perturbation of the magnetic charge.
However a straightforward linearization of (269), combined with the axis regularity results of [70], shows
that λ′,t vanishes to order O(sin2 θ) at the axes of symmetry and hence that both λ′(t, π) and λ′(t, 0) are
independent of t. As mentioned above we shall demand that these constants of motion both vanish so that
even our perturbed black hole is not magnetically charged. Thus we demand that λ′ vanish on both the
axes of symmetry.

Appendix F: Gauge conditions for the linearized equations

A fundamental result of [20; 22] is that one can always express the induced metric, gi j dx i
⊗ dx j , on a

Cauchy hypersurface for the DOC of an axisymmetric, nondegenerate, asymptotically flat black hole in
coordinates {x i

} = {xa, ϕ} = {ρ, z, ϕ} such that (reexpressed in our notation)

gi j dx i
⊗ dx j

= e−2γ g̃ab dxa
⊗ dxb

+ e2γ (dϕ+βadxa)⊗ (dϕ+βbdxb), (310)

where
g̃ab dxa

⊗ dxb
= e2νhab dxa

⊗ dxb

= e2ν(dρ⊗ dρ+ dz⊗ dx), (311)
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ψ = ∂/∂ϕ is the generator of (axial) rotations under which gi j dx i
⊗ dx j is invariant and where R :=√

ρ2+ z2 takes a constant value, R→ R+>0, on the (topological) sphere corresponding to the black hole’s
(nondegenerate) horizon (intersected with the chosen Cauchy surface). The coordinates introduced (via
(164)–(168)) for the Kerr–Newman “background” solutions are clearly of this (Weyl–Papapetrou) type.

The flexibility to arrange that the coordinate sphere R :=
√
ρ2+ z2→ R+ = constant > 0 coincide with

a particular (topological) sphere of geometrical significance (e.g., the black hole’s horizon) results from
the fact that the (manifestly conformally flat) form (311) for the Riemannian 2-metric g̃ab dxa

⊗ dxb is
preserved under arbitrary conformal transformations whereby the coordinates ρ and z can be replaced by
arbitrary, conjugate harmonic functions thereof: ρ→ u(ρ, z), z→ v(ρ, z).

To preserve this metric form under Einsteinian evolution, however, one would need to impose the condition

(µ(2) g̃ g̃ab),t =−2Ñ
(
π̃ab
−

1
2 g̃ab g̃e f π̃

e f )
+LX (µ(2) g̃ g̃−1)ab

= 0 (312)

as a restriction on the (2-dimensional) shift field X = Ñ a(∂/∂xa). Reexpressed in terms of the flat metric
hab dxa

⊗ dxb, equation (312) becomes

(
√
(2)hhab),t =−2Ñ

(
π̃ab
−

1
2 habhe f π̃

e f )
+LX (

√
(2)hh−1)ab

= 0, (313)

where h−1
= hab(∂/∂xa)⊗ (∂/∂xb) and (2)h := det (hab). Equation (313) ensures, of course, that the

manifestly conformally flat form of this metric is preserved under the evolution but, even though we also
demand that hab dxa

⊗dxb remain flat, it is not uniquely fixed by (313) since (as was previously noted in
Section 4C) any metric of the form hλab = e2λhab is also flat whenever the function λ is harmonic (with
respect to hab dxa

⊗ dxb or any metric conformal thereto).

In other words the requirement that hab dxa
⊗ dxb be flat does not uniquely fix the decomposition of

g̃ab = e2νhab into a flat metric and a conformal factor but we can impose such uniqueness by fiat by
absorbing the (harmonic logarithm) λ of any such deformation into the function ν, letting ν→ ν+ λ and
holding hab fixed.

In this paper, of course, we shall not need to deal with this issue at the fully nonlinear level but the
linearized form of (312), about a Kerr–Newman background (for which π̃ab

= 0 and Xa
= Ñ a

= 0) is

LX ′(µ(2) g̃ g̃−1)ab
= 2Ñ

(
π̃ ′ab
−

1
2 g̃ab g̃e f π̃

′e f ) (314)

or, equivalently,

LX ′(
√
(2)hh−1)ab

= 2Ñ
(
π̃ ′ab
−

1
2 habhe f π̃

′e f ), (315)

where X ′a = Ñ a′.

In this article, however, rather than attempt to solve (314) or (315) directly for the linearized shift X ′,
we shall, in Appendix H, construct the gauge transformation that carries one from an arbitrary gauge to
the desired Weyl–Papapetrou gauge at the linearized level. From the vector field (4)Y = (4)Yµ(∂/∂xµ)
that generates this gauge transformation (see (354)–(359)) one can then simply compute, among other
quantities, the transformed, linearized shift field, X ′ = Ñ c′(∂/∂xc), via (377).



AXISYMMETRIC PERTURBATIONS OF KERR–NEWMAN BLACK HOLES 57

Thus we may assume, without essential loss of generality, that the flat, “conformal” metric, hab dxa
⊗dxb,

preserves its (manifestly flat) form,

hab dxa
⊗ dxb

= dρ⊗ dρ+ dz⊗ dz = d R⊗ d R+ R2 dθ ⊗ dθ, (316)

under the perturbation and thus take h′ab = 0. Since, in principle, this (Weyl–Papapetrou) gauge condition
can be imposed at the fully nonlinear level, we may assume, a fortiori, that it holds to higher order at the
perturbative level and thus, in particular, set h′′ab = 0.

Appendix G: Analysis of the linearized constraint equations

Upon introducing the “twist” potentials η and ω we have solved the electromagnetic (Gauss law) constraint
and the azimuthal projection of the (3+1-dimensional) momentum constraint leaving only

H̃= 0 and H̃a = 0 (317)

as constraints for the reduced field equations. A straightforward calculation using the reduced evolution
equations (263)–(272) with arbitrary lapse Ñ and shift X = Ñ a(∂/∂xa) shows that these quantities, if not
already vanishing, satisfy the evolution equations

∂

∂t
H̃= (Ñ aH̃),a + Ñ,b g̃ab H̃a + (Ñ g̃ab H̃a),b, (318)

∂

∂t
H̃a = (Ñ bH̃a),b+ Ñ b

,aH̃b+ Ñ,aH̃, (319)

which are clearly at least consistent with the preservation of the constraints (317) in time. Linearizing
equations (318) and (319) about a background solution for which (as in the Kerr–Newman cases of interest
here) X = 0 yields the corresponding propagation equations for the first variations (H̃′, H̃′a) and (H̃, H̃a):

∂

∂t
H̃′ = Ñ,b g̃ab H̃′a + (Ñ g̃ab H̃′a),b, (320)

∂

∂t
H̃′a = Ñ,aH̃′. (321)

These can also be derived by directly computing the time derivatives of (H̃′, H̃′a) by means of the linearized
evolution equations.

As a subset of the linearized Einstein–Maxwell field equations, the linearized constraints

H̃′ = 0 and H̃′a = 0 (322)

are gauge-invariant (provided always that the background, exact field equations are satisfied) and this is
reflected in the fact that neither Ñ ′ nor Ñ a′ appear in (320) and (321) (see the discussion in [58]).

In a free evolution framework one would impose the linearized constraints H̃′ = H̃′a = 0 on an initial
Cauchy hypersurface and appeal to the propagation equations (320)–(321) to establish their preservation
in time. Since these propagation equations, however, are apparently not of a standard type, we prefer
to adopt the strategy of constrained evolution whereby one enforces the linearized constraints on every
time slice by solving them for certain “dependent” variables in terms of the unconstrained, “dynamical”
variables, namely the first variations (γ ′, ω′, η′, λ′) of the wavemap functions and their conjugate momenta
( p̃′, r̃ ′, ũ′, ṽ′).
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In the class of gauges that we shall consider and recalling that the background, Kerr–Newman solutions
of interest have vanishing canonical momenta, the linearized constraints reduce to

H̃′=
√
(2)h hab [4γ,aγ ′,b−e−2γ γ ′(η,aη,b+λ,aλ,b)+e−2γ (η,aη

′

,b+λ,aλ
′

,b)

−2e−4γ γ ′(ω,a+λη,a)(ω,b+λη,b)+e−4γ (ω,a+λη,a)(ω
′

,b+λη
′

,b+λ
′η,b)

]
+2∂a(

√
(2)h hab ν ′,b)= 0, (323)

H̃′a =−2 (2)∇b(h) r̃ ′ba −e2ν
√
(2)h τ ′,a+( p̃

′γ,a+r̃ ′ω,a+ṽ′λ,a+ũ′η,a)= 0, (324)

where
r̃ ′ba := g̃ad

(
π̃ ′bd
−

1
2 g̃bd g̃e f π̃

′e f )
= e2νhad

(
π̃ ′bd
−

1
2 hbdhe f π̃

′e f )
= e2νhad

(
π̃ ′bd
−

1
2

√
(2)h hbdτ ′

)
(325)

denotes the traceless part of π̃ ′ab and

τ ′ :=
g̃ab

µ(2)g̃
π̃ ′ab
=

hab
√
(2)h

π̃ ′ab (326)

its (scalarized) trace. Here hab = e−2ν g̃ab designates the flat metric on Mb introduced in Appendix F,
whereas (2)∇a(h) and

√
(2)h denote covariant differentiation and “volume” element for this metric. Recall

that in the Weyl–Papapetrou coordinates {ρ̄, z̄} first introduced in Appendix A, Mb corresponds to the half-
plane {(ρ̄, z̄) | ρ̄≥0, z̄∈R}with the “cut” (176) removed and (1/

√
(2)h)hab dxa

⊗dxb
=dρ̄⊗dρ̄+dz̄⊗dz̄.

The Hamiltonian constraint (323) is an elementary (flat space) Poisson equation on {Mb, hab dxa
⊗ dxb

}

for the first variation, ν ′, of the logarithm of the conformal factor e2ν. As discussed in Section 4D, however,
regularity at the axes of symmetry requires that we impose the Dirichlet boundary condition (see (154))

ν ′|θ=0,π
R≥R+

= 2γ ′|θ=0,π
R≥R+

. (327)

Additional considerations, such as those discussed in Section 4C, can lead to the imposition of a Neumann
boundary condition such as the (minimal-surface-preserving) condition

ν ′,R|R=R+ = 0 (328)

at the event horizon. Thus one can be naturally led to a mixed, elliptic boundary value problem for ν ′ with
Dirichlet data required along the axes of symmetry and complementary Neumann data needed along the
horizon boundary. Though such problems can be notoriously difficult to solve in general we shall be able
to exploit the special features of our particular problem to solve it by elementary means. In this way we
simultaneously remove the ambiguity in the construction of ν ′ (which would otherwise be undetermined
up to the addition of a harmonic function) and cancel the flux contributions that could otherwise lead to a
violation of the conservation of energy.

A standard (Green’s theorem) argument shows that if indeed a solution vanishing at infinity exists for this
(mixed, elliptic) problem then it will necessarily be unique. Our strategy for constructing this hypothetical
solution will be to seek to express it as

ν ′ = ν ′D + ν
′

N , (329)
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where ν ′D is the solution to an associated, inhomogeneous Dirichlet problem chosen to solve (323) with
the boundary condition (327) imposed, whereas ν ′N will be the harmonic solution to a complementary,
homogeneous Neumann problem chosen to impose the boundary condition (328) and constructed in such
a way as to leave the Dirichlet condition on the axes of symmetry undisturbed. The special (2-dimensional,
conformally covariant) nature of our problem is what allows this last step to be carried out.

We begin by imposing suitable Dirichlet conditions for ν ′D on the boundary of the closure Mb of Mb (i.e.,
on the full z̄-axis of the half-plane {(ρ̄, z̄) | ρ̄ ≥ 0, z̄ ∈ R}) and with suitable “regularity” assumed for the
free data {γ ′, ω′, η′, λ′} appearing in (323). More precisely we choose Dirichlet data for ν ′D along the
upper and lower axis components to cancel the unwanted flux contributions identified previously (i.e., so
as to impose (327)) and, as an intermediate step, interpolate along the “strut” separating these disjoint
axes with smooth but arbitrarily chosen, complementary Dirichlet data. One could, for example, choose
ν ′D = 2γ ′ along this strut. Using the explicitly known fundamental solution (Green’s function) for this
problem (see, for example [35, Section 2G]), we solve the corresponding Dirichlet problem (i.e., solve
(323) for ν ′D in place of ν ′ with the boundary data so chosen).

The solution for ν ′D will of course fail in general to satisfy the Neumann condition (328) along the horizon
but if, as in the asymptotically pure-gauge problem discussed in Section 4A, γ ′ has the property that

γ ′,R|R=R+
θ=0,π

= 0 (330)

then, from the chosen condition,
ν ′D = 2γ ′ (331)

along the z̄-axis we shall automatically have

ν ′D,R|R=R+
θ=0,π

= 0. (332)

We now revert to the “half-plane with half disk removed” picture for Mb discussed in Appendix A and
extend this to a “full plane with full disk removed” by reflection across the z̄-axis. We now choose
Neumann data for ν ′N on the circle at R = R+ by setting

ν ′N ,R| R=R+
θ∈[0,π ]

=−νD,R| R=R+
θ∈[0,π ]

(333)

and then antireflecting this data across the z̄-axis to complete the specification on the full circle (i.e.,
choosing the value of ν ′N ,R to be the negative of that at its mirror image on the circle). While it is not
strictly needed for our construction equation, (332) will ensure that this extension of the Neumann data
will be continuous at those points where the horizon meets the axes of symmetry.

The fundamental solution for the Neumann problem on the plane with a disk removed is explicitly known
(see [29]7). Using it together with the chosen Neumann data on the circle R = R+, we construct the
harmonic function ν ′N . From the uniqueness of this solution and the reflection (anti-) symmetry of its
boundary data we see that ν ′N will in fact vanish on the axes of symmetry. Expressing ν ′D and ν ′N in a
common coordinate system, adding them and restricting the result to Mb, we see that ν ′ := ν ′D + ν

′

N

7: See especially Chapter 2, Section 3.1 for Green’s function for a disk (or ball) and Chapter 3, Sections 7, 7.1c and 7.1.1c for
Green’s function for the corresponding Neumann problem.
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satisfies (323) together with the mixed boundary conditions (327) and (328). By construction it is the
unique function vanishing at infinity that has these properties. We thus conclude that:8

Theorem G.1. Equation (323) has, for each choice of regular data {γ ′, ω′, η′, λ′}, a unique solution ν ′

that vanishes at infinity and satisfies the mixed (Dirichlet/Neumann) boundary conditions (327) and (328).

To solve the momentum constraint (324) we exploit the fact that, under suitable boundary and asymptotic
conditions (discussed in detail in Appendix I), symmetric transverse traceless tensors on Mb vanish
identically and thus that (the mixed form of) a symmetric traceless density, r̃ ′ba (∂/∂xb)⊗ dxa , can be
expressed as

r̃ ′ba =
√
(2)h[(2)∇a(h)Y ′

b
+
(2)
∇

b(h)(hacY ′c)− δb
a
(2)
∇c(h)Y ′

c
] (334)

for a suitably chosen vector field Y ′ = Y ′c(∂/∂xa). Recalling that hab dxa
⊗ dxb is flat one finds easily

that (324) reduces to

2
√
(2)h

(
(2)
∇b(h)(2)∇b(h)(hacY ′c)

)
=−e2ν

√
(2)hτ ′,a + ( p̃

′γ,a + r̃ ′ω,a + ṽ′λ,a + ũ′η,a), (335)

which, in Weyl–Papapetrou coordinates, takes the form of elementary, decoupled Poisson equations for the
components of Y ′. With suitable boundary and regularity conditions imposed upon the relevant data these
can be solved explicitly for Y ′. Again the relevant elliptic theory is presented in detail in Appendix H below.

By exploiting the background field equations (278)–(285), satisfied by an arbitrary, Kerr–Newman black
hole, it is straightforward to show that

ÑH̃′ = ∂

∂xb

{
Ñ
√
(2)h hab[4γ,aγ ′+ 2ν ′,a + e−2γ (η,aη

′
+ λ,aλ

′)

+ e−4γ (ω,a + λη,a)(ω
′
+ λη′)

]
− 2

√
(2)h hab Ñ,aν ′

}
(336)

for arbitrary (γ ′, ω′, η′, λ′, ν ′). That this expression is a spatial divergence reflects the fact, discussed
briefly in Section 3B, (C, Z)= (Ñ , 0) is an element of the kernel of the adjoint of the linearized constraint
operator, corresponding to the occurrence of ζ = ∂/∂t as a Killing field on the quotient manifold
V/U (1)= R×Mb (see Appendix C). To fully appreciate its implications for the perturbative analysis it
is essential to consider the second variation of the Hamiltonian constraint.

Let us abbreviate by {q} := {γ, ω, η, λ} the wavemap variables and by { p} := { p̃, r̃ , ũ, ṽ} their canonically
conjugate momenta. These are the unconstrained, dynamical “degrees of freedom” for the reduced,
axisymmetric Einstein–Maxwell system. The flat, conformal metric hab dxa

⊗dxb and (2+1-dimensional)
mean curvature function, τ , are restricted, in our reduced Hamiltonian framework, through the imposition
of suitable gauge conditions by setting, for example,

hab dxa
⊗ dxb

= dρ̄⊗ dρ̄+ dz̄⊗ dz̄

8: By construction our solution satisfies the necessary condition, (327), for regularity at the axes. That it is, moreover, fully
regular at the axes follows indirectly from its uniqueness as a solution to the relevant Hamiltonian constraint and an independent,
purely 3+1-dimensional treatment of the corresponding Lichnerowicz equation with axisymmetric boundary data. The well-
known existence of a unique, globally smooth solution to the latter ensures that our solution, with which it must agree, has the
required regularity.
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and (in the simplest case) taking τ = 0 (2+1-dimensional maximal slicing). The canonically conjugate
partners of these gauge variables, namely the tracefree component of the gravitational momentum,

r̃a
b
∂

∂xa ⊗ dxb
:= r̃, (337)

and conformal factor, e2ν, are to be determined (subject to suitable boundary conditions) through the
solution of the elliptic momentum and Hamiltonian constraints on each time slice. Preservation of the
gauge conditions throughout the evolution necessitates a corresponding fixation of the lapse and shift
fields (N , X) via the solution of an auxiliary set of (linear) elliptic equations (see Appendices F, H and K
for details).

Treating black hole stability problems at this fully nonlinear level is currently out of reach but closely
related methods have been successfully used to prove the fully nonlinear stability (in the direction of
cosmological expansions) of a family of U (1)-symmetric, spatially compact, vacuum cosmological
models [18].

To derive the linearized and higher-order perturbation equations (for axisymmetric perturbations of
Kerr–Newman backgrounds, in particular) one can imagine having a smooth one-parameter family of
exact solutions, containing the desired background, and differentiating the field equations one or more
times with respect to this curve parameter, e, and then fixing it to the background value, say e = 0. Thus
we now write {q ′, p′} for {(γ ′, ω′, η′, λ′), ( p̃′, r̃ ′, ũ′, ṽ′)}, where

{q ′, p′} :=
{
∂

∂e
q(e, · ), ∂

∂e
p(e, · )

}∣∣∣
e=0

(338)

and denote by {q ′′, p′′} the corresponding second variations

{q ′′, p′′} :=
{
∂2

∂e2 q(e, · ), ∂
2

∂e2 p(e, · )
}∣∣∣

e=0
(339)

etc.

The gauge choice made for the flat metric (2)h implies that (2)h′=(2)h′′= 0, etc. (see Appendix F), whereas
that for τ (in the simplest, 2+1-dimensional, maximal case) yields τ ′= τ ′′= 0 as well. To allow, however,
for more general time gauge conditions (3+1-dimensional maximal slicing, for example) we shall retain τ ′

and τ ′′ in the formulas to follow. The corresponding perturbations {ν ′, r̃a′
b , Ñ ′, X ′} and {ν ′′, r̃a′′

b , Ñ ′′, X ′′}
of the remaining, dependent variables are determined (with suitable boundary conditions) by solving the
corresponding perturbed elliptic equations and are thus, in effect, known functionals of {q ′, p′, q ′′, p′′}.

Let us now denote the first variations (323) and (324) of the constraints more explicitly as first-order
linear operators acting on the relevant linearized variables, via

DH̃(q,(2)h) · (q ′, ν ′) := H̃′ (340)
and

DH̃a(q,(2)h, ν) · ( p′, r̃ ′, τ ′) := H̃′a (341)

so that Ñ DH̃(q,(2)h) · (q ′, ν ′) is the total divergence given explicitly by (336).

A straightforward calculation, utilizing (247), (248), (336)–(341) now yields

ÑH̃′′ = Ñ DH̃(q,(2)h) · (q ′′, ν ′′)+ Ñ D2H̃(q,(2)h, ν) ·
(
(q ′, p′, r̃ ′, τ ′), (q ′, p′, r̃ ′, τ ′)

)
, (342)
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where

D2H̃(q,(2)h, ν) ·
(
(q ′, p′, r̃ ′, τ ′), (q ′, p′, r̃ ′, τ ′)

)
:=

{
2e−2ν
√
(2)h

[
r̃ ′ba r̃ ′ab +

1
8( p̃
′)2+ 1

2 e4γ (r̃ ′)2+ 1
2 e2γ ((ṽ′)2+ (ũ′− λr̃ ′)2)

]
− e2ν

√
(2)h(τ ′)2

+

√
(2)h hab [4γ ′,aγ ′,b+ 2e−2γ (γ ′)2(η,aη,b+ λ,aλ,b)− 4e−2γ γ ′(η,aη

′

,b+ λ,aλ
′

,b)

+ e−2γ (η′,aη
′

,b+ λ
′

,aλ
′

,b)+ 8e−4γ (γ ′)2(ω,a + λη,a)(ω,b+ λη,b)

− 8e−4γ γ ′(ω,a + λη,a)(ω
′

,b+ λη
′

,b+ λ
′η,b)

+ e−4γ (ω′,a + λη
′

,a + λ
′η,a)(ω

′

,b+ λη
′

,b+ λ
′η,b)

+e−4γ (ω,a+λη,a)(2λ′η′,b)
]}
, (343)

and

H̃′′a = DH̃a(q,(2)h, ν) · ( p′′, r̃ ′′, τ ′′)− 2e2ν
√
(2)h ν ′τ ′,a + ( p̃

′γ ′,a + r̃ ′ω′,a + ṽ
′λ′,a + ũ′η′,a). (344)

Combining (336), (342), and (343), we see that the constraint equations of second order, namely

H̃′′ = 0 and H̃′′a = 0, (345)

imply that the density EAlt defined by

EAlt
:=

1
2 Ñ D2H̃(q,(2)h, ν) ·

(
(q ′, p′, r̃ ′, τ ′), (q ′, p′, r̃ ′, τ ′)

)
(346)

is equal to a spatial divergence and thus that the integral

EAlt
:=

∫
Mb

d2x {EAlt
} (347)

is equal to a boundary integral when the field equations are satisfied. In the limiting case of purely
electromagnetic perturbations of a Kerr background EAlt reduces to the functional H Alt defined via (30)
and (31).

It is clear from the divergence form for ÑH̃′ given by (336) that, when the linearized Hamiltonian
constraint, H̃′ = 0, is imposed, the integral of ÑH̃′ over Mb will imply the vanishing of a sum of potential
“boundary flux” terms arising at the boundary components corresponding to R ↗ ∞, R ↘ R+ and
θ→ 0, π . By exploiting the asymptotic behaviors of the perturbations {η′, λ′, ω′, γ ′, ν ′} given via (79),
(80), (133), (106), (108), (110) and (112), it is straightforward to show that the flux integrand vanishes
pointwise as R↗∞, yielding a separately vanishing contribution to the net boundary flux. By exploiting
the regularity of the various perturbations at the axes of symmetry, including especially the condition (154)
on ν ′ − 2γ ′ and the fact discussed in Section 4D that each of {ω′, λ′, η′} vanishes to order O(sin2 θ)

as θ → 0, π , it follows that the boundary flux integrand also vanishes pointwise along the (artificial)
boundary components corresponding to θ→ 0, π .

Finally, by exploiting the regularity of the perturbations {γ ′, λ′, η′, ω′} at the horizon discussed in
Section 4A, together with the (minimal surface preserving) condition (328) and the pointwise vanishing
of the factors {Ñ , γ,R, e−2γ η,R, e−2γλ,R, e−4γ (ω,R + λη,R)} as R ↘ R+, it is straightforward to show
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that the only potential flux contribution at this “inner” boundary component must come from the only
remaining term in the flux integrand:

−(2
√
(2)hh Ra Ñ,aν ′)|R+ =−4R+

(
∂

∂θ
(sin θ (2)Y θ )

)∣∣∣
R+
. (348)

While not pointwise vanishing as the other terms were, this clearly has vanishing integral with respect
to θ when integrated over the interval θ ∈ [0, π] corresponding to the horizon component at R+.

Proceeding now to the second variation of the Hamiltonian constraint, H̃′′ = 0, it is now clear from (336),
(340)–(343) that the sum of the boundary flux contributions resulting from the integral of the divergence
expression

Ñ DH̃(q,(2)h)(q ′′,ν ′′)= ∂

∂xb

{
Ñ
√
(2)hhab[4γ,aγ ′′+2ν ′′,a+e−2γ (η,aη

′′
+λ,aλ

′′)

+e−4γ (ω,a+λη,a)(ω
′′
+λη′′)

]
−2
√
(2)hhab Ñ,aν ′′

}
(349)

over Mb must equate to the volume integral over this same domain of

−2EAlt
=−Ñ D2H̃(q,(2)h, ν) ·

(
(q ′, p′, r̃ ′, τ ′), (q ′, p′, r̃ ′, τ ′)

)
, (350)

which, by (346) and (347) is equal to −2EAlt.

It is straightforward to verify that mere boundedness (or even mild blowup) of the perturbations {λ′′, η′′, ω′′}
as R↗∞ is sufficient to ensure their pointwise vanishing flux contributions at the “outer” boundary.
Furthermore their regularity as smooth scalar fields at the axes of symmetry and at the horizon guarantees
their (pointwise) vanishing contributions to the flux integrands at these boundary components as well.
This leaves only possible contributions of γ ′′ and ν ′′ to be considered.

On the other hand the demand for regularity at the axes of symmetry leads, upon appealing again to the
Rinne/Stewart results [70], to the restriction

ν ′′|θ=0,π = 2γ ′′|θ=0,π (351)

upon the second-order perturbations and this suffices to ensure their (pointwise) vanishing contributions
to the flux integrands along these axes.

Following up on the seminal work of D. Brill [13], Sergio Dain derived an elegant integral expression for
the ADM mass of an asymptotically flat, axisymmetric Einstein spacetime [26, see especially Section 4.3].
Its first variation (about a Kerr–Newman background) vanishes, for the class of perturbations considered
herein, in view of the flux integral results described above but its second variation, expressed in our
notation, yields the formula

M ′′ADM =−
1
4

lim
R↗∞

∫ π

0
R2 sin θ

{
ν ′′,R −

1
R
ν ′′+

2
R
γ ′′
}

dθ (352)

and thus allows us to express the “volume” integral of EAlt over Mb (see (346)–(347)) as follows:

M ′′ADM

=
1
4

EAlt
+

1
2

∫ π

0
dθ(R+ sinθ ν ′′)

∣∣∣
R↘R+

=

∫
Mb

{1
8

Ñ D2H̃(q,(2)h,ν)·
(
(q ′, p′, r̃ ′,τ ′), (q ′, p′, r̃ ′,τ ′)

)}
d R dθ+1

2

∫ π

0
dθ(R+ sinθ ν ′′)

∣∣∣
R↘R+

.

(353)
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Recalling the discussion at the beginning of Section 4 we see that, at least for the class of (asymptotically
pure-gauge) perturbations considered herein, EAlt can be replaced by the manifestly positive definite
expression EReg. Whether this perturbative contribution to the ADM mass is further “shifted” by the
boundary integral over the horizon hinges, of course, upon the boundary condition chosen for ν ′′|R↘R+
in the second variation of the Hamiltonian constraint. If, for example, the perturbations considered
are chosen to be symmetric under the mapping (“inversion in the sphere”) R → R2

+
/R′ (for which

r = R + M + R2
+
/R→ r ′ = R′ + M + R2

+
/R′) which maps one “end” of the Kerr–Newman solution

isometrically to the other, then the resulting boundary integral over the horizon could not distinguish one
end from the other and would have to vanish.

Appendix H: Transforming compactly supported perturbations to Weyl–Papapetrou gauge

As discussed previously (see the discussion near the end of Appendix B) one can evolve a large class of
compactly supported solutions to the linearized constraint equations in a hyperbolic gauge and appeal
to finite propagation speed to show that such perturbations remain bounded away from the horizon and
spatial infinity for all finite (Boyer–Lindquist) time t. On the other hand our energy flux derivation
has assumed that the perturbations be expressed in a Weyl–Papapetrou gauge in order to make them
amenable to an application of Robinson’s identity in its traditional form. Thus we need to consider the
transformation of perturbations expressed in say a hyperbolic gauge of Lorenz type to a Weyl–Papapetrou
gauge of the “elliptic type” needed for our analysis.

Let {(4)g = (4)gµν dxµ ⊗ dxν, (4)A = (4)Aµ dxµ} be a Kerr–Newman black hole solution expressed in
coordinates {x0

= t, x1, x2, x3
= ϕ} of the (Boyer–Lindquist) type introduced in Appendix A (wherein

ζ = ∂/∂t and ψ = ∂/∂ϕ are the Killing fields corresponding to the given black hole’s stationarity
and axial symmetry). Relative to this background let {(4)g′ := (4)k = (4)kµν dxµ⊗ dxν, (4)A′ := (4)` =
(4)`µ dxµ} designate an axisymmetric, spatially compactly supported solution to the corresponding
linearized equations. If (4)Y = (4)Yµ(∂/∂xµ) is a (sufficiently smooth) vector field invariant with respect
to the rotations generated by ψ, i.e., such that

(Lψ (4)Y )µ = (4)Yµ,ϕ = 0, (354)

then the gauge transformed perturbations

{
(4)k̃=(4)k̃µν dxµ⊗ dxµ, (4) ˜̀= (4) ˜̀µ dxµ} (355)

defined by
(4)k̃µν = (4)kµν + (L(4)Y

(4)g)µν, (356)
(4) ˜̀

µ =
(4)`µ+ (L(4)Y

(4)A)µ (357)

will also satisfy the linearized field equations and preserve explicit axisymmetry, i.e., obey

(Lψ(4)k̃)µν = (4)k̃µν,ϕ = 0, (358)

(Lψ(4) ˜̀)µ = (4) ˜̀
µ,ϕ = 0. (359)

Recalling that, in our notation,

(4)gab = e−2γ g̃ab+ e2γβaβb = e−2γ+2νhab+ e2γβaβb, (360)
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where hab dxa
⊗ dxb is a flat 2-metric which, in Weyl–Papapetrou spatial coordinates {xa

} = {ρ, z},
satisfies the (conformally invariant) condition

1
√
(2)h

hab dxa
⊗ dxb

= dρ⊗ dρ+ dz⊗ dz (361)

and recalling as well that βa = 0 on a Kerr–Newman background, we see that a gauge-transformed
perturbation (4)k̃µν of (4)gµν will preserve this Weyl–Papapetrou form to linearized order if and only if it
satisfies the gauge conditions

(4)k̃ρρ − (4)k̃zz = 0, (4)k̃ρz = 0. (362)

Appealing to (356) one can reexpress these conditions in the form

(L(4)Y
(4)g)ab−

1
2 hab hcd(L(4)Y

(4)g)cd =−
(
(4)kab−

1
2 hab hcd (4)kcd

)
. (363)

But utilizing the fact that the background metric also satisfies

(4)gta =
(4)gϕa = 0, (4)gµν,ϕ = (4)gµν,t = 0 (364)

and that (4)Yµ,ϕ = 0 by assumption, one can rewrite (363) in the 2-dimensionally covariant form

(L(2)Y
(2)h)ab−

1
2 hab hcd(L(2)Y

(2)h)cd =−e2γ−2ν((4)kab−
1
2 hab hcd (4)kcd

)
, (365)

where (2)Y := (2)Y a(∂/∂xa)= (4)Y a(∂/∂xa). Note that in the complement of the support of (4)k (i.e., in
the “asymptotic regions” near the horizon and near spatial infinity) (365) reduces to the conformal Killing
equation for the flat 2-metric (2)h. As we shall show below this equation (with its inhomogeniety included)
can be solved explicitly for (2)Y thus determining the (2-dimensional) “spatial components” of (4)Y.

These 2-dimensional “spatial” components of (4)Y will play a distinctive role in that the induced gauge
transformations of the linearized wavemap scalars {γ ′, ω′, λ′, η′} generated by (4)Y, namely

γ̃ ′ := γ ′+L(4)Yγ, ω̃′ := ω′+L(4)Yω, (366)

λ̃′ := λ′+L(4)Yλ, η̃′ := η′+L(4)Yη, (367)
simplify to

γ̃ ′ = γ ′+ (2)Y aγ,a, ω̃′ = ω′+ (2)Y aω,a, (368)

λ̃′ = λ′+ (2)Y aλ,a, η̃′ = η′+ (2)Y aη,a (369)

in view of the invariance of the background fields {γ, ω, λ, η} with respect to t and ϕ translations. In
particular, in the complement of the support of the (compactly supported) perturbations {γ ′, ω′, λ′, η′}
their gauge-transformed counterparts {γ̃ ′, ω̃′, λ̃′, η̃′}, though no longer in general having compact support,
will nevertheless simplify to their pure-gauge forms

γ̃ ′→ (2)Y aγ,a, ω̃′→ (2)Y aω,a, (370)

λ̃′→ (2)Y aλ,a, η̃′→ (2)Y aη,a. (371)
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On the other hand, to compute the gauge transformations of the linearized canonical momenta { p̃′, r̃ ′, ṽ′, ũ′}
we shall need the time component (4)Y 0 of (4)Y. To see how this is determined recall that the (3+1-
dimensional) lapse function N and shift field N m(∂/∂xm) are defined by

−
1

N 2 =
(4)g00 and

N m

N 2 =
(4)g0m . (372)

Thus a first variation δN of N induced by (4)k̃αβ is given by

2
N 3 δN =−(4)g0α (4)g0β (4)k̃αβ =−(4)g0α (4)g0β((4)kαβ + (L(4)Y

(4)g)αβ). (373)

Evaluating the Lie derivative and recalling that, in our notation, N = e−γ Ñ so that

δN = e−γ δ Ñ − Ñe−γ δγ, (374)

whereas, since (4)gϕϕ = e2γ ,

δγ = 1
2 e−2γ (4)k̃ϕϕ = 1

2 e−2γ (4)kϕϕ + (2)Y aγ,a (375)

we arrive at
Ñ ′

Ñ
=

1
2 e−2γ ((4)kϕϕ − Ñ 2 (4)g0α (4)g0β (4)kαβ)+ (4)Y 0

,0+
(2)Y a Ñ,a

Ñ
, (376)

where we now write Ñ ′ for δ Ñ in accordance with our previously established notation. Thus given a
choice for the linearized lapse function Ñ ′ in the desired (elliptic) gauge, (376) determines (4)Y 0 by direct
time integration.

In a completely analogous way one finds that the components of the linearized shift are given by

Ñ c′
= N c′

= g̃ac
[e2γ ((4)k0a −β0

(4)kaϕ)] +
(4)Y c

,0− Ñ 2 g̃ac (4)Y 0
,a, (377)

Nϕ′
= (β0− Ñ aβa)

′

= e−2γ ((4)k0ϕ −β0
(4)kϕϕ)+ (4)Y 0

,0β0+
(4)Y ϕ,0+

(2)Y cβ0,c

−→ β ′0 (since Ñ a
= βa = 0 in the background). (378)

Note that this last equation provides a means of computing the “last” component, (4)Y ϕ , of (4)Y provided
that a gauge condition for Nϕ′ is specified. However a different way of computing (4)Y ϕ (that would then
fix the corresponding choice for Nϕ′) arises from noting that

(e2γβa)
′
−→ e2γβ ′a =

(4)k̃aϕ

=
(4)kaϕ + (L(4)Y

(4)g)aϕ

=
(4)kaϕ + e2γ ((4)Y 0

,aβ0+
(4)Y ϕ,a) (379)

so that
β ′a =

(4)Y ϕ,a +β0
(4)Y 0

,a + e−2γ (4)kaϕ. (380)

Thus a choice for (4)Y ϕ allows one to control the “longitudinal part” of β ′a , whereas its “transversal part”
is governed independently by the linearized wavemap momentum variable r̃ ′ (see (242)).
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To actually solve (365) let us first reexpress it in the more convenient form

(L(2)Y (
√
(2)h (2)h)cd)=

√
(2)g̃ g̃ac g̃bd e2γ {(4)kab−

1
2 g̃ab g̃e f (4)ke f

}
:=Mcd . (381)

Evaluating this (traceless, symmetric) equation in the {R, θ} coordinates of Appendix A, for which√
(2)hhcd ∂

∂xc ⊗
∂

∂xd = R ∂

∂R
⊗

∂

∂R
+

1
R
∂

∂θ
⊗
∂

∂θ
, (382)

one gets the two independent components

(2)Y θ,θ = R
(
(2)Y R

R

)
,R
+

1
R
MR R, (383)

(2)Y θ,R =−
1
R

(
(2)Y R

R

)
,θ

−
1
R
MRθ . (384)

The integrability condition for this first-order system for (2)Y θ is the Poisson-type equation for (2)Y R/R
given by

1
R

(
R
∂

∂R

(
(2)Y R

R

))
,R
+

1
R2

∂2

∂θ2

(
(2)Y R

R

)
=−

1
R2M

Rθ
,θ −

1
R

(
1
R
MR R

)
,R
. (385)

Note that the operator acting on (2)Y R/R in this equation is identical to the scalar Laplacian for the flat
metric (2) f (conformal to (2)h) given by

(2) f = d R⊗ d R+ R2 dθ ⊗ dθ. (386)

For reasons of regularity the radial component, (2)Y R, of (2)Y must admit a Fourier expansion of the form

(2)Y R
= a0(R, t)+

∞∑
n=1

an(R, t) cos (nθ) (387)

so that, in particular, its θ -derivative vanishes on the axes of symmetry corresponding to θ = 0 and θ = π .
For the same reasons (2)Y θ must itself vanish at these axes and thus admit an expansion of the form

(2)Y θ =
∞∑

n=1

bn(R, t) sin (nθ). (388)

Similar considerations for the vector density resulting from pairing the one-form d R with the tensor
density {Mab(∂/∂xa)⊗ (∂/∂xb)} lead to Fourier expansions of the latter’s components given by

−
1
R
MR R

= c0(R, t)+
∞∑

n=1

cn(R, t) cos (nθ), (389)

−RMRθ
=

∞∑
n=1

dn(R, t) sin (nθ). (390)
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Substituting these expansions into (383)–(384) leads to the following system for the Fourier coefficients:

a0,R −
1
R

a0 = c0, (391)

an,R −
1
R

an − nbn = cn, (392)

R2bn,R − nan = dn (393)
for n = 1, 2, . . . .

While we shall show below how to solve this system explicitly using the method of “variation of
parameters”, this will not, by itself, deal with the convergence issues presented by the resultant (formal)
Fourier series. To prove that global, bounded solutions to (381) for (2)Y do indeed exist we shall instead
first solve the Poisson equation for ((2)Y R/R),θ , which, together with the solution of (391), will serve to
determine (2)Y R and, at the same time, provide the needed integrability condition for the complementary
component (2)Y θ.

For convenience extend the domains of definitions (at fixed t which, for simplicity, we suppress in
the following) of the source components {Mab

} to the full plane R2 with the open disk of radius
R+ = 1

2

√
M2− (a2+ Q2) removed. This corresponds to “reflecting” MR R and “antireflecting” MRθ

through the z-axis or, equivalently, through taking the range of θ in expansions (389)–(390) to now be
[0, 2π). Note accordingly that the source term on the right-hand side of (385) will automatically be
reflection symmetric, whereas its θ-derivative, which provides the source in the Poisson equation for
((2)Y R/R),θ , namely

1
R
∂

∂R

(
R ∂

∂R

((
(2)Y R

R

)
,θ

))
+

1
R2

∂2

∂θ2

((
(2)Y R

R

)
,θ

)
=−

1
R2M

Rθ
,θθ −

1
R

(
1
R
MR R

,θ

)
,R
, (394)

will be reflection antisymmetric and thus have a vanishing net “charge” as well as compact support.

The fundamental solution (Green’s function) for this Dirichlet problem is explicitly known and, for arbitrary
sufficiently smooth, reflection antisymmetric Dirichlet data specified on the circle R = R+, provides a
unique, globally bounded, reflection antisymmetric solution, ((2)Y R/R),θ , that decays asymptotically like
∼ 1/R [29; 68].9 Note that terms of the form α+β ln (R/R+) that might otherwise be expected to occur
are excluded by the reflection antisymmetry of the source and boundary conditions.

To complete the determination of (2)Y R we must solve (391) for the Fourier component a0 which, in view
of (387), is defined by

a0(R)=
1

2π

∫ 2π

0
dθ (2)Y R(R, θ). (395)

From (389) we see that the source, c0(R), for this quantity is in turn given by

c0(R)=
1

2π

∫ 2π

0
dθ
(
−

1
R
MR R(R, θ)

)
. (396)

This solution to (391) is simply

a0(R)= R
[

a0(R+)
R+

+

∫ R

R+
d R′

( 1
R′

c0(R′)
)]
, (397)

9: In [68], see Section 21.5 for a discussion of interior and exterior Dirichlet and Neumann problems via Green’s functions.
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but only the unique choice

a0(R+)=−R+

∫
∞

R+
d R′

[ 1
R′

c0(R′)
]

(398)

yields a globally bounded solution for a0(R) which in fact vanishes outside the support of c0.

After fixing (for reasons of regularity at the axes) (2)Y θ (R+, 0)= 0, one could now integrate the first-order
system (383)–(384) to determine (2)Y θ (R, θ). A more elegant approach, however, is to combine this
regularity condition with the integral of (383) with respect to θ at R = R+ to determine (reflection
antisymmetric) Dirichlet data, (2)Y θ (R+, θ) for the solution to the Poisson equation

1
R
(R (2)Y θ,R),R +

1
R2

(2)Y θ,θθ =−
1
R
MRθ

,R +
1
R3M

R R
,θ , (399)

which, in turn, results from (383)–(384). Since the source term in (399) and its associated Dirichlet
data are both reflection antisymmetric, this Poisson equation has a unique, globally bounded, reflection
antisymmetric solution. From the explicit form of Green’s function combined with the source’s compact
support it further follows that (2)Y θ (R, θ) decays asymptotically as ∼ 1/R.

The above argument has shown that a unique, globally bounded, regular solution for (2)Y is determined
from specifying Dirichlet data for (2)Y R at the horizon. On the other hand it is still of interest to see more
explicitly how the Fourier coefficients {a0, an, bn} for this solution behave, especially in the asymptotic
regions. We have already solved (391) and found that

1
2π

∫ 2π

0
dθ (2)Y R(R, θ)= a0(R)=−R

[∫
∞

R+
d R′

( 1
R′

c0(R′)
)]

(400)

near R = R+ and that
a0(R)= 0 (401)

for all R outside the support of c0.

We shall prove below in Appendix J that, for the perturbations of interest herein, the “integral invariant”
a0(R+) defined by (398) actually vanishes. It follows then from (397) and (401) that a0(R) will vanish
both inside and outside the support of c0 (i.e., throughout both asymptotic regions).

To solve (392) and (393) first note that they imply

1
R
(R bn,R),R −

n2bn

R2 =
ncn

R2 +
1
R

(
dn

R

)
,R

(402)

and that independent solutions to the corresponding homogenous equations (for n = 1, 2, . . . ) are given
by Rn and R−n. It is therefore straightforward to apply the method of variation of parameters to show
that, for each n, there is a unique, globally bounded solution bn(R) determined by boundary data bn(R+)
specified at the horizon. These are of course nothing but the Fourier coefficients for the corresponding
solutions (2)Y θ to (399) found previously. For large R, outside the source’s support, these solutions take
the form (at fixed time t)

bn(R)= β(−)n R−n (403)
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for suitable constants {β(−)n }, whereas for R sufficiently near R+ (inside the source’s support) they have
the form

bn(R)= α(+)n Rn
+α(−)n R−n (404)

for suitable constants {α(+)n , α
(−)
n }. The constants {α(+)n , α

(−)
n , β

(−)
n } are all determined explicitly in terms

of the chosen Dirichlet data specified at R+ and by the source functions {cn(R), dn(R)}.

By now simply setting for all n ≥ 1

an(R)=
R2bn,R

n
−

dn(R)
n

, (405)

one readily verifies that all of (392) and (393) are satisfied and that the {an(R)} take the asymptotic forms

an(R)=−β(−)n R−n+1 (406)
for R sufficiently large and

an(R)= α(+)n Rn+1
−α(−)n R−n+1 (407)

for R sufficiently near R+. Note in particular that a1(R)→−β
(−)
1 for large R, whereas the higher-order

coefficients {an(R); n = 2, 3, . . . } decay as increasingly negative powers of R.

While it may not be specifically needed for our analysis to go through, we shall focus henceforth on those
particular gauge transformations generated by vector fields (2)Y satisfying the “homogeneous” Dirichlet
condition

(2)Y R
,θ (R+, θ)= 0. (408)

From (387) and (407) this boundary condition clearly corresponds to setting an(R+)= 0 for all n ≥ 1 or,
equivalently

α(−)n = R2n
+
α(+)n . (409)

Designating the “source” term for (402) by σn(R) so that

σn(R) :=
ncn(R)

R2 +
1
R

∂

∂R

(
dn(R)

R

)
, (410)

one readily finds the unique, globally bounded solution to this equation to be

bn =−Rn
{∫
∞

R

σn(R′)
2n

(R′)1−n d R′
}

+ R−n
{
−R2n
+

∫
∞

R+

σn(R′)
2n

(R′)1−n d R′−
∫ R

R+

σn(R′)
2n

(R′)n+1 d R′
}
. (411)

Specializing this formula to the asymptotic regions corresponding to R↘ R+ and R↗∞ one easily
discovers that the coefficients {α(+)n , α

(−)
n , β

(−)
n } are given by

α(+)n =−

∫
∞

R+

σn(R′)
2n

(R′)1−n d R′ =
α
(−)
n

R2n
+

, (412)

β(−)n =

{
−R2n
+

∫
∞

R+

σn(R′)
2n

(R′)1−n d R′−
∫
∞

R+

σn(R′)
2n

(R′)n+1 d R′
}
, (413)

wherein, as above, we have suppressed their time dependence to simplify the notation.
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Since we have already argued (see the proof given in Appendix J) that a0(R+)= 0 for the perturbations
of interest herein, it follows from (408) and (409) that (2)Y R satisfies the Dirichlet condition

(2)Y R(R+, θ)= 0 (414)

at the horizon boundary.

At several points in our discussion we have encountered occasions wherein the leading-order term in an
expansion of the form

91(R, θ) :=
∞∑

k=1

β
(−)
k sin (kθ)

1
Rk (415)

cancels out in the expression of interest leaving what appears to have a faster rate of decay as R↗∞.
While this higher rate of decay would be self-evident for a finite series, it is not obvious in the case of an
infinite series that the “remainder” does indeed decay faster than the leading-order term. For the functions
considered herein, however, we shall see that this is indeed the case.

In the asymptotic region near∞, the functions of interest in this context are harmonic, hence analytic,
and have convergent expansions of the type indicated above. If for some reason the first N − 1 terms
(for N ≥ 2) canceled from a quantity being computed, we’d be left with a (convergent) expansion of the
form

9N =

∞∑
k=N

β
(−)
k sin (kθ)

1
Rk . (416)

We wish to consider this in the asymptotic region R > R0 > R+. For this purpose define, for convenience,
the coordinate x by

R =
R0

1− R0x
, x ∈

(
−

1
R0
,

1
R0

)
, (417)

so that x ↘ 0⇔ R↘ R0 and x ↗ 1/R0⇔ R↗∞.

Writing

9N =

∞∑
k=N

β
(−)
k sin (kθ)

(
1− R0x

R0

)k

(418)

and recalling that the analyticity of 9N implies the absolute convergence of its series expansion we get

|9N | =

∣∣∣∣ ∞∑
k=N

β
(−)
k sin (kθ)

(
1− R0x

R0

)k∣∣∣∣
≤

∞∑
k=N

|β
(−)
k sin (kθ)|

∣∣∣∣1− R0x
R0

∣∣∣∣k
=

∣∣∣∣1− R0x
R0

∣∣∣∣N ∞∑
k=N

|β
(−)
k sin (kθ)|

∣∣∣∣1− R0x
R0

∣∣∣∣k−N

=

∣∣∣∣1− R0x
R0

∣∣∣∣N ∞∑
`=0

|β
(−)
`+N sin ((`+ N )θ)|

∣∣∣∣1− R0x
R0

∣∣∣∣` <∞. (419)
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Every term in the final summation has positive sign and either remains constant or decays monotonically
in R as R→∞ (i.e., x ↗ 1/R0) for any fixed θ . It follows that the resultant expression for |9N | decays
at least of order

O
((

1− R0x
R0

)N)
= O

(
1

RN

)
for N ≥ 2 as R↗∞.

Recalling that
∂r
∂R
=

(
1−

R2
+

R2

)
(420)

and that the partial derivatives {γ,r , γ,θ , ω,r , ω,θ , λ,r , λ,θ , η,r , η,θ } are all bounded at R = R+ we see
that the corresponding gauge transformed perturbations {γ̃ ′, ω̃′, λ̃′, η̃′} are all regular at the horizon (see
(368)–(371)).

To evaluate the relevant “flux” integrals resulting from, for example, the integrated form of (72) we shall
need the asymptotic forms of the linearized canonical momenta. These are given by the linearized field
equations (see (263), (265), (267), (269) and (271))

Ñ p̃′
√
(2)g̃
= 4(γ ′,t − Ñ a′γ,a), (421)

Ñe2γ ṽ′
√
(2)g̃
= λ′,t − Ñ a′λ,a, (422)

Ñe2γ (ũ′− λr̃ ′)
√
(2)g̃

= η′,t − Ñ a′η,a, (423)

Ñe4γ r̃ ′
√
(2)g̃
= ω′,t − Ñ a′ω,a +

Ñe2γ
√
(2)g̃

λ(ũ′− λr̃ ′)

= ω′,t − Ñ a′ω,a + λ(η
′

,t − Ñ a′η,a), (424)

2Ñ
√
(2)g̃

(g̃ac g̃bd − g̃ab g̃cd)π̃
′cd
= g̃′ab,t − (LÑ c′∂c

(2)g̃)ab. (425)

Using (370), (371)) and (377) to evaluate these in the asymptotic regions (where (4)kαβ = 0) we obtain,
thanks to a fortuitous cancellation of the terms involving (2)Y a

,t ,

Ñ p̃′
√
(2)g̃
−→ 4Ñ 2g̃acγ,a

(4)Y 0
,c, (426)

Ñe2γ ṽ′
√
(2)g̃
−→ Ñ 2g̃acλ,a

(4)Y 0
,c, (427)

Ñe2γ
√
(2)g̃

(ũ′− λr̃ ′)−→ Ñ 2g̃acη,a
(4)Y 0

,c, (428)

Ñe4γ r̃ ′
√
(2)g̃
−→ Ñ 2g̃ac(4)Y 0

,c(ω,a + λη,a), (429)
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and
2Ñ
√
(2)g̃

(g̃ac g̃bd − g̃ab g̃cd)π̃
′cd
−→ (L(2)D g̃)ab, (430)

where
(2)D := (Ñ 2g̃cd (4)Y 0

,d)
∂

∂xc . (431)

Note that each of the above expresses the desired (linearized) momentum asymptotically in terms of Lie
derivatives with respect to (2)D.

In deriving the above we have made use of the formula

g̃′ab = (g̃ab e−2γ (4)kϕϕ + e2γ (4)kab)+ (L(2)Y g̃)ab, (432)

which results from linearizing the defining equation

g̃ab = e2γ gab− e4γβaβb =
(4)gϕϕ(4)gab−

(4)gaϕ
(4)gbϕ (433)

about the chosen background (see (11)–(14)).

Appendix I: Compactly supported solutions of the linearized constraint equations

As we have already discussed near the end of Appendix B, the use of hyperbolic gauge conditions for the
linearized field equations allows one to exploit the corresponding, causal propagation of the perturbations
to conclude that compactly supported initial data on a Cauchy hypersurface of constant Boyer–Lindquist
time, t, evolves so as to preserve this property for all finite t. Thus data initially bounded away from
the horizon and from spacelike infinity evolves to remain so throughout the evolution — a feature which
reflects the fact that Boyer–Lindquist time slices for Kerr–Newman spacetimes are “locked down” at i0

(spacelike infinity) and at the bifurcation 2-sphere lying in the horizon. While this property of compactly
supported evolution will ultimately be lost upon transformation to an elliptic gauge of the type adopted
herein, it will be noteworthy to recognize that the transformed perturbations, though no longer in general
having compact support, will necessarily be of “pure-gauge type” near the horizon and near infinity.

The utilization of hyperbolic gauge conditions to secure causal evolution for the perturbations does not,
however, preclude the need to solve the linearized constraint equations, at least on the initial Cauchy
hypersurface. Since the latter are normally treated as an elliptic system for certain dependent or constrained
variables, it is not immediately clear how to ensure the desired compact support of their resulting solutions.
While one could presumably guarantee this outcome by imposing suitable restrictions upon the otherwise
“free data” occurring in these equations, we shall herein adopt a different strategy whereby one solves the
constraints algebraically for a subset of this normally regarded free data, reversing somewhat the usual
roles of free and constrained variables. This will allow us to ensure the compact support of the solutions
so obtained without otherwise unduly restricting their generality.

Consider first the reduced momentum constraints, (324), and assume for definiteness that the background
has charge Q 6= 0. Assume also that a 6= 0 since otherwise the background spacetime would be a
Reissner–Nordström solution which is treatable by much more elementary methods [56; 57; 58]. Under
these assumptions the functions λ and η (see (254) and (259)) are both nonvanishing and one can reexpress
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the momentum constraints as an algebraic system of the form(
η,R λ,R

η,θ λ,θ

)(
ũ′

ṽ′

)
=

(
SR

Sθ

)
, (434)

where

SR := 2 (2)
∇b(h) r̃

′b
R + e2ν

√
(2)h τ ′,R − p̃′γ,R − r̃ ′ω,R, (435)

Sθ := 2 (2)
∇b(h) r̃

′b
θ + e2ν

√
(2)h τ ′,θ − p̃′γ,θ − r̃ ′ω,θ . (436)

The idea is to choose the data { p̃′, r̃ ′, τ ′, r̃
′b

a} to have compact support on Mb and to solve (434) for the
electromagnetic momenta {ũ′, ṽ′}. Clearly the feasibility of this approach hinges upon the invertibility of
the matrix function

D :=
(
η,R λ,R

η,θ λ,θ

)
. (437)

By a straightforward computation one finds that its determinant is given by

detD = η,Rλ,θ − λ,Rη,θ =
(1− R2

+
/R2)(r2

+ a2)4Q2a sin3 (θ)

(r2+ a2 cos2 θ)2
, (438)

which is thus nonvanishing except on the horizon (where (1− R2
+
/R2) = 0) and on the axes (having

sin (θ)= 0). The formal solution to (434) is given explicitly by(
ũ′

ṽ′

)
= D−1

(
SR

Sθ

)
, (439)

where

D−1
=

(
1

4Qa

)
4ra cos θ

(1−R2
+/R2) sin2 θ

2a(r2
−a2 cos2 θ)

(r2+a2) sin θ

−2(r2
−a2 cos2 θ)

(1−R2
+/R2) sin2 θ

4ra2 cos θ
(r2+a2) sin θ

 . (440)

By choosing the free data occurring in SR on Sθ to have not only compact support on Mb but also to
vanish at the axes as suitable powers of sin θ , one ensures both the compact support of the resulting
solution and its regularity at the axes. Note by contrast that one normally thinks of (434)–(436) as an
elliptic system to be solved for r̃

′b
a instead of an algebraic one for {ũ′, ṽ′}.

Now, however, suppose that Q = 0 (but a 6= 0 since otherwise the background would simply be
Schwarzschild). The functions γ and ω (given by (257) and (260) in the limiting case Q → 0) are
still nonvanishing and one can now express the momentum constraints in the alternative form

D̃
(

p̃′

r̃ ′

)
=

(
S̃R

S̃θ

)
, (441)

where

D̃ :=
(
γ,R ω,R

γ,θ ω,θ

)∣∣∣∣
Q=0

(442)

and where
S̃R := {2 (2)

∇b(h) r̃
′b

R + e2ν
√
(2)h τ ′,R}|Q=0, (443)

S̃θ := {2 (2)
∇b(h) r̃

′b
θ + e2ν

√
(2)h τ ′,θ }|Q=0. (444)
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Algebraic solvability now hinges on the invertibility of the matrix function D̃. A straightforward compu-
tation of the determinant,

det D̃ := (γ,Rω,θ −ω,Rγ,θ )|Q=0, (445)

of D̃ yields

det D̃ =
(

−Ma sin3 θ(1− R2
+
/R2)

(r2+ a2 cos2 θ)3[(r2+ a2)2− a21 sin2 θ ]

)
×
{
(r3
−Ma2)[6r6

+ 2a2(r4
− a4 cos6 (θ))] + 6a6r(Mr − a2) cos6 (θ)

+ [10r3(Mr − a2)+ 2M(r4
− a4)+ 2r2(r3

−Ma2)]a4 cos4 (θ)

+ [10a2r4(r3
− a2 M)+ 4r2 Ma2(r4

− a4)+ 2r5a2(r M − a2)] cos2 (θ)
}
. (446)

This is easily seen to be nonvanishing except on the axes (where it vanishes as sin3 (θ)) and at the horizon
where, in the subextremal cases, it vanishes like (1− R2

+
/R2) as R↘ R+. Curiously, in the extremal

cases (|a| = M), every term in the braces also vanishes at the horizon r→ r+ = M = |a|.

Thus one can now solve the momentum constraints for the gravitational momenta, { p̃′, r̃ ′}, taking the
“free data” {r̃

′b
a , τ̃

′
} to have compact support and to vanish at the axes as suitable powers of sin (θ) to

ensure regularity of the solution.

Turning now to the (linearized) Hamiltonian constraint, H̃′ = 0, one sees from (336) that this can be
expressed in divergence form as

ÑH̃′ = ∂

∂xb

{
Ñ
√
(2)hhab

[4γ,aγ ′+ 2ν ′,ae−2γ (η,aη
′
+ λ,aλ

′)+ e−4γ (ω,a + λη,a)(ω
′
+ λη′)]

− 2
√
(2)hhab Ñ,aν ′

}
= 0. (447)

Since Mb is simply connected, the vector density appearing in the braces must take the form { }b = εbcσ ′,c
for some function σ ′. Thus any solution to (447) must satisfy

4γ,aγ ′+ e−4γ (ω,a + λη,a)(ω
′
+ λη′)+ e−2γ (η,aη

′
+ λ,aλ

′)=
habε

bc

Ñ
√
(2)h

σ ′,c+
2Ñ,a

Ñ
ν ′− 2ν ′,a. (448)

Now if Q 6= 0 (and, as always a 6= 0), we define �′ := ω′+ λη′ and regard (448) as an algebraic system
for {η′, λ′}, taking the “free data’ {σ ′, ν ′, γ ′, �′} in this case to have compact support and to vanish
sufficiently rapidly at the axes.

Since the matrix of coefficients for this algebraic problem is nothing other than the D defined previously,
one solves for {η′, λ′} and then sets ω′ =�′− λη′ to complete the solution.

If on the other hand Q = 0 then (448) reduces to the form

{γ,a(4γ ′)+ω,a(e−4γω′)}|Q=0 =

{
habε

bc

Ñ
√
(2)h

σ ′,c+
2Ñ,a

Ñ
ν ′− 2ν ′,a

}∣∣∣∣
Q=0

(449)

and one can exploit the fact that D̃ is invertible (assuming as always that a 6= 0) to solve this system
algebraically for {4γ ′, e−4γω′}. Thus all of the reduced constraints can be solved algebraically for
compactly supported data that is regular at the axes of symmetry for the background black hole.
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There is however a remaining subtlety that must be dealt with. We need to “lift” the Cauchy data defined
on the quotient manifold Mb back up to the actual, 3-dimensional Cauchy surface for the black hole’s
DOC and ensure that it all has compact support there as well. The potential obstructions to this are the
first variations

r̃ ′ = εabβ ′a,b, ũ′ = εabC ′a,b (450)

of the defining equations (242) for the one-forms βa dxa and Ca dxa . Even if r̃ ′ and ũ′ have compact
support, the one-forms β ′a dxa and C ′a dxa need not inherit this property without further restrictions upon
the “sources” r̃ ′ and ũ′. By contrast note that the first variations of (238) and (239),

f̃ a′
= εabω′,b, Ea′

= εabη′,b, (451)

automatically yield lifted vector densities f̃ a′(∂/∂xa) and Ea′(∂/∂xa) of compact support provided only
that the base space potentials ω′ and η′ have this property.

Since both (450) are identical in form, it suffices to show what further restrictions upon r̃ ′ are needed to
solve for a compactly supported β ′adxa since the argument for the pair {ũ′,C ′adxa

} will follow the same
pattern.

Guided by the Hodge decomposition of one-forms on simply connected 2-manifolds, we seek a solution
to r̃ ′ = εabβ ′a,b of the form

β ′a = ζ,a +
hab
√
(2)h

εbcψ,c (452)

for some undetermined functions {ζ, ψ}. The equation to be solved now takes the form of Poisson’s
equation for the unknown function ψ,

∇b(h)∇b(h)ψ :=
1
√
(2)h

∂b(
√
(2)hhbcψ,c)=

1
√
(2)h

εbcβ ′b,c. (453)

In terms of the coordinates R and θ introduced for Mb in Appendix A, and for which the flat metric
hab dxa

⊗ dxb takes the form

habdxa
⊗ dxb

= d R⊗ d R+ R2dθ ⊗ dθ, (454)

any smooth source function

s :=
1
√
(2)h

εbcβ ′b,c (455)

that is regular at the axes of Mb and that has compact support on this space will admit a Fourier expansion
of the form

s(R, θ)=
∞∑

m=0

σm(R) cos (mθ), (456)

where each of the Fourier coefficient functions {σm} will vanish for all R such that

R ≥ R2 ≥ R1 > R+, (457)

R+ < R ≤ R1 ≤ R2 (458)
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for suitably chosen R1 and R2. Any smooth solution ψ to (453) must admit a corresponding Fourier
expansion

ψ(R, θ)=
∞∑

m=0

ψm(R) cos (mθ), (459)

with coefficients satisfying the associated ordinary differential system

d2ψm

d R2 +
1
R

dψm

d R
−

m2

R2ψm = σm, m = 0, 1, 2, . . . . (460)

Each of these equations can be readily solved using the method of variation of parameters. It is straight-
forward to show that the resulting solution ψ will take constant values in the two asymptotic regions

R+ < R ≤ R1 and R ≥ R2, (461)

and thus have compactly supported gradient on Mb if and only if the source functions {σm} satisfy the
(definite) integral conditions ∫ R2

R1

R1−mσm(R)d R = 0 (no sum on m), (462)∫ R2

R1

R1+mσm(R)d R = 0 (no sum on m). (463)

The fact that these two conditions coincide for m = 0 corresponds to the flexibility of allowing ψ to have
two distinct, constant values in the two asymptotic regions.

The remaining function ζ arising in the decomposition (452) is unrestricted by (450) and thus can be
chosen arbitrarily to have compactly supported gradient. The freedom to add an arbitrary gradient to the
one-form β ′a dxa corresponds to that of making a coordinate transformation of the form

x3
= ϕ→ ϕ+ ζ (464)

in the U (1) bundle over Mb.

While we chose above to solve the reduced (Hamiltonian and momentum) constraints algebraically, it
is straightforward to see from the preceding example that we could, alternatively, have treated them as
Poisson-type equations for the “usual” unknowns {ν ′, r̃

′b
a} and still ensured compact support for the

solutions by imposing suitable integral constraints (as well as compactness of support) upon the “free
data” {(γ ′, p̃′), (ω′, r̃ ′), (η′, ũ′), (λ′, ṽ′), τ ′}. This follows from the fact that, when expressed in terms
of the “Cartesian” coordinates {ρ̄, z̄} for the flat metric (2)h (wherein (2)h = d p̄⊗ d p̄+ dz̄ ⊗ dz̄), the
linearized constraints reduce to decoupled equations of precisely the (flat space) Poisson type that we
have just dealt with for the unknowns {ν ′, r̃

′b
a}.

At various stages in our analysis (e.g., solving the momentum constraint in Appendix G, preserving
Weyl–Papapetrou gauge conditions with a suitably chosen perturbed shift in Appendix F and in the
proof of the vanishing of the “integral invariant” a0(R+) presented in the Appendix below) we have
(implicitly or explicitly) exploited the claim that transverse-traceless symmetric 2-tensors, subject to
suitable asymptotic and boundary conditions on Mb, vanish identically. To establish this claim let us first



78 VINCENT MONCRIEF AND NISHANTH GUDAPATI

work in “isothermal” coordinates {ρ, z} for which the flat metric (2)h = hab dxa
⊗ dxb takes the form

(2)h = hab dxa
⊗ dxb

= dρ⊗ dρ+ dz⊗ dz. (465)

An arbitrary traceless symmetric 2-tensor, (2)ktr
= ktr

ab dxa
⊗dxb can be expressed in these coordinates as

(2)ktr
= ktr

ab dxa
⊗ dxb

= u(dρ⊗ dρ− dz⊗ dz)− v(dρ⊗ dz+ dz⊗ dρ) (466)

and is obviously traceless with respect to any metric conformal to (2)h as well.

Imposing the independent (and equally conformally invariant) condition that the covariant divergence of
(2)ktr vanish is well known (and straightforwardly seen) to be equivalent to requiring that the component
functions {u, v} satisfy the Cauchy–Riemann equations

u,p = v,z, u,z =−v,p, (467)

which in turn of course imply that each of u, v is harmonic with respect to the metric (2)h (or to any
metric conformal thereto):

1(2)hu =1(2)hv = 0. (468)

Reverting to polar coordinates {R, θ} on Mb for which (2)h takes the form
(2)h = d R⊗ d R+ R2dθ ⊗ dθ, (469)

with R > R+ and θ ∈ [0, 2π), one easily finds that globally harmonic functions that vanish on the horizon
as R↘ R+ and are bounded on Mb must in fact vanish identically. Hence we have that:

Theorem I.1. Globally defined transverse traceless symmetric 2-tensors, (2)kTT, which are bounded on
Mb and which vanish at the horizon corresponding to R↘ R+ > 0 vanish identically.

Appendix J: The vanishing of a0(R+)

As discussed in Appendix H, the successful implementation of our chosen (Weyl–Papapetrou) gauge
condition hinges upon proving that a certain “integral invariant”, a0(R+), actually vanishes for the class
of perturbations considered. In the course of carrying out such a proof we shall see that this quantity is
in fact gauge-invariant (with respect to the relevant class of such transformations) and thus justify its
characterization as such.

In terms of the (spatially compactly supported) 4-metric perturbation, (4)k = (4)kµν dxµ⊗ dxν of (4)g
introduced in Appendix H (and assumed therein to be expressed in a “hyperbolic” gauge), a0(R+) was
defined by the integral formula (see (398))

a0(R+)=−R+

∫
∞

R+
d R′

[ 1
R′

c0(R′)
]

(470)

wherein c0(R) was in turn given by (see (396))

c0(R)=
1

2π

∫ 2π

0
dθ
(
−

1
R

MR R(R, θ)
)
, (471)
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with Mcd defined via (see (381))

Mcd
=

√
(2)g̃ g̃ac g̃bd e2γ {(4)kab−

1
2 g̃ab g̃e f (4)ke f

}
. (472)

Evaluating MR R on a Kerr–Newman background and exploiting (12) to express the relevant components
of (4)k in terms of (first variations of) our 2+1-dimensional quantities {γ, ν, g̃ab, hab}, we arrive at

MR R
→

R
2

e2γ−2ν
{
(4)kR R −

1
R2

(4)kθθ
}
=

R
2

{
(δh R R)−

1
R2 (δhθθ )

}
, (473)

where δhab designates the first variation (also signified by a prime) of the flat “conformal metric” introduced
in Appendix F. In view of the axis regularity requirements discussed in Appendix H, this perturbation has
an expansion (with its t-dependence suppressed, as before, to simplify the notation) of the form, setting
`ab := δhab,

`R R = γ0(R)+
∞∑

n=1

γn(R) cos (nθ), (474)

`Rθ = `θR =

∞∑
n=1

δn(R) sin (nθ), (475)

`θθ = σ0(R)+
∞∑

n=1

σn(R) cos (nθ). (476)

To preserve its flatness, this perturbation of the (2)hab metric must satisfy the (necessary and sufficient)
condition

D(
√
(2)h (2)R((2)h)) · `=

√
(2)h {(2)∇a((2)h)(2)∇b((2)h)`ab−

(2)
∇a(

(2)h)(2)∇a((2)h) (hcd`cd)}

= −
1
R
`R R,θθ + `R R,R +

2
R
`Rθ,θR −

2
R3 `θθ +

2
R2 `θθ,R −

1
R
`θθ,R R

= 0. (477)

This condition is, of course, automatically satisfied by the pure-gauge perturbations

vab := (L(2)Y
(2)h)ab =

(2)Y chab,c+
(2)Y c

,ahcb+
(2)Y c

,bhac, (478)
where

hab dxa
⊗ dxb

= d R⊗ d R+ R2 dθ ⊗ dθ (479)

and wherein the vector field (2)Y admits an expansion of the form given by (387) and (388), namely

(2)Y R
= a0(R)+

∞∑
n=1

an(R) cos (nθ), (480)

(2)Y θ =
∞∑

n=1

bn(R) sin (nθ). (481)

In view of the simple formula for MR R (see (473)), which now gives

MR R

R
=

1
2

{
`R R −

1
R2 `θθ

}
, (482)
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and the angular integral in (471) for c0(R) we see that only the (rotationally invariant) n = 0 terms in the
expansions (474)–(476) contribute to c0(R) and hence to a0(R+). For these quantities it is convenient to
define a new set of variables

kI
0 := γ0−

(
σ0

R

)
,R
, (483)

kII
0 := σ0 (484)

for which the inverse transformation is clearly

σ0 = kII
0 , (485)

γ0 = kI
0+

(
kII

0

R

)
,R
. (486)

It is easily verified that kI
0 is gauge-invariant, whereas kII

0 is, in effect, pure-gauge. Furthermore, the
rotationally invariant component of (477) (i.e., its integral with respect to θ over the circle) yields the
(gauge-invariant) constraint

kI
0,R = 0 (487)

so that kI
0 is, at most, a (possibly t-dependent) constant.

Substituting the above results into the formula for a0(R+) we now arrive at

a0(R+)=
R+
2

∫
∞

R+
d R

[
kI

0

R
+

(
kII

0

R2

)
,R

]
. (488)

But the term in kI
0 can only give a finite contribution if this constant vanishes, whereas the (boundary)

contributions of kII
0 will vanish for any compactly supported perturbation. We conclude that:

Theorem J.1. The integral invariant a0(R+) vanishes when evaluated upon compactly supported pertur-
bations (that vanish on the asymptotic regions near the horizon on infinity).

A simpler, more explicit proof of the above result can be given in the nonrotating (a= 0) case by exploiting
the utility of expanding the perturbations of the (spherically symmetric) background Reissner–Nordström
solution in (Regge–Wheeler) tensor harmonics. It is clear from the structure of c0(R) (see (396)) and
a0(R) (see (397)–(398)) that only the spherically symmetric “mode” of the perturbations contributes in this
case and, as is well known, this nondynamical mode decouples from all of the “higher harmonic” modes.
Because of the dynamical triviality of this (spherically symmetric) perturbative mode, as guaranteed
by the (generalized) Birkhoff theorem, it was not treated in detail in the earlier, Hamiltonian stability
analyses of the Reissner–Nordström spacetime (see [56; 57; 58]). We therefore provide those “missing”
details in the following.

In the {t, R, θ, ϕ} coordinates of Appendix A, the Reissner–Nordström line element takes the form

ds2
=
−(1− R2

+
/R2)2 dt2

(1+M/R+ R2
+/R2)2

+

(
1+

M
R
+

R2
+

R2

)2

(d R2
+ R2dθ2

+ R2 sin2 θ dϕ2), (489)

where
R+ = 1

2

√
M2− Q2, (490)
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with the remaining ADM variables (see [58]) given by10

E R
= 2Q sin θ, Eθ = Eϕ = 0, Bi

= 0, π i j
= 0. (491)

The axisymmetric perturbations of such a background may be conveniently expanded in the usual way
(see [56; 57; 58]) in terms of Regge–Wheeler tensor harmonics, which in turn, are constructed explicitly
in terms of the standard (scalar) spherical harmonics {YL0}. Since we shall only here be concerned with
the (spherically symmetric) case corresponding to L= 0 and since Y00 =

√
1/(4π) we shall absorb this

ubiquitous constant multiplicative factor into the perturbative functions that it multiplies (i.e., into the
quantities H2, K , PH, PK , Y R , etc. defined below) to simplify the notation.

Defining

e2λ
=

(
1+

M
R
+

R2
+

R2

)2

, (492)

we expand the ADM spatial metric perturbation (hi j ) := (δgi j ) as

(hi j )=

e2λH2(R, t) 0 0
0 e2λR2K (R, t) 0
0 0 e2λR2 sin2 θK (R, t)

 . (493)

The gauge transformations of (hi j ) in this case are generated entirely by spatial vector fields, Y =
Y i (∂/∂x i ), of the form

(Y i )= (Y R(R, t), 0, 0) (494)

and induce the (pure-gauge) first variations (see [58])

δH2 = 2λ,RY R
+ 2 Y R

,R, (495)

δK =
2(1− R2

+
/R2)

(R+M + R2
+/R)

Y R. (496)

It is therefore natural to introduce the new variables {k1, k2} defined by

k1 := H2+
(M/R+ 2R2

+
/R2)K

(1− R2
+/R2)

−

[
(R+M + R2

+
/R)K

(1− R2
+/R2)

]
,R
, (497)

k2 :=
1
2

K (R+M + R2
+
/R)

(1− R2
+/R2)

(498)

for which the inverse transformation is easily found to be

H2 = k1+ 2k2,R −
2k2(M/R+ 2R2

+
/R2)

(R+M + R2
+/R)

, (499)

K =
2k2(1− R2

+
/R2)

(R+M + R2
+/R)

(500)

10: We assume throughout that the magnetic field Bi is derivable from a vector potential and thus vanishes identically (together
with its first variation) in the spherically symmetric case of interest here. Recall also the slightly nonstandard conventions for the
designation of the electromagnetic field introduced in Appendix C.
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and for which the pure-gauge variations take the form

δk1 = 0, δk2 = Y R, (501)
showing that k1 is gauge-invariant.

In view of the Gauss law constraint, E i
,i = 0, and its “linearization” about the chosen background, the

only allowed spherically symmetric perturbation of E i (∂/∂x i ) must take the form

δE R
:= E R′

= 2Q′ sin θ, (502)

δEθ := Eθ
′

= 0, (503)

δEϕ := Eϕ
′

= 0. (504)

Since we shall eventually require that the perturbations of interest have compact support, this will
necessitate taking the charge perturbation Q′ = 0 but we shall retain this for now.

In terms of these new variables, the linearized Hamiltonian constraint, H′ = 0, now takes the form

H′= sinθ ∂
∂R

{
−2k1

R
(R2
−R2
+
)

}
+

sinθ
(1+M/R+R2

+/R2)

{
4Q Q′

R2 −
k1

R

[
2M+

8R2
+

R
+

2M R2
+

R2

]}
= 0, (505)

which, of course, is gauge-invariant (see the discussion in [58, Section IV]). Given a choice for Q′, this
constraint is clearly a first-order linear equation for the invariant perturbation k1 whose general solution
is given by

k1 =−R
∂

∂R

[
(2M ′/R+ (M M ′− Q Q′)/R2)

(1− R2
+/R2)

]
, (506)

where M ′ is the corresponding “constant” of integration which, at this point, could conceivably be a
function of time (as could Q′).

As we shall see, however, the linearized evolution equations can be exploited to show that both M ′ and Q′

are necessarily true constants which, not surprisingly, designate first order variations to the mass and
charge parameters of the (Reissner–Nordström) “background” solution. Indeed the most straightforward
way of solving (505) is simply to evaluate k1 for this “trivial” perturbation which, by the generalized
Birkhoff theorem, is the most general, spherically symmetric perturbation that could induce a variation of
this gauge-invariant quantity.

It is now clear, however, that the only such compactly supported perturbations must have Q′ = M ′ = 0,
with k1 = 0 and E i ′(∂/∂x i )= 0 and Bi ′(∂/∂x i )= 0 accordingly. Note furthermore that these quantities
must vanish for all t since their otherwise noncompact support at any finite value of t would contradict
the causal propagation of perturbations in “hyperbolic” gauge (see the discussion in Appendix B). Below,
however, we shall give an independent proof of the “conservation” of M ′ and Q′.

Evaluating MR R (see (381)) on these spherically symmetric perturbations (prior to imposing their compact
support) one arrives at

−MR R

R
=−

1
2

k1− R
(

k2

R

)
,R
= R ∂

∂R

{
(M ′/R+ (M M ′− Q Q′)/(2R2))

(1− R2
+/R2)

−
k2

R

}
(507)
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so that (see (396)–(398))

c0(R)=
1

2π

∫ 2π

0
dθ
(
−

1
R
MR R

)
= R

∂

∂R

{
(M ′/R+ (M M ′− Q Q′)/(2R2))

(1− R2
+/R2)

−
k2

R

}
(508)

and, consequently,

a0(R+)=−R+

{
(M ′/R+ (M M ′− Q Q′)/(2R2))

(1− R2
+/R2)

−
k2

R

}∣∣∣∣∞
R+

, (509)

which clearly thus vanishes for any allowed perturbation of compact support.

The linearized Maxwell equations for ∂tE R′ give immediately the expected result that (d/dt)Q′ = 0 (i.e.,
conservation of charge). To derive directly the corresponding result for M ′, we introduce the linearized,
spherically symmetric, gravitational momenta (δπ i j ) := (pi j ), with

(pi j )=

eλR2 sin θ PH(R, t) 0 0
0 eλ sin θ PK (R, t) 0
0 0 (eλ/ sin θ)PK (R, t)

 (510)

and define the “new variables”

p1 := R2e3λPH, (511)

p2 := 4Re2λPK

(
1−

R2
+

R2

)
− 2Re2λPH

(
M
R
+

2R2
+

R2

)
−

∂

∂R
[2R2e3λPH], (512)

so that {p1, p2} are (after absorbing the normalization factor of Y00 =
√

1/(4π)) precisely the canonical
momenta conjugate (respectively) to {k1, k2}.

In terms of these quantities, the linearized momentum constraint becomes

(H′i )= (p2 sin θ, 0, 0), (513)

which, as expected (see [58, Section IV]) reveals this constraint as the generator of the gauge transforma-
tions (501). The linearized evolution equations for {k1, k2} yield

k1,t =
−p2

2Re3λ ≈ 0, (514)

k2,t =
−p1

2Re3λ + X R′, (515)

where (X i ′)= (X R′, 0, 0) is the linearized shift field. Note that the first of these gives the independent
proof that d M ′/dt = 0.

Appendix K: Maximal slicing gauge conditions

For the “background” Kerr–Newman metric, expressed in Boyer–Lindquist coordinates via (157), both
the 2+1-dimensional mean curvature of the constant-time hypersurfaces,

τ :=

(
g̃abπ̃

ab

µ(2) g̃

)
, (516)
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and its 3+1-dimensional analogue,

tr(3)g
(3)K :=

1
2 gi jπ

i j

µ(3)g
= eγ

(
τ +

p̃
4µ(2) g̃

)
, (517)

vanish so that these slices are “maximal” in both senses of the term.

To impose, on the other hand, a (linearized) maximal slicing gauge condition on the perturbations, one
must choose between setting τ ′= 0 (maximal slicing in the 2+1-dimensional sense) or τ ′+ p̃′/(4µ(2) g̃)= 0
(its 3+1-dimensional analogue) since, in general, these are inequivalent.

The linearized field equations yield

τ ′,t =−
1
µ(2) g̃

∂c(µ(2) g̃ g̃cd Ñ ′,d) (518)

so that, to enforce 2+1-dimensional maximal slicing, one needs to require that the linearized lapse
function N ′ satisfy the “harmonic” condition

∂c(
√
(2)hhcd Ñ ′,d)= 0. (519)

Taken together with the simplest (homogeneous) boundary conditions, this equation has the unique,
trivial solution Ñ ′ = 0. This is the gauge condition we have exploited above in our discussion of energy
conservation (see Section 4) since it automatically “kills off” several of the terms in the energy flux
formula (see (72)) that would, otherwise, need to be evaluated and dealt with.

Consider, however, the alternative condition needed to preserve 3+1-dimensional maximal slicing, namely

τ ′,t +

(
p̃′

4µ(2) g̃

)
,t
= 0.

In this case the linearized field equations yield the more intricate elliptic equation for Ñ ′ given by

−∂a[
√
(2)hhabeγ (e−γ Ñ ′),b]

+Ñ ′
√
(2)hhab[1

4 e−2γ (η,aη,b+λ,aλ,b)+
1
2 e−4γ (ω,a+λη,a)(ω,b+λη,b)

]
+Ñ

√
(2)hhab[1

4 e−2γ (η,aη,b+λ,aλ,b)
]′

+Ñ
√
(2)hhab[1

2 e−4γ (ω,a+λη,a)(ω,b+λη,b)
]′
+(Ñ

√
(2)hhabγ ′,b),a = 0. (520)

One would want to solve this equation, if possible, with boundary conditions chosen so that no nonvanishing
energy flux contributions result from the terms involving Ñ ′ in (72).

Equation (520) will be more recognizable and tractable to analyze if we first “lift” it back to three
dimensions and reexpress it as an equation for the first variation, N ′, of the 3+1-dimensional lapse
function N = e−γ Ñ, namely

N ′ = e−γ Ñ ′− γ ′e−γ Ñ = e−γ Ñ ′− γ ′N . (521)

At this point of course γ ′ and N will be known quantities that can be “shifted” into the “source terms” for the
single unknown N ′. The lifted equation, expressed in terms of the ADM spatial metric (3)g= gi j dx i

⊗dx j
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(see Appendix C) takes the form

−∂i (
√
(3)ggi j N ′, j )+ N ′

√
(3)ggi j[1

4 e−2γ (η,iη, j + λ,iλ, j )+
1
2 e−4γ (ω,i + λη,i )(ω, j + λη, j )

]
=−Ne−γ

√
(3)ggi j[ 1

4 e−γ (η,iη, j + λ,iλ, j )+
1
2 e−3γ (ω,i + λη,i )(ω, j + λη, j )

]′
∂i (
√
(3)ggi jγ ′N, j ), (522)

wherein, for the sake of uniform notation, we have included terms that actually vanish by virtue of
axisymmetry (e.g., η,3 = η,ϕ , η′,ϕ , etc.). By the same token we are only interested in axisymmetric
solutions for which of course ∂i (

√
(3)ggi j N ′, j )→ ∂a(

√
(3)ggab N ′,b). Equation (522) is nothing but the

linearized version of the usual 3+1-dimensional lapse equation for maximal slicing reexpressed in terms
of our variables and restricted to a Kerr–Newman background solution. We anticipate that well-known
arguments (see [12]) can be modified to establish the existence and uniqueness of smooth, axisymmetric
solutions to this equation that vanish at infinity with homogeneous Dirichlet data specified on the horizon
boundary (i.e., N ′|R+ = 0). In fact a standard uniqueness argument would suffice to guarantee that any
such (i.e., smooth, bounded with vanishing Dirichlet data) solution would automatically be axisymmetric
and hence project naturally to the original quotient space whereon (520) was formulated.

But would such a solution contribute unwanted flux terms to (72) and disrupt the argument for conservation
of energy?

The terms in (72) involving Ñ ′ can be expressed as the divergence of the vector density

Ξ b
:= (Ñ Ñ ′,a − Ñ ′ Ñ,a) 2π̃ ′ab

= (eγ Ñ N ′,a + Ñ 2γ ′,a − N ′e2γ N,a)2π̃ ′ab, (523)
where

π̃ ′ab
= g̃bc[(r̃ a

c )
′
+

1
2 δ

a
c τ
′µ(2) g̃

]
(524)

and N ′ is given by (521).

From (430)–(431) one sees that, in the asymptotic regions near R↘ R+ and R↗∞, one has

π̃ ′cd
=

g̃ac g̃bd

2Ñ
µ(2) g̃[(L(2)D g̃)ab− g̃ab g̃e f (L(2)D g̃)e f ], (525)

where
(2)D := (Ñ 2g̃cd (4)Y 0

,d)
∂

∂xc . (526)

In terms of the “conformal data” ν and hab (for which, as before, g̃ab = e2ν hab) this becomes

π̃ ′cd
= µ(2)h

hachbd

2Ñ
{−2(2)De ν,e hab+ (L(2)Dh)ab− habhe f (L(2)Dh)e f }. (527)

Utilizing the asymptotic properties of (2)D derived in Section 4A and imposing the (homogeneous)
Dirichlet boundary condition N ′|R+ = 0 upon the desired solution of (522), one can show that, if a regular
such solution exists, then one has

Ξ R
|R+ = 0, (528)

i.e., pointwise vanishing of the energy flux integrand at the horizon boundary. Furthermore the correspond-
ing flux integrand vanishes as R↗∞ for any solution N ′ that grows sufficiently slowly. In particular
any solution that is bounded with bounded first derivatives would yield a (pointwise) vanishing energy
flux integrand as R↗∞.
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Finally, by exploiting the regularity results for axisymmetric fields and their perturbations derived in [70],
it is straightforward to verify that potential flux contributions at the (artificial) boundaries provided by the
axes of symmetry at θ = 0, π vanish (pointwise) as O(sin2 θ). Thus, modulo the aforementioned need
for an existence proof for (522), it follows that conservation of our energy functional holds as well in the
3+1-dimensional maximal slicing gauge.

Appendix L: The Weyl tensor for vacuum axisymmetric spacetimes

In Section 2 we analyzed the (axisymmetric) purely electromagnetic perturbations of a Kerr black hole
spacetime by introducing a complete set of (electromagnetic) gauge and infinitesimal diffeomorphism-
invariant canonical variables for the (linearized) Maxwell field and deriving a conserved, positive definite
energy functional expressible in terms of these quantities. An advantage of the use of such variables is
their insensitivity to the nonlocal features of any elliptic gauge condition that one might choose to employ.
By contrast the variables we introduced later for the full, linearized Kerr–Newman problem were gauge
dependent — a feature directly reflected in the dependence of their evolution equations on the elliptically
determined (hence nonlocal) linearized lapse and shift fields {Ñ ′, Ñ a′

}.

It is therefore natural to ask whether, at least for the purely gravitational perturbations of a Kerr background,
a corresponding set of fully gauge-invariant canonical variables might also be available for the (linearized)
metric component of the problem. Since the (complex) field satisfying Teukolsky’s equation is gauge-
invariant, one might well expect that it provides (upon specialization to the axisymmetric setting considered
here) a natural answer to this question. If one could affect a canonical transformation to a new set of
variables that includes Teukolsky’s field and its conjugate momentum as a gauge-invariant subset then
one would expect that our energy functional, which is itself gauge-invariant, could be reexpressed purely
in terms of this (invariant) subset.

Since Teukolsky’s field is defined in terms of the linearization of the Weyl tensor about a Kerr background,
we present here the actual Weyl tensor for vacuum, axisymmetric metrics expressed in terms of our
symmetry-reduced canonical variables from Appendix C. Since, in the case of a vacuum background, the
linearized gravitational and electromagnetic perturbations decouple from one another and since we have
already dealt with the Maxwell component in Section 2, we focus exclusively here on the pure metric
component and specialize the formulas of Appendix C accordingly.

As is well known [5; 63] the Weyl tensor for a vacuum spacetime can be expressed in terms of ADM
Cauchy data {(3)g= gi j dx i

⊗dx j , (3)π =π i j (∂/∂x i )⊗(∂/∂x j )} on a 3-manifold M as a pair of (traceless,
symmetric) tensor densities, an “electric” field (3)E = E i j (∂/∂x i )⊗ (∂/∂x j ) given by

E i j
:=

{
µ(3)g

(3)Ri j ((3)g)− 1
µ(3)g

(
π i

mπ
mj
−

1
2π

i jπm
m
)}

(529)

and a corresponding “magnetic” field (3)B = Bi j (∂/∂x i )⊗ (∂/∂x j ) defined by

Bi j
:=

εm`j

µ(3)g

{
πm

i |`−
1
2δ

i
m(π

k
k)|`
}
. (530)
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Note that (3)E , though manifestly symmetric, is traceless only by virtue of the (vacuum) Hamiltonian
constraint

Em
m =−H→ 0 (in vacuum), (531)

whereas (3)B, though identically traceless, is symmetric only by virtue of the (vacuum) momentum
constraint

εi jkBi j
=−

1
2

Hk

µ(3)g
→ 0 (in vacuum). (532)

One can now evaluate (3)E and (3)B in terms of the canonical pairs, {(g̃ab, π̃
ab), (βa, ẽa), (γ, p̃)}, for the

(axial-) symmetry-reduced system defined in (227)–(231). A final transformation to wavemap variables
would then result from the substitution

ẽa
→ εabω,b, (533)

εabβa,b→ r̃ . (534)

On the other hand the one-form field βadxa , which appears in the spatial metric (3)g, is nonlocal in terms
of the wavemap field r̃ and, moreover, incorporates a (longitudinal) component that varies as

βa→ βa + λ|a (535)

under a coordinate transformation of the form

x3
= ϕ→ ϕ+ λ, (536)

whereas r̃ is invariant with respect to such a transformation. For this reason we prefer to express the
results in terms of the intermediate canonical pairs listed above.

Only a certain set of “mixed” components of (3)E and (3)B are invariant with respect to the aforementioned
“gauge” transformation of βadxa , namely,

{Eab, E33, E a
3 ,B

ab,B33,B a
3 }. (537)

Using the spatial metric (3)g to raise or lower indices one can easily express all of the contravariant or
covariant components of these fields in terms of the specified “mixed” components but only at the expense
of foregoing the aforementioned invariance.

Without further ado we present here the relevant, “mixed” components of the Weyl tensor expressed in
terms of the symmetry reduced canonical variables:

Eab
= e3γµ(2) g̃

{
(2) R̃ab

−
(2)
∇̃

b(2)
∇̃

aγ + g̃ab((2)∇̃c
(2)
∇̃

cγ )− 3((2)∇̃aγ )((2)∇̃bγ )

+ g̃ab((2)∇̃cγ )(
(2)
∇̃

cγ )− 1
2 e4γ g̃ac g̃d f g̃be(βd,e−βe,d)(β f,c−βc, f )

}
−

eγ

µ(2) g̃

{
−

1
2 e2γ π̃ab( 1

2 p̃+ 2g̃cd π̃
cd)
+ e2γ g̃cd π̃

ad π̃bc
+

1
4 e−2γ ẽa ẽb}, (538)

E33 =−
eγ

µ(2) g̃

{1
4 e−2γ g̃abẽa ẽb

+
1
4 e2γ p̃

( 1
2 p̃+ g̃abπ̃

ab)}
− e3γ {∂a(µ(2) g̃ g̃abγ,b)+µ(2) g̃ g̃abγ,aγ,b+

1
4 e4γµ(2) g̃ g̃ac g̃bd(βc,b−βb,c)(βd,a −βa,d)

}
, (539)
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E a
3 = e5γµ(2) g̃

{ 1
2
(2)
∇̃b[g̃bd g̃ac(βd,c−βc,d)] −

5
2(
(2)
∇̃

bγ )g̃ac(βb,c−βc,b)
}

−
eγ

µ(2) g̃

[ 1
2 ẽc g̃bcπ̃

ab
+

1
8 p̃ ẽa], (540)

Bab
= εbc3

{
1
2

e5γ g̃ce

µ(2) g̃
π̃de g̃a f ε f d(ε

mnβm,n)−
ẽd

µ(2) g̃
eγ g̃a f γ, f g̃dc+

1
2

eγ ẽd

µ(2) g̃
γ,dδ

a
c

−
1
2

e5γ

µ(2) g̃

(1
2

p̃+ g̃mnπ̃
mn
)

g̃a f ε f c(ε
rsβr,s)−

1
2

eγ (2)∇̃c

(
ẽa

µ(2) g̃

)}
, (541)

B33 = ε
ac3
{

e2γ
(

1
2

e−γ

µ(2) g̃
ẽa

)
,c
−

1
2

eγ ẽa
µ(2) g̃

γ,c

+

(
e5γ

2µ(2) g̃

)
(βa,c−βc,a)

(
1
2

p̃+ g̃bd π̃
bd
)
−

(
1
2

e5γ

µ(2) g̃

)
π̃ f

a (β f,c−βc, f )

}
, (542)

B a
3 = ε

3ca
{
−

e3γ

µ(2) g̃
γ,b(π̃

b
c − δ

b
c g̃mnπ̃

mn)−
1
4

e3γ

µ(2) g̃
ẽb(βb,c−βc,b)+

1
4

(
e3γ p̃
µ(2) g̃

)
,c

}
. (543)

In these formulas indices a, b, c, . . . are raised and lowered with the Riemannian 2-metric (2)g̃ =
g̃ab dxa

⊗ dxb and (2)
∇̃a designates covariant differentiations with respect to this metric, whereas µ(2) g̃

and (2) R̃ab are its “volume” element and Ricci tensor.

Whereas the explicit symmetry of (3)E implies, for example, that

E a
3 = Ea

3 and εabEab
= 0, (544)

the corresponding equations for (3)B only hold “weakly” (i.e., modulo the momentum constraints). More
precisely one finds that

B a
3 −Ba

3 =−
1
2

e3γ

µ(2) g̃
εab3H̃b, (545)

εabBab
=

1
2

eγ

µ(2) g̃
ẽc
,c, (546)

B3a
−Ba3

=−
1
2
εac3eγ

µ(2) g̃
(H̃c−βcẽd

,d), (547)

where
B3a
= e−2γB a

3 −βbBba. (548)

To see that all of the components of (3)E are indeed determined by the mixed set we have presented above
one computes that

Ea3
= E3a

= e−2γ Ea
3−βbEab, (549)

E33
= e−4γ E33− 2e−2γβaE a

3 +βaβbEab. (550)

As we have already mentioned, the trace of (3)E only vanishes weakly since, in fact

gi jE i j
=−H=−eγ H̃. (551)
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Similar formulas hold for the (contravariant) components of (3)B, allowing for the fact that it, unlike (3)E ,
is not explicitly symmetric.

A straightforward further calculation gives

E i jEi j = e−4γ
{(E33)

2
+ 2g̃abEa

3E
b
3+ g̃ac g̃bdEabEcd

}, (552)

which, being independent of βa , is invariant under the “gauge” transformation βa→ βa + λ|a . A similar
formula can of course be derived for Bi jBi j , again allowing for the lack of explicit symmetry of (3)B.
Taken together these quantities constitute the “Bel Robinson energy density”.
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