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The Whitney trick is a method for removing points of intersection between two submanifolds. It can be
seen in its most elementary form in Figure 1, in which it is obvious that the two points of intersection can
be removed by an isotopy (a 1-parameter family of embeddings) of the arc labeled P p which pulls the
arc across the disk D. (Note that x and y have opposite signs.) More generally the Whitney trick is used
to remove a pair of intersections, x and y, between two manifolds P p and Qq which are embedded in an
ambient manifold M p+q . To see how this is done, we first construct a model, then show how to embed it
in M (if possible), and then sketch some applications of the Whitney trick.

Qq P p

D

x
+

y
−

α β

Qq P p

Figure 1. The Whitney trick in the plane

The model is merely a stabilization of the example in Figure 1. We cross the plane in which D is embedded
with R(p−1)+(q−1) so that the ambient space is just Rp+q , and then we cross the curve which includes
α by Rp−1 to get an p-dimensional manifold P , and similarly cross with Rq−1 to get an q-manifold Q.
These two manifolds still meet in two points x and y, which are connected in P by the original arc α and
in Q by the original arc β. Note that the two arcs still bound a 2-dimensional disk D, and that D lies
inside a larger open disk 1 in the plane. Also note that 1 has a normal (p− 1)+ (q − 1)-plane bundle
which splits as the direct sum (also called “Whitney sum”) of a (p− 1)-plane bundle which coincides
along α with the normal bundle of α in P , and an (q− 1)-plane bundle which coincides along β with the
normal bundle of β in Q.
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The plane isotopy described in Figure 1 easily extends to an isotopy taking place in the plane crossed
with the p− 1 coordinates of P , as drawn for p = 2 in Figure 2; nothing happens with the other q − 1
coordinates.

46 1. Higher Dimensions and the h–Cobordism Theorem
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Figure 2. The Whitney trick in dimension three

Now this model must be embedded in M p+q so that the actual manifolds P and Q and two points of
intersection x and y correspond to the manifolds and points in the model.
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If both P and Q are connected, then the arcs α and β exist, and if P and Q are simply connected (as
they often are in applications), then the arcs are unique up to homotopy. If M is simply connected, then
the disk D can be mapped into M . If not, then x must be connected by an arc (unique up to homotopy
if P is simply connected) to a base point x0 ∈ P which is connected by an arc to a base point z ∈ M .
Similarly with arcs to a base point y0 ∈ Q. It follows that x then determines an element of π1(M) by
running from z to x0 to x to y0 and back to z. Now if x and y both represent the same element of π1(M),
then we can still map a disk D into M . (This is important in proving the s-cobordism theorem.)

Once D is mapped into M , we can embed it if the dimension of M , p+ q , is five or more. Furthermore,
if each of p and q is three or more, then the embedding of D can be chosen to miss P and Q except
along its boundary.

Now that D is embedded missing P and Q, it remains to find the embedding of the normal bundle of D.
The normal (p+ q − 2)-bundle to D (in fact, 1) in M can be split along α as the normal (p− 1)-bundle
to α in P direct sum the orthogonal (q − 1)-bundle. That splitting extends across 1. The only problem
remaining is that this (p− 1)-plane bundle may not coincide with the (p− 1)-plane bundle which is the
normal bundle to β in Q.

The problem reduces to an arc of (p− 1)-planes in R(p−1)+(q−1) which we want to isotope to the trivial
arc, relative to the endpoints. Note that the trivial arc, as in the model, corresponds to x and y having
opposite signs, so this is necessary. Now, this is possible because the fundamental group of the Stiefel
manifold of (p− 1)-planes in Rp+q−2 is trivial when p > 2 [Whitehead 1978, p. 202]. For more details,
see the excellent description in [Scorpan 2005].

Whitney developed the Whitney trick in order to embed P p in R2p [Whitney 1944]. For p = 2, this is
easy. In higher dimensions, P only immerses in R2p (by general position), so for each double point,
Whitney introduces in local fashion another double point of opposite sign (some thought is needed if P is
non-orientable), and then uses the Whitney trick to remove both points of intersection.

A later, and crucial, use of the Whitney trick is in Smale’s proof of the h-cobordism theorem [Smale
1962].
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