return

Celebratio Mathematica

David H. Blackwell

Statistics  ·  UC Berkeley

Information theory

[1]D. Black­well: “The en­tropy of func­tions of fi­nite-state Markov chains,” pp. 13–​20 in In­form­a­tion the­ory, stat­ist­ic­al de­cision func­tions, ran­dom pro­cesses (Lib­lice, Czech Re­pub­lic, 28 Novem­ber–30 Novem­ber 1956), vol. 1. Edi­ted by J. Kožešnik. Czechoslov­ak Academy of Sci­ences (Prague), 1957. MR 0100297 Zbl 0085.​12401 incollection

[2]D. Black­well, L. Breiman, and A. J. Thomasi­an: “Proof of Shan­non’s trans­mis­sion the­or­em for fi­nite-state in­decom­pos­able chan­nels,” Ann. Math. Stat. 29 : 4 (1958), pp. 1209–​1220. MR 0118570 Zbl 0096.​10901 article

[3]D. Black­well: “In­fin­ite codes for memory­less chan­nels,” Ann. Math. Stat. 30 : 4 (1959), pp. 1242–​1244. MR 0127448 Zbl 0104.​11701 article

[4]D. Black­well, L. Breiman, and A. J. Thomasi­an: “The ca­pa­city of a class of chan­nels,” Ann. Math. Stat. 30 : 4 (1959), pp. 1229–​1241. MR 0127449 Zbl 0104.​11604 article

[5]D. Black­well, L. Breiman, and A. J. Thomasi­an: “The ca­pa­cit­ies of cer­tain chan­nel classes un­der ran­dom cod­ing,” Ann. Math. Stat. 31 : 3 (1960), pp. 558–​567. MR 0127450 Zbl 0119.​13805 article

[6]D. Black­well: “Ex­po­nen­tial er­ror bounds for fi­nite state chan­nels,” pp. 57–​63 in Pro­ceed­ings of the fourth Berke­ley sym­posi­um on math­em­at­ic­al stat­ist­ics and prob­ab­il­ity (Berke­ley, CA, 20 June–30 Ju­ly 1960), vol. I. Edi­ted by J. Ney­man. Uni­versity of Cali­for­nia Press (Berke­ley and Los Angeles), 1961. MR 0135199 Zbl 0104.​11603 incollection

[7]D. Black­well: “In­form­a­tion the­ory,” pp. 182–​193 in Mod­ern math­em­at­ics for the en­gin­eer. Edi­ted by E. F. Beck­en­bach. Mc­Graw-Hill (New York), 1961. MR 0129161 incollection