return

Celebratio Mathematica

Kenneth Ira Appel

Complete Bibliography

[1] K. I. Ap­pel: “Horn sen­tences in iden­tity the­ory,” J. Symb. Lo­gic 24 : 4 (December 1959), pp. 306–​310. MR 132691 Zbl 0114.​24502 article

[2] K. I. Ap­pel: Two in­vest­ig­a­tions on the bor­der­line of lo­gic and al­gebra. Ph.D. thesis, Uni­versity of Michigan, 1959. Ad­vised by R. C. Lyn­don. MR 2612854 phdthesis

[3] K. I. Ap­pel: “Par­ti­tion rings of cyc­lic groups of odd prime power or­der,” Can. J. Math. 13 (1961), pp. 373–​391. MR 124419 Zbl 0100.​03001 article

[4] K. I. Ap­pel and F. M. Djorup: “On the group gen­er­ated by a free semig­roup,” Proc. Am. Math. Soc. 15 : 5 (1964), pp. 838–​840. MR 168682 Zbl 0126.​04701 article

[5] K. I. Ap­pel and T. G. McLaugh­lin: “On prop­er­ties of re­gress­ive sets,” Trans. Am. Math. Soc. 115 (1965), pp. 83–​93. MR 230616 Zbl 0192.​05202 article

[6] K. I. Ap­pel: “No re­curs­ively enu­mer­able set is the uni­on of fi­nitely many im­mune re­trace­able sets,” Proc. Am. Math. Soc. 18 : 2 (1967), pp. 279–​281. MR 207548 Zbl 0183.​01402 article

[7] K. I. Ap­pel: “There ex­ist two re­gress­ive sets whose in­ter­sec­tion is not re­gress­ive,” J. Symb. Log. 32 : 3 (October 1967), pp. 322–​324. MR 215711 Zbl 0192.​05203 article

[8] K. I. Ap­pel and E. T. Park­er: “On un­solv­able groups of de­gree \( p=4q+1 \), \( p \) and \( q \) primes,” Can. J. Math. 19 (1967), pp. 583–​589. MR 217165 Zbl 0166.​01903 article

[9] K. I. Ap­pel and F. M. Djorup: “On the equa­tion \( z_1^n z_2^n\cdots z_k^n = y^n \) in a free semig­roup,” Trans. Am. Math. Soc. 134 : 3 (December 1968), pp. 461–​470. MR 230827 Zbl 0169.​02703 article

[10] K. I. Ap­pel: “One-vari­able equa­tions in free groups,” Proc. Am. Math. Soc. 19 : 4 (1968), pp. 912–​918. MR 232826 Zbl 0159.​30502 article

[11] K. I. Ap­pel: “On two vari­able equa­tions in free groups,” Proc. Am. Math. Soc. 21 : 1 (1969), pp. 179–​184. MR 257193 Zbl 0172.​02701 article

[12] K. I. Ap­pel and P. E. Schupp: “The con­jugacy prob­lem for the group of any tame al­tern­at­ing knot is solv­able,” Proc. Am. Math. Soc. 33 : 2 (1972), pp. 329–​336. MR 294460 Zbl 0243.​20036 article

[13] K. I. Ap­pel: “On the con­jugacy prob­lem for knot groups,” pp. 18 in Con­fer­ence in group the­ory (Ra­cine, WI, 28–30 June 1972). Edi­ted by R. W. Gat­ter­dam and K. W. We­st­on. Lec­ture Notes in Math­em­at­ics 319. Spring­er (Ber­lin), 1973. Ab­stract only. Ab­stract for an art­icle even­tu­ally pub­lished in Math. Z. 138:3 (1974). Zbl 0256.​20045 incollection

[14] K. I. Ap­pel: “On the con­jugacy prob­lem for knot groups,” Math. Z. 138 : 3 (1974), pp. 273–​294. An ab­stract was pub­lished in Con­fer­ence in group the­ory (1972). MR 357622 Zbl 0276.​20033 article

[15] K. I. Ap­pel: “Book re­view: J. N. Cross­ley, et al., ‘What is math­em­at­ic­al lo­gic?’,” Math. Mag. 47 : 4 (September 1974), pp. 236–​237. MR 1572110 article

[16] K. Ap­pel and W. Haken: “The ex­ist­ence of un­avoid­able sets of geo­graph­ic­ally good con­fig­ur­a­tions,” Ill. J. Math. 20 : 2 (1976), pp. 218–​297. MR 392641 Zbl 0322.​05141 article

[17] K. Ap­pel and W. Haken: “Every planar map is four col­or­able,” Bull. Am. Math. Soc. 82 : 5 (September 1976), pp. 711–​712. MR 424602 Zbl 0331.​05106 article

[18] K. Ap­pel and W. Haken: “A proof of the four col­or the­or­em,” Dis­crete Math. 16 : 2 (October 1976), pp. 179–​180. MR 543791 Zbl 0339.​05109 article

[19] K. Ap­pel and W. Haken: “Every planar map is four col­or­able,” J. Re­cre­at. Math. 9 : 3 (1976–1977), pp. 161–​169. MR 543797 Zbl 0357.​05043 article

[20] K. Ap­pel and W. Haken: “Every planar map is four col­or­able, I: Dis­char­ging,” Ill. J. Math. 21 : 3 (1977), pp. 429–​490. A mi­crofiche sup­ple­ment to both parts was pub­lished in Ill. J. Math. 21:3 (1977). MR 543792 Zbl 0387.​05009 article

[21] K. Ap­pel, W. Haken, and J. Koch: “Every planar map is four col­or­able, II: Re­du­cib­il­ity,” Ill. J. Math. 21 : 3 (1977), pp. 491–​567. A mi­crofiche sup­ple­ment to both parts was pub­lished in Ill. J. Math. 21:3 (1977). MR 543793 Zbl 0387.​05010 article

[22] K. Ap­pel and W. Haken: “The class check lists cor­res­pond­ing to the sup­ple­ment to ‘Every planar map is four col­or­able. Part I and Part II’,” Ill. J. Math. 21 : 3 (1977), pp. C1–​C210. Mi­crofiche sup­ple­ment. Ex­tra ma­ter­i­al to ac­com­pany the sup­ple­ment pub­lished in Ill. J. Math. 21:3 (1977). MR 543794 article

[23] K. Ap­pel and W. Haken: “Mi­crofiche sup­ple­ment to ‘Every planar map is four col­or­able. Part I and Part II’,” Ill. J. Math. 21 : 3 (1977), pp. 1–​251. Mi­crofiche sup­ple­ment. Sup­ple­ment to the two part art­icle pub­lished as Ill. J. Math. 21:3 (1977) and Ill. J. Math. 21:3 (1977). A class check list was also pub­lished as Ill. J. Math. 21:3 (1977). MR 543795 article

[24] K. Ap­pel and W. Haken: “The solu­tion of the four-col­or-map prob­lem,” Sci. Amer. 237 : 4 (October 1977), pp. 108–​121. MR 543796 article

[25] J. S. Graber, K. Ap­pel, K. Flem­ing, D. F. Bailey, and M. V. Sub­barao: “News & let­ters,” Math. Mag. 50 : 3 (May 1977), pp. 173–​175. MR 1572218 article

[26] K. Ap­pel and W. Haken: “The four-col­or prob­lem,” pp. 153–​180 in Math­em­at­ics today: Twelve in­form­al es­says. Edi­ted by L. A. Steen. Spring­er (Ber­lin), 1978. incollection

[27] K. Ap­pel and W. Haken: “An un­avoid­able set of con­fig­ur­a­tions in planar tri­an­gu­la­tions,” J. Comb. The­ory, Ser. B 26 : 1 (February 1979), pp. 1–​21. MR 525813 Zbl 0407.​05035 article

[28] K. Ap­pel, W. Haken, and J. May­er: “Tri­an­gu­la­tion à \( v_5 \) séparés dans le problème des quatre couleurs” [Sep­ar­ated tri­an­gu­la­tion of \( v_5 \) in the four-col­or prob­lem], J. Comb. The­ory, Ser. B 27 : 2 (October 1979), pp. 130–​150. MR 546856 Zbl 0344.​05113 article

[29] K. I. Ap­pel: “Un nou­veau type de preuve mathématique. Le théorème des quatre couleurs, II” [A new type of math­em­at­ic­al proof: The four-col­or the­or­em, II], Publ. Dép. Math., Ly­on 16 : 3–​4 (1979), pp. 81–​88. In col­lab­or­a­tion with W. Haken. MR 602656 Zbl 0455.​05031 article

[30] W. Abikoff, K. Ap­pel, and P. Schupp: “Lift­ing sur­face groups to \( \mathrm{SL}(2,\mathbb{C}) \),” pp. 1–​5 in Klein­i­an groups and re­lated top­ics (Oaxte­pec, Mex­ico, 10–14 Au­gust 1981). Edi­ted by D. M. Gallo and R. M. Port­er. Lec­ture Notes in Math­em­at­ics 971. Spring­er (Ber­lin), 1983. MR 690272 Zbl 0531.​30037 incollection

[31] K. I. Ap­pel and P. E. Schupp: “Artin groups and in­fin­ite Coxeter groups,” In­vent. Math. 72 : 2 (June 1983), pp. 201–​220. MR 700768 Zbl 0536.​20019 article

[32] Con­tri­bu­tions to group the­ory, published as Con­temp. Math. 33. Issue edi­ted by K. I. Ap­pel, J. G. Ratcliffe, and P. E. Schupp. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1984. Pa­pers ded­ic­ated to Ro­ger C. Lyn­don on the oc­ca­sion of his sixty-fifth birth­day. MR 767092 Zbl 0539.​00007 book

[33] K. I. Ap­pel: “Ro­ger C. Lyn­don: A bio­graph­ic­al and per­son­al note,” pp. 1–​10 in Con­tri­bu­tions to group the­ory. Edi­ted by K. I. Ap­pel, J. G. Ratcliffe, and P. E. Schupp. Con­tem­por­ary Math­em­at­ics 33. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1984. MR 767093 Zbl 0546.​01008 incollection

[34] K. I. Ap­pel: “On Artin groups and Coxeter groups of large type,” pp. 50–​78 in Con­tri­bu­tions to group the­ory. Edi­ted by K. I. Ap­pel, J. G. Ratcliffe, and P. E. Schupp. Con­tem­por­ary Math­em­at­ics 33. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1984. MR 767099 Zbl 0576.​20021 incollection

[35] K. Ap­pel and W. Haken: “The four col­or proof suf­fices,” Math. In­tell. 8 : 1 (1986), pp. 10–​20. MR 823216 Zbl 0578.​05022 article

[36] K. Ap­pel and W. Haken: Every planar map is four col­or­able. Con­tem­por­ary Math­em­at­ics 98. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1989. With the col­lab­or­a­tion of J. Koch. MR 1025335 Zbl 0681.​05027 book