Celebratio Mathematica

R H Bing

R H Bing: 1914–1986

Filter the Bibliography List

clear

R. H. Bing: “Con­cern­ing simple plane webs,” Trans. Am. Math. Soc. 60 : 1 (July 1946), pp. 133–​148. See also Bing’s PhD thes­is (1945). MR 0016646 Zbl 0060.​40310 article

R. H. Bing: “The Kline sphere char­ac­ter­iz­a­tion prob­lem,” Bull. Am. Math. Soc. 52 : 8 (1946), pp. 644–​653. MR 0016645 Zbl 0060.​40501 article

R. H. Bing: “A ho­mo­gen­eous in­decom­pos­able plane con­tinuum,” Duke Math. J. 15 : 3 (1948), pp. 729–​742. MR 0027144 Zbl 0035.​39103 article

R. H. Bing: “Met­riz­a­tion of to­po­lo­gic­al spaces,” Ca­na­dian J. Math. 3 (1951), pp. 175–​186. MR 0043449 Zbl 0042.​41301 article

R. H. Bing: “A homeo­morph­ism between the 3-sphere and the sum of two sol­id horned spheres,” Ann. Math. (2) 56 : 2 (September 1952), pp. 354–​362. MR 0049549 Zbl 0049.​40401 article

R. H. Bing: “A con­nec­ted count­able Haus­dorff space,” Proc. Am. Math. Soc. 4 : 3 (1953), pp. 474. MR 0060806 Zbl 0051.​13902 article

R. H. Bing: “Loc­ally tame sets are tame,” Ann. Math. (2) 59 : 1 (January 1954), pp. 145–​158. MR 0061377 Zbl 0055.​16802 article

R. H. Bing: “A simple closed curve that pierces no disk,” J. Math. Pures Ap­pl. (9) 35 (1956), pp. 337–​343. MR 0081461 Zbl 0070.​40203 article

R. H. Bing: “Up­per semi­con­tinu­ous de­com­pos­i­tions of \( E^3 \),” Ann. Math. (2) 65 : 2 (March 1957), pp. 363–​374. MR 0092960 Zbl 0078.​15201 article

R. H. Bing: “A de­com­pos­i­tion of \( E^3 \) in­to points and tame arcs such that the de­com­pos­i­tion space is to­po­lo­gic­ally dif­fer­ent from \( E^3 \),” Ann. Math. (2) 65 : 3 (May 1957), pp. 484–​500. MR 0092961 Zbl 0079.​38806 article

R. H. Bing: “Ap­prox­im­at­ing sur­faces with poly­hed­ral ones,” Ann. Math. (2) 65 : 3 (May 1957), pp. 465–​483. Ex­pan­ded ver­sion of an art­icle in Sum­mer in­sti­tute on set the­or­et­ic to­po­logy (1957). MR 0087090 Zbl 0079.​38805 article

R. H. Bing: “Ne­ces­sary and suf­fi­cient con­di­tions that a 3-man­i­fold be \( S^3 \),” Ann. Math. (2) 68 : 1 (July 1958), pp. 17–​37. MR 0095471 Zbl 0081.​39202 article

R. H. Bing: “An al­tern­at­ive proof that 3-man­i­folds can be tri­an­gu­lated,” Ann. Math. (2) 69 : 1 (January 1959), pp. 37–​65. MR 0100841 Zbl 0106.​16604 article

R. H. Bing: “The Cartesian product of a cer­tain non­man­i­fold and a line is \( E^4 \),” Ann. Math. (2) 70 : 3 (November 1959), pp. 399–​412. Ex­pan­ded ver­sion of an art­icle in Bull Am. Math. Soc. 64:3 (1958). MR 0107228 Zbl 0089.​39501 article

R. H. Bing: “Con­di­tions un­der which a sur­face in \( E^3 \) is tame,” Fund. Math. 47 : 1 (1959), pp. 105–​139. MR 0107229 Zbl 0088.​15402 article

R. H. Bing: “A sur­face is tame if its com­ple­ment is 1-ULC,” Trans. Am. Math. Soc. 101 : 2 (November 1961), pp. 294–​305. MR 0131265 Zbl 0109.​15406 article

R. H. Bing: “A wild sur­face each of whose arcs is tame,” Duke Math. J. 28 : 1 (1961), pp. 1–​15. MR 0123302 Zbl 0101.​16507 article

R. H. Bing: “Each disk in \( E^3 \) is pierced by a tame arc,” Am. J. Math. 84 : 4 (October 1962), pp. 591–​599. MR 0146812 Zbl 0178.​27202 article

R. H. Bing: “Each disk in \( E^3 \) con­tains a tame arc,” Am. J. Math. 84 : 4 (October 1962), pp. 583–​590. MR 0146811 Zbl 0178.​27201 article

R. H. Bing: “Ap­prox­im­at­ing sur­faces from the side,” Ann. Math. (2) 77 : 1 (January 1963), pp. 145–​192. MR 0150744 Zbl 0115.​40603 article

R. H. Bing: “In­equi­val­ent fam­il­ies of peri­od­ic homeo­morph­isms of \( E^3 \),” Ann. Math. (2) 80 : 1 (July 1964), pp. 78–​93. MR 0163308 Zbl 0123.​16801 article

R. H. Bing and K. Bor­suk: “Some re­marks con­cern­ing to­po­lo­gic­ally ho­mo­gen­eous spaces,” Ann. Math. (2) 81 : 1 (January 1965), pp. 100–​111. MR 0172255 Zbl 0127.​13302 article

R. D. An­der­son and R. H. Bing: “A com­plete ele­ment­ary proof that Hil­bert space is homeo­morph­ic to the count­able in­fin­ite product of lines,” Bull. Am. Math. Soc. 74 : 5 (1968), pp. 771–​792. MR 0230284 Zbl 0189.​12402 article

R. H. Bing: The geo­met­ric to­po­logy of 3-man­i­folds. AMS Col­loqui­um Pub­lic­a­tions 40. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1983. MR 728227 Zbl 0535.​57001 book

R. H. Bing: “Shrink­ing without length­en­ing,” To­po­logy 27 : 4 (1988), pp. 487–​493. MR 976590 Zbl 0673.​57011 article