return

Celebratio Mathematica

David H. Blackwell

Markov chains

[1]D. H. Black­well: Some prop­er­ties of Markoff chains. Ph.D. thesis, Uni­versity of Illinois at Urb­ana-Cham­paign, 1941. Ad­vised by J. L. Doob. MR 2937439 phdthesis

[2]D. Black­well: “Idem­potent Markoff chains,” Ann. Math. (2) 43 : 3 (July 1942), pp. 560–​567. MR 0006632 Zbl 0063.​00419 article

[3]D. Black­well: “The ex­ist­ence of anor­mal chains,” Bull. Am. Math. Soc. 51 : 6, Part 1 (1945), pp. 465–​468. MR 0011916 Zbl 0063.​00420 article

[4]D. Black­well: “Fi­nite non-ho­mo­gen­eous chains,” Ann. Math. (2) 46 : 4 (October 1945), pp. 594–​599. MR 0013858 Zbl 0063.​00421 article

[5]D. Black­well: “On tran­si­ent Markov pro­cesses with a count­able num­ber of states and sta­tion­ary trans­ition prob­ab­il­it­ies,” Ann. Math. Stat. 26 : 4 (1955), pp. 654–​658. MR 0075479 Zbl 0066.​11303 article

[6]D. Black­well and L. Koop­mans: “On the iden­ti­fi­ab­il­ity prob­lem for func­tions of fi­nite Markov chains,” Ann. Math. Stat. 28 : 4 (1957), pp. 1011–​1015. MR 0099081 Zbl 0080.​34901 article

[7]D. Black­well: “An­oth­er count­able Markov pro­cess with only in­stant­an­eous states,” Ann. Math. Stat. 29 : 1 (1958), pp. 313–​316. MR 0093822 Zbl 0085.​12702 article

[8]D. Black­well and D. Freed­man: “The tail \( \sigma \)-field of a Markov chain and a the­or­em of Orey,” Ann. Math. Stat. 35 : 3 (1964), pp. 1291–​1295. MR 0164375 Zbl 0127.​35204 article

[9]D. Black­well and D. Kend­all: “The Mar­tin bound­ary for Pólya’s urn scheme, and an ap­plic­a­tion to stochast­ic pop­u­la­tion growth,” J. Ap­pl. Prob­ab­il­ity 1 : 2 (December 1964), pp. 284–​296. MR 0176518 Zbl 0129.​10702 article

[10]D. Black­well and D. Freed­man: “On the loc­al be­ha­vi­or of Markov trans­ition prob­ab­il­it­ies,” Ann. Math. Stat. 39 : 6 (1968), pp. 2123–​2127. MR 0233429 Zbl 0175.​46903 article

[11]D. Black­well: “Large ex­cesses for fi­nite-state Markov chains,” pp. 35–​39 in Sys­tem and Bayesian re­li­ab­il­ity: Es­says in hon­or of Pro­fess­or Richard E. Bar­low on his 70th birth­day. Edi­ted by Y. Hayakawa, T. Irony, and M. Xie. Series on Qual­ity, Re­li­ab­il­ity & En­gin­eer­ing stat­ist­ics 5. World Sci­entif­ic (River Edge, NJ), 2001. MR 1896774 incollection