return

Celebratio Mathematica

David H. Blackwell

Probability

[1]D. Black­well and M. A. Gir­shick: “On func­tions of se­quences of in­de­pend­ent chance vec­tors with ap­plic­a­tions to the prob­lem of the ‘ran­dom walk’ in \( k \) di­men­sions,” Ann. Math. Stat. 17 : 3 (September 1946), pp. 310–​317. MR 0017898 Zbl 0060.​29007 article

[2]D. Black­well: “On an equa­tion of Wald,” Ann. Math. Stat. 17 : 1 (March 1946), pp. 84–​87. MR 0019902 Zbl 0063.​00422 article

[3]D. Black­well: “A re­new­al the­or­em,” Duke Math. J. 15 : 1 (1948), pp. 145–​150. MR 0024093 Zbl 0030.​20102 article

[4]D. Black­well: “Ex­ten­sion of a re­new­al the­or­em,” Pa­cific J. Math. 3 : 2 (1953), pp. 315–​320. MR 0054880 Zbl 0052.​14104 article

[5]D. Black­well: “On op­tim­al sys­tems,” Ann. Math. Stat. 25 (1954), pp. 394–​397. MR 0061776 Zbl 0055.​37002 article

[6]D. Black­well: “On a class of prob­ab­il­ity spaces,” pp. 1–​6 in Pro­ceed­ings of the third Berke­ley sym­posi­um on math­em­at­ic­al stat­ist­ics and prob­ab­il­ity (Berke­ley, CA, 26–31 Decem­ber 1954 and Ju­ly–Au­gust 1955), vol. II. Edi­ted by J. Ney­man. Uni­versity of Cali­for­nia Press (Berke­ley and Los Angeles), 1956. MR 0084882 Zbl 0073.​12301 inproceedings

[7]D. Black­well and J. L. Hodges, Jr.: “The prob­ab­il­ity in the ex­treme tail of a con­vo­lu­tion,” Ann. Math. Stat. 30 : 4 (1959), pp. 1113–​1120. MR 0112197 Zbl 0099.​35105 article

[8]D. Black­well and L. Du­bins: “Mer­ging of opin­ions with in­creas­ing in­form­a­tion,” Ann. Math. Stat. 33 : 3 (1962), pp. 882–​886. MR 0149577 Zbl 0109.​35704 article

[9]D. Black­well and C. Ryll-Nardzewski: “Non-ex­ist­ence of every­where prop­er con­di­tion­al dis­tri­bu­tions,” Ann. Math. Stat. 34 : 1 (1963), pp. 223–​225. MR 0148097 Zbl 0122.​13202 article

[10]D. Black­well and D. Freed­man: “A re­mark on the coin toss­ing game,” Ann. Math. Stat. 35 : 3 (1964), pp. 1345–​1347. MR 0169257 Zbl 0129.​31502 article

[11]D. Black­well, P. Deuel, and D. Freed­man: “The last re­turn to equi­lib­ri­um in a coin-toss­ing game,” Ann. Math. Stat. 35 : 3 (1964), pp. 1344. MR 0169256 Zbl 0129.​31501 article

[12]D. Black­well and D. Freed­man: “On the amount of vari­ance needed to es­cape from a strip,” Ann. Probab. 1 : 5 (1973), pp. 772–​787. MR 0356214 Zbl 0293.​60041 article

[13]D. Black­well: “Dis­crete­ness of Fer­guson se­lec­tions,” Ann. Stat­ist. 1 : 2 (1973), pp. 356–​358. MR 0348905 Zbl 0276.​62009 article

[14]D. Black­well and J. B. Mac­Queen: “Fer­guson dis­tri­bu­tions via Pólya urn schemes,” Ann. Stat­ist. 1 : 2 (1973), pp. 353–​355. MR 0362614 Zbl 0276.​62010 article

[15]D. Black­well and L. E. Du­bins: “On ex­ist­ence and non-ex­ist­ence of prop­er, reg­u­lar, con­di­tion­al dis­tri­bu­tions,” Ann. Probab. 3 : 5 (1975), pp. 741–​752. MR 0400320 Zbl 0348.​60003 article

[16]D. Black­well and L. E. Du­bins: “An ex­ten­sion of Skoro­hod’s al­most sure rep­res­ent­a­tion the­or­em,” Proc. Am. Math. Soc. 89 : 4 (1983), pp. 691–​692. MR 718998 Zbl 0542.​60005 article

[17]D. Black­well: Ap­prox­im­ate nor­mal­ity of large products. Pre­print 54, U.C. Berke­ley Stat­ist­ics De­part­ment (Berke­ley, CA), 1985. techreport

[18]D. Black­well and R. D. Mauld­in: “Ulam’s re­dis­tri­bu­tion of en­ergy prob­lem: Col­li­sion trans­form­a­tions,” pp. 149–​153 in In memory of Stan Ulam, published as Lett. Math. Phys. 10 : 2–​3 (1985). MR 815237 Zbl 0582.​60035 incollection

[19]D. Black­well and S. Ra­makrish­nan: “Sta­tion­ary plans need not be uni­formly ad­equate for leavable, Borel gambling prob­lems,” Proc. Am. Math. Soc. 102 : 4 (1988), pp. 1024–​1027. MR 934886 Zbl 0658.​60072 article

[20]D. Black­well: “Large de­vi­ations for mar­tin­gales,” pp. 89–​91 in Fest­s­chrift for Lu­cien Le Cam. Edi­ted by D. Pol­lard, E. N. Tor­gersen, and G. L. Yang. Spring­er (New York), 1997. MR 1462940 Zbl 0883.​60041 incollection