return

Celebratio Mathematica

Yakov M. Eliashberg

Complete Bibliography

[1] J. M. Èli­ašberg: “Sin­gu­lar­it­ies of fold­ing type,” Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), pp. 1110–​1126. In Rus­si­an. Trans­lated in Math­em­at­ics of the USSR-Izvestiya 4:5 (1970), 1119–1134. MR 278321 Zbl 0226.​57012 article

[2] M. L. Gro­mov and J. M. Èli­ašberg: “Nonsin­gu­lar map­pings of Stein man­i­folds,” Funk­cion­al. Anal. i Priložen. 5 : 2 (1971), pp. 82–​83. In Rus­si­an. Trans­lated in Funct. Anal. Its Ap­pl. 5:2 (1971), 156–157. MR 301236 Zbl 0234.​32011 article

[3] M. L. Gro­mov and J. M. Èli­ašberg: “Elim­in­a­tion of sin­gu­lar­it­ies of smooth map­pings,” Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), pp. 600–​626. In Rus­si­an. Trans­lated in Math­em­at­ics of the USSR-Izvestiya 5:3 (1971), 615–639. MR 301748 Zbl 0221.​58009 article

[4] M. L. Gro­mov and J. M. Èli­ašberg: “Con­struc­tion of nonsin­gu­lar iso­peri­met­ric films,” Trudy Mat. Inst. Steklov. 116 (1971), pp. 18–​33, 235. In Rus­si­an. Trans­lated in Proc. Steklov Inst. Math. 116 (1971), 13–18. MR 388445 Zbl 0277.​53031 article

[5] J. M. Èli­ašberg: “Map­pings with giv­en sin­gu­lar­it­ies,” Us­pehi Mat. Nauk 26 : 6(162) (1971), pp. 255–​256. In Rus­si­an. MR 461559 Zbl 0223.​57017 article

[6] J. M. Èli­ašberg: “Sur­gery of sin­gu­lar­it­ies of smooth map­pings,” Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), pp. 1321–​1347. In Rus­si­an. Trans­lated in Math­em­at­ics of the USSR-Izvestiya 6:6 (1972), 1302–1326. MR 339261 Zbl Zbl 0254.​57019 article

[7] M. L. Gro­mov and J. M. Èli­ašberg: “Con­struc­tion of a smooth map­ping with a pre­scribed Jac­obi­an, I,” Funk­cion­al. Anal. i Priložen. 7 : 1 (1973), pp. 33–​40. In Rus­si­an. Trans­lated in Func­tion­al Ana­lys­is and Its Ap­plic­a­tions 7:1 (1973), 27–33. MR 353357 Zbl 0285.​57015 article

[8] V. A. Za­lgal­ler: The­ory of en­vel­opes. Nauka (Mo­scow), 1975. in Rus­si­an; with con­tri­bu­tions from Ya. M. Eli­ash­berg: Sec­tions 14 (“Sin­gu­lar­it­ies of smooth map­pings”) and 15 (”En­vel­opes from the point of view of sin­gu­lar­ity the­ory”). book

[9] N. M. Mišačev and J. M. Èli­ašberg: “Sur­gery of sin­gu­lar­it­ies of fo­li­ations,” Funk­cion­al. Anal. i Priložen. 11 : 3 (1977), pp. 43–​53, 96. In Rus­si­an. Trans­lated in Func­tion­al Ana­lys­is and Its Ap­plic­a­tions 11:3 (1977), 197–206. MR 474326 Zbl 0449.​57006 article

[10] Ya. M. Eli­ash­berg: Lec­tures on glob­al ana­lys­is: To­po­lo­gic­al meth­ods for solv­ing dif­fer­en­tials. Equa­tions and in­equal­it­ies. State Uni­versity named after A. M. Gorky; Syk­tyvkar State Uni­versity named after 50th an­niversary of the USSR (Perm; Syk­tyvkar), 1977. In Rus­si­an. book

[11] Y. Eli­ash­berg: Es­imates of the num­ber of fixed points of area-pre­serving trans­form­a­tions of sur­faces. Pre­print, Syk­tyvkar Uni­versity, 1979. In Rus­si­an. techreport

[12] J. M. Èli­ašberg: “Com­plex struc­tures on a man­i­fold with bound­ary,” Funkt­sion­al. Anal. i Prilozhen. 14 : 1 (1980), pp. 89–​90. In Rus­si­an. Trans­lated in Funct. Anal. Its Ap­pl. 14 (1980), 75–76. MR 565117 Zbl 0479.​32003 article

[13] Y. Eli­ash­berg: Ri­gid­ity of sym­plect­ic sur­faces. Pre­print, 1981. techreport

[14] Ya. M. Eli­ash­berg: “Ri­gid­ity of sym­plect­ic and con­tact struc­tures,” Ab­stracts of Re­ports to the 7th Len­in­grad In­ter­na­tion­al To­po­logy Con­fer­ence (1982). article

[15] Y. Eli­ash­berg and V. M. Kharmalov: “On the num­ber of com­plex points of a real sur­face in a com­plex sur­face,” pp. 143–​148 in Proc. Len­in­grad Int. To­pol. Conf. (Len­in­grad, 1982). Edi­ted by V. N. Fad­deeva and A. A. Ivan­ova. Nauka (Len­in­grad), 1983. In Rus­si­an. inproceedings

[16] Y. Eli­ash­berg: “Cobor­d­isme des solu­tions de re­la­tions différen­ti­elles,” pp. 17–​31 in Sémin­aire sud-rhodani­en de géométrie [South Rhone sem­in­ar on geo­metry] (Uni­versité Claude Bern­ard, Ly­on, France, 14–17 June 1983), vol. 1: Géométrie sym­plectique et de con­tact [Sym­plect­ic and con­tact geo­metry]. Edi­ted by P. Dazord and N. Desol­neux-Moulis. Travaux en Cours (Works in Pro­gress). Her­mann (Par­is), 1984. MR 753850 Zbl 0542.​57024 incollection

[17] Ya. M. Eli­ash­berg: “Com­plexi­fic­a­tion of con­tact struc­tures on 3-di­men­sion­al man­i­folds,” Us­pekhi Mat. Nauk 40 : 6(246) (1985), pp. 161–​162. In Rus­si­an. Trans­lated in Rus­si­an Math­em­at­ic­al Sur­veys 40: 123 (1985), 123–124. MR 815508 article

[18] Ya. M. Eli­ash­berg: “A the­or­em on the struc­ture of wave fronts and its ap­plic­a­tion in sym­plect­ic to­po­logy,” Funkt­sion­al. Anal. i Prilozhen. 21 : 3 (1987), pp. 65–​72. In Rus­si­an; trans­lated in Fuct. Anal. Ap­pl. 21:3 (1987), 227–232. MR 911776 article

[19] Ya. M. Eli­ash­berg: “Com­bin­at­or­i­al meth­ods in sym­plect­ic geo­metry,” pp. 531–​539 in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians (Uni­versity of Cali­for­nia, Berke­ley, Cali­for­nia, 3–11 Au­gust 1986), vol. I. Edi­ted by A. M. Gleason. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1987. MR 934253 inproceedings

[20] Ya. M. Eli­ash­berg: “The struc­ture of 1-di­men­sion­al wave fronts, non­stand­ard Le­gendri­an loops and Ben­nequin’s the­or­em,” pp. 7–​12 in To­po­logy and geo­metry  —  Rohlin Sem­in­ar. Edi­ted by O. Ya. Viro. Lec­ture Notes in Math. 1346. Spring­er (Ber­lin), 1988. MR 970069 Zbl 0662.​58004 incollection

[21] Y. Eli­ash­berg: “Three lec­tures on sym­plect­ic to­po­logy in Cala Gonone: Ba­sic no­tions, prob­lems and some meth­ods,” pp. 27–​49 in Con­fer­ence on Dif­fer­en­tial Geo­metry and To­po­logy (Sardin­ia, 1988), published as Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988). MR 1122856 incollection

[22] Y. Eli­ash­berg: “Clas­si­fic­a­tion of over­twisted con­tact struc­tures on 3-man­i­folds,” In­vent. Math. 98 : 3 (1989), pp. 623–​637. MR 1022310 Zbl 0684.​57012 article

[23] Y. Eli­ash­berg: “To­po­lo­gic­al char­ac­ter­iz­a­tion of Stein man­i­folds of di­men­sion \( > 2 \),” In­ter­nat. J. Math. 1 : 1 (1990), pp. 29–​46. MR 1044658 article

[24] R. Brooks, Y. Eli­ash­berg, and C. McMul­len: “The spec­tral geo­metry of flat disks,” Duke Math. J. 61 : 1 (1990), pp. 119–​131. MR 1068382 article

[25] Y. Eli­ash­berg: “Filling by holo­morph­ic discs and its ap­plic­a­tions,” pp. 45–​67 in Geo­metry of low-di­men­sion­al man­i­folds (Durham, UK, 1989), vol. II. Edi­ted by S. K. Don­ald­son and C. B. Thomas. Lon­don Math. Soc. Lec­ture Note Ser. 151. Cam­bridge Uni­versity Press (Cam­bridge, UK), 1990. MR 1171908 Zbl 0731.​53036 incollection

[26] Y. Eli­ash­berg: “Ex­ist­ence and nonex­ist­ence of a Stein com­plex struc­ture on dif­fer­en­ti­able man­i­folds,” pp. 61–​69 in Sem­inars in com­plex ana­lys­is and geo­metry (Ar­ca­va­cata, Italy, 1988). Edi­ted by J. Guenot and D. Struppa. Sem. Conf. 4. Ed­itEl (Rende, Italy), 1990. Pa­pers from the sem­in­ar held at the Uni­versity of Ca­lab­ria. MR 1222249 incollection

[27] Y. Eli­ash­berg and T. Ra­tiu: “The dia­met­er of the sym­plec­to­morph­ism group is in­fin­ite,” In­vent. Math. 103 : 2 (1991), pp. 327–​340. MR 1085110 Zbl 0725.​58006 article

[28] Y. Eli­ash­berg: “On sym­plect­ic man­i­folds with some con­tact prop­er­ties,” J. Dif­fer­en­tial Geom. 33 : 1 (1991), pp. 233–​238. MR 1085141 Zbl 0735.​53021 article

[29] Y. Eli­ash­berg: “New in­vari­ants of open sym­plect­ic and con­tact man­i­folds,” J. Amer. Math. Soc. 4 : 3 (1991), pp. 513–​520. MR 1102580 article

[30] Y. Eli­ash­berg and T. Ra­tiu: “On the dia­met­er of the sym­plec­to­morph­ism group of the ball,” pp. 169–​172 in Sym­plect­ic geo­metry, group­oids, and in­teg­rable sys­tems (Berke­ley, Cali­for­nia, 22 May–2 June 1989). Edi­ted by P. Dazord and A. Wein­stein. Math. Sci. Res. Inst. Publ. 20. Spring­er (New York), 1991. MR 1104925 Zbl 0729.​58016 incollection

[31] Y. Eli­ash­berg and M. Gro­mov: “Con­vex sym­plect­ic man­i­folds,” pp. 135–​162 in Sev­er­al com­plex vari­ables and com­plex geo­metry: Part 2. Edi­ted by E. Bed­ford, J. P. D’An­gelo, R. E. Greene, and S. G. Krantz. Proc. Sym­pos. Pure Math. 52. Amer­ic­an Math­em­at­ic­al So­ci­ety, 1991. Pro­ceed­ings of the 37th An­nu­al Sum­mer Re­search In­sti­tute (Uni­versity of Cali­for­nia, Santa Cruz, Cali­for­nia, 10–30 Ju­ly 1989). MR 1128541 Zbl 0742.​53010 incollection

[32] Y. Eli­ash­berg and H. Hofer: “To­wards the defin­i­tion of sym­plect­ic bound­ary,” Geom. Funct. Anal. II : 2 (1992), pp. 211–​220. MR 1159830 Zbl 0756.​53016 article

[33] Y. Eli­ash­berg: “Con­tact 3-man­i­folds twenty years since J. Mar­tin­et’s work,” Ann. Inst. Four­i­er (Gren­oble) 42 : 1–​2 (1992), pp. 165–​192. MR 1162559 article

[34] Y. Eli­ash­berg and M. Gro­mov: “Em­bed­dings of Stein man­i­folds of di­men­sion \( n \) in­to the af­fine space of di­men­sion \( 3n/2+1 \),” Ann. of Math. (2) 136 : 1 (1992), pp. 123–​135. MR 1173927 Zbl 0758.​32012 article

[35] Y. Eli­ash­berg: “Le­gendri­an and trans­vers­al knots in tight con­tact 3-man­i­folds,” pp. 171–​193 in To­po­lo­gic­al meth­ods in mod­ern math­em­at­ics. Pub­lish or Per­ish (Hou­s­ton, TX), 1993. MR 1215964 Zbl 0809.​53033 incollection

[36] Y. Eli­ash­berg: “Clas­si­fic­a­tion of con­tact struc­tures on \( \mathbb{R}^3 \),” In­ter­nat. Math. Res. No­tices 3 (1993), pp. 87–​91. MR 1208828 Zbl 0784.​53022 article

[37] Y. Eli­ash­berg and L. Pol­ter­ovich: “Bi-in­vari­ant met­rics on the group of Hamilto­ni­an dif­feo­morph­isms,” In­ter­nat. J. Math. 4 : 5 (1993), pp. 727–​738. MR 1245350 Zbl 0795.​58016 article

[38] Y. Eli­ash­berg and L. Pol­ter­ovich: “Un­knot­ted­ness of Lag­rangi­an sur­faces in sym­plect­ic 4-man­i­folds,” In­ter­nat. Math. Res. No­tices 11 (1993), pp. 295–​301. MR 1248704 Zbl 0808.​57021 article

[39] Y. Eli­ash­berg and H. Hofer: “An en­ergy-ca­pa­city in­equal­ity for the sym­plect­ic holonomy of hy­per­sur­faces flat at in­fin­ity,” pp. 95–​114 in Sym­plect­ic geo­metry. Edi­ted by D. Sala­mon. Lon­don Math. Soc. Lec­ture Note Ser. 192. Cam­bridge Uni­versity Press, 1993. MR 1297131 Zbl 0807.​58014 incollection

[40] Y. Eli­ash­berg and H. Hofer: “A Hamilto­ni­an char­ac­ter­iz­a­tion of the three-ball,” Dif­fer­en­tial In­teg­ral Equa­tions 7 : 5–​6 (1994), pp. 1303–​1324. MR 1269658 Zbl 0803.​58045 article

[41] Y. Eli­ash­berg and L. Pol­ter­ovich: “New ap­plic­a­tions of Lut­tinger’s sur­gery,” Com­ment. Math. Helv. 69 : 4 (1994), pp. 512–​522. MR 1303225 Zbl 0853.​57012 article

[42] Y. Eli­ash­berg, H. Hofer, and D. Sala­mon: “Lag­rangi­an in­ter­sec­tions in con­tact geo­metry,” Geom. Funct. Anal. 5 : 2 (1995), pp. 244–​269. MR 1334868 Zbl 0844.​58038 article

[43] Y. Eli­ash­berg: “To­po­logy of 2-knots in \( \mathbf{ R}^4 \) and sym­plect­ic geo­metry,” pp. 335–​353 in The Flo­er me­mori­al volume. Edi­ted by H. Hofer, C. H. Taubes, A. Wein­stein, and E. Zehnder. Pro­gr. Math. 133. Birkhäuser (Basel), 1995. MR 1362834 Zbl 0863.​57023 incollection

[44] Y. Eli­ash­berg: “Unique holo­morph­ic­ally fil­lable con­tact struc­ture on the 3-tor­us,” In­ter­nat. Math. Res. No­tices 2 (1996), pp. 77–​82. MR 1383953 Zbl 0852.​58034 article

[45] Y. M. Eli­ash­berg and W. P. Thur­ston: “Con­tact struc­tures and fo­li­ations on 3-man­i­folds,” Turk­ish J. Math. 20 : 1 (1996), pp. 19–​35. MR 1392660 article

[46] Y. Eli­ash­berg and L. Pol­ter­ovich: “Loc­al Lag­rangi­an 2-knots are trivi­al,” Ann. of Math. (2) 144 : 1 (1996), pp. 61–​76. MR 1405943 Zbl 0872.​57030 article

[47] Y. Eli­ash­berg and H. Hofer: “Un­seen sym­plect­ic bound­ar­ies,” pp. 178–​189 in Man­i­folds and geo­metry (Pisa, 1993). Edi­ted by P. de Bar­to­lomeis, F. Tricerri, and E. Vesentini. Sym­pos. Math. 36. Cam­bridge Uni­versity Press (Cam­bridge, UK), 1996. MR 1410072 incollection

[48] C. B. Thomas, Y. Eli­ash­berg, and E. Giroux: “3-di­men­sion­al con­tact geo­metry,” pp. 48–​65 in Con­tact and sym­plect­ic geo­metry. Edi­ted by C. B. Thomas. Publ. New­ton Inst. 8. Cam­bridge Uni­versity Press, 1996. MR 1432458 Zbl 0852.​00028 incollection

[49] Y. Eli­ash­berg and M. Gro­mov: “Lag­rangi­an in­ter­sec­tions and the stable Morse the­ory,” Boll. Un. Mat. It­al. B (7) 11 : 2 (1997), pp. 289–​326. MR 1456266 Zbl 0964.​58009 article

[50] Y. Eli­ash­berg: “Sym­plect­ic geo­metry of plur­isubhar­mon­ic func­tions,” pp. 49–​67 in Gauge the­ory and sym­plect­ic geo­metry (Montreal, PQ, 1995). Edi­ted by J. Hur­tu­bise, F. Lalonde, and G. Sa­bidussi. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 488. Kluwer (Dordrecht), 1997. Notes by Miguel Ab­reu. MR 1461569 Zbl 0881.​32010 incollection

[51] Y. Eli­ash­berg and L. Pol­ter­ovich: “The prob­lem of Lag­rangi­an knots in four-man­i­folds,” pp. 313–​327 in Geo­met­ric to­po­logy (Athens, GA, 1993), vol. 1: 1993 Geor­gia In­ter­na­tion­al To­po­logy Con­fer­ence. Edi­ted by W. H. Kazez. AMS/IP Stud. Adv. Math. 2.1. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1997. MR 1470735 Zbl 0889.​57036 incollection

[52] Y. Eli­ash­berg and N. M. Mis­hachev: “Wrink­ling of smooth map­pings and its ap­plic­a­tions, I,” In­vent. Math. 130 : 2 (1997), pp. 345–​369. MR 1474161 Zbl 0896.​58010 article

[53] Y. Eli­ash­berg: “In­vari­ants in con­tact to­po­logy,” pp. 327–​338 in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians, II (Ber­lin, 1998), published as Doc. Math. Extra Vol. II (1998). MR 1648083 Zbl 0913.​53010 inproceedings

[54] Y. Eli­ash­berg and M. Fraser: “Clas­si­fic­a­tion of to­po­lo­gic­ally trivi­al Le­gendri­an knots,” pp. 17–​51 in Geo­metry, to­po­logy, and dy­nam­ics. CRM Proc. Lec­ture Notes 15. Amer. Math. Soc. (Provid­ence, RI), 1998. MR 1619122 Zbl 0907.​53021 incollection

[55] Y. M. Eli­ash­berg and W. P. Thur­ston: Con­foli­ations. Uni­versity Lec­ture Series 13. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1998. MR 1483314 book

[56] Y. Eli­ash­berg: “Sym­plect­ic to­po­logy in the nineties,” Dif­fer­en­tial Geom. Ap­pl. 9 : 1–​2 (1998), pp. 59–​88. MR 1636301 article

[57] Y. Eli­ash­berg and N. M. Mis­hachev: “Wrink­ling of smooth map­pings, III: Fo­li­ations of codi­men­sion great­er than one,” To­pol. Meth­ods Non­lin­ear Anal. 11 : 2 (1998), pp. 321–​350. MR 1659446 Zbl 0927.​58022 article

[58] Y. Eli­ash­berg and M. Gro­mov: “Lag­rangi­an in­ter­sec­tion the­ory: Fi­nite-di­men­sion­al ap­proach,” pp. 27–​118 in Geo­metry of dif­fer­en­tial equa­tions. Edi­ted by A. Khovanskiĭ, A. Varchen­ko, and V. Vassiliev. Amer. Math. Soc. Transl. Ser. 2 186. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1998. MR 1732407 Zbl 0919.​58015 incollection

[59] Y. M. Eli­ash­berg and N. M. Mis­hachev: “Wrink­ling of smooth map­pings, II: Wrink­ling of em­bed­dings and K. Ig­usa’s the­or­em,” To­po­logy 39 : 4 (2000), pp. 711–​732. MR 1760426 Zbl 0964.​58028 article

[60] Y. Eli­ash­berg and L. Pol­ter­ovich: “Par­tially ordered groups and geo­metry of con­tact trans­form­a­tions,” Geom. Funct. Anal. 10 : 6 (2000), pp. 1448–​1476. MR 1810748 Zbl 0986.​53036 article

[61] Y. Eli­ash­berg, A. Givent­al, and H. Hofer: “In­tro­duc­tion to sym­plect­ic field the­ory,” pp. 560–​673 in Vis­ions in Math­em­at­ics. Edi­ted by N. Alon, J. Bour­gain, A. Connes, M. Gro­mov, and V. Mil­man. 2000. Spe­cial volume, GA­FA2000, of Geo­met­ric and Func­tion­al Ana­lys­is. MR 1826267 Zbl 0989.​81114 incollection

[62] Y. Eli­ash­berg: “To­po­logy of Lag­rangi­an sub­man­i­folds,” pp. 125–​133 in Pro­ceed­ings of the Work­shop “Al­geb­ra­ic Geo­metry and In­teg­rable Sys­tems re­lated to String The­ory” (Kyoto, 2000), published as Sūrikais­ekiken­kyūsho Kōkyūroku 1232 (2001). MR 1905888 Zbl 1322.​53083 inproceedings

[63] Y. M. Eli­ash­berg and N. M. Mis­hachev: “Holo­nom­ic ap­prox­im­a­tion and Gro­mov’s \( h \)-prin­ciple,” pp. 271–​285 in Es­says on geo­metry and re­lated top­ics. Edi­ted by É. Ghys, P. de la Harpe, V. F. R. Jones, V. Ser­gi­es­cu, and T. Tsuboi. Mono­gr. En­sei­gn. Math. 38. En­sei­gne­ment Math. (Geneva), 2001. In 2 volumes. MR 1929330 Zbl 1025.​58001 incollection

[64] Y. M. Eli­ash­berg and N. M. Mis­hachev: In­tro­duc­tion to the \( h \)-prin­ciple. Gradu­ate Stud­ies in Math­em­at­ics 48. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2002. MR 1909245 Zbl 1008.​58001 book

[65] F. Bour­geois, Y. Eli­ash­berg, H. Hofer, K. Wyso­cki, and E. Zehnder: “Com­pact­ness res­ults in sym­plect­ic field the­ory,” Geom. To­pol. 7 (2003), pp. 799–​888. MR 2026549 Zbl 1131.​53312 article

[66] Y. Eli­ash­berg: “A few re­marks about sym­plect­ic filling,” Geom. To­pol. 8 (2004), pp. 277–​293. MR 2023279 article

[67] Y. Eli­ash­berg, S. S. Kim, and L. Pol­ter­ovich: “Geo­metry of con­tact trans­form­a­tions and do­mains: or­der­ab­il­ity versus squeez­ing,” Geom. To­pol. 10 (2006), pp. 1635–​1747. MR 2284048 Zbl 1134.​53044 article

[68] Y. Eli­ash­berg: “Sym­plect­ic field the­ory and its ap­plic­a­tions,” pp. 217–​246 in In­ter­na­tion­al Con­gress of Math­em­aticians, vol. 1. Edi­ted by M. Sanz-Solé, J. Sor­ia, J. L. Varona, and J. Ver­dera. European Math­em­at­ic­al So­ci­ety (Zürich), 2007. MR 2334192 Zbl 1128.​53059 incollection

[69] Y. Eli­ash­berg, K. Fukaya, V. Muñoz, and F. Pre­s­as: “Fore­word,” pp. iii–​iv in Pro­ceed­ings of the 7th Work­shop on Sym­plect­ic and Con­tact To­po­logy (Mad­rid, Spain, 16–19 Au­gust 2006), published as Geom. Ded­icata 132 (2008). MR 2396905 Zbl 1136.​53300 incollection

[70] Y. Eli­ash­berg and M. Fraser: “To­po­lo­gic­ally trivi­al Le­gendri­an knots,” J. Sym­plect­ic Geom. 7 : 2 (2009), pp. 77–​127. MR 2496415 Zbl 1179.​57040 article

[71] Y. Eli­ash­berg, S. S. Kim, and L. Pol­ter­ovich: “Er­rat­um to ‘Geo­metry of con­tact trans­form­a­tions and do­mains: Or­der­ab­il­ity versus squeez­ing’ \( [ \)MR2284048\( ] \),” Geom. To­pol. 13 : 2 (2009), pp. 1175–​1176. MR 2491659 Zbl 1161.​53071 article

[72] Y. M. Eli­ash­berg and N. M. Mis­hachev: “Wrinkled em­bed­dings,” pp. 207–​232 in Fo­li­ations, geo­metry, and to­po­logy. Edi­ted by N. C. Saldanha, L. Con­lon, R. Langev­in, T. Tsuboi, and P. Wal­czak. Con­temp. Math. 498. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2009. MR 2664601 Zbl 1194.​57036 incollection

[73] Y. Eli­ash­berg and L. Pol­ter­ovich: Sym­plect­ic quasi-states on the quad­ric sur­face and Lag­rangi­an sub­man­i­folds. Pre­print, 2010. ArXiv 1006.​2501 techreport

[74] Y. Eli­ash­berg, S. Gala­ti­us, and N. Mis­hachev: “Mad­sen–Weiss for geo­met­ric­ally minded to­po­lo­gists,” Geom. To­pol. 15 : 1 (2011), pp. 411–​472. MR 2776850 Zbl 1211.​57012 article

[75] F. Bour­geois, T. Ek­holm, and Y. Eli­ash­berg: “Sym­plect­ic ho­mo­logy product via Le­gendri­an sur­gery,” Proc. Natl. Acad. Sci. USA 108 : 20 (2011), pp. 8114–​8121. MR 2806647 Zbl 1256.​53049 article

[76] Y. M. Eli­ash­berg and N. M. Mis­hachev: “To­po­logy of spaces of \( S \)-im­mer­sions,” pp. 147–​167 in Per­spect­ives in ana­lys­is, geo­metry, and to­po­logy. Edi­ted by I. Iten­berg, B. Jöricke, and M. Pas­sare. Pro­gr. Math. 296. Spring­er (New York), 2012. MR 2884035 Zbl 1267.​57033 incollection

[77] F. Bour­geois, T. Ek­holm, and Y. Eli­ash­berg: “Ef­fect of Le­gendri­an sur­gery,” Geom. To­pol. 16 : 1 (2012), pp. 301–​389. With an ap­pendix by Sheel Gan­atra and Mak­sim May­danskiy. MR 2916289 article

[78] Y. M. Eli­ash­berg and N. M. Mis­hachev: “The space of framed func­tions is con­tract­ible,” pp. 81–​109 in Es­says in math­em­at­ics and its ap­plic­a­tions. Edi­ted by P. M. Pardalos and T. M. Ras­si­as. Spring­er (Heidel­berg), 2012. MR 2975585 incollection

[79] K. Cieliebak and Y. Eli­ash­berg: From Stein to Wein­stein and back: Sym­plect­ic geo­metry of af­fine com­plex man­i­folds. Amer­ic­an Math­em­at­ic­al So­ci­ety Col­loqui­um Pub­lic­a­tions 59. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2012. MR 3012475 Zbl 1262.​32026 book

[80] Y. Eli­ash­berg and E. Murphy: “Lag­rangi­an caps,” Geom. Funct. Anal. 23 : 5 (2013), pp. 1483–​1514. MR 3102911 Zbl 1308.​53121 article

[81] T. Ek­holm, Y. Eli­ash­berg, E. Murphy, and I. Smith: “Con­struct­ing ex­act Lag­rangi­an im­mer­sions with few double points,” Geom. Funct. Anal. 23 : 6 (2013), pp. 1772–​1803. MR 3132903 Zbl 1283.​53074 article

[82] K. Cieliebak and Y. Eli­ash­berg: “Stein struc­tures: ex­ist­ence and flex­ib­il­ity,” pp. 357–​388 in Con­tact and sym­plect­ic to­po­logy. Edi­ted by F. Bour­geois, V. Colin, and A. Stip­sicz. Bolyai Soc. Math. Stud. 26. János Bolyai Math. Soc. (Bud­apest), 2014. MR 3220946 Zbl 1335.​32007 incollection

[83] Y. Eli­ash­berg: “Re­cent pro­gress in sym­plect­ic flex­ib­il­ity,” pp. 3–​18 in The in­flu­ence of So­lomon Lef­schetz in geo­metry and to­po­logy. Edi­ted by L. Katzarkov, E. Lu­per­cio, and F. J. Tur­ru­bi­ates. Con­temp. Math. 621. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2014. MR 3289318 Zbl 1330.​57001 incollection

[84] K. Cieliebak and Y. Eli­ash­berg: “Flex­ible Wein­stein man­i­folds,” pp. 1–​42 in Sym­plect­ic, Pois­son, and non­com­mut­at­ive geo­metry. Edi­ted by T. Egu­chi, Y. Eli­ash­berg, and Y. Maeda. Math. Sci. Res. Inst. Publ. 62. Cam­bridge Uni­versity Press (New York), 2014. MR 3380672 Zbl 1338.​53003 ArXiv 1305.​1635 incollection

[85] Y. Eli­ash­berg: “Re­cent ad­vances in sym­plect­ic flex­ib­il­ity,” Bull. Amer. Math. Soc. (N.S.) 52 : 1 (2015), pp. 1–​26. MR 3286479 Zbl 1310.​53001 article

[86] K. Cieliebak and Y. Eli­ash­berg: “The to­po­logy of ra­tion­ally and poly­no­mi­ally con­vex do­mains,” In­vent. Math. 199 : 1 (2015), pp. 215–​238. MR 3294960 Zbl 1310.​32014 article

[87] M. S. Bor­man, Y. Eli­ash­berg, and E. Murphy: “Ex­ist­ence and clas­si­fic­a­tion of over­twisted con­tact struc­tures in all di­men­sions,” Acta Math. 215 : 2 (2015), pp. 281–​361. MR 3455235 Zbl 1344.​53060 article

[88] Y. Eli­ash­berg: “Book re­view of Le­onid Pol­ter­ovich and Daniel Rosen, ‘Func­tion the­ory on sym­plect­ic man­i­folds’,” Bull. Amer. Math. Soc. (N.S.) 54 : 1 (2017), pp. 135–​140. MR 3686324 Zbl 1352.​00013 article

[89] K. Cieliebak, Y. Eli­ash­berg, and L. Pol­ter­ovich: “Con­tact or­der­ab­il­ity up to con­jug­a­tion,” Regul. Chaot­ic Dyn. 22 : 6 (2017), pp. 585–​602. MR 3736463 Zbl 1390.​53096 article

[90] Y. Eli­ash­berg: “Wein­stein man­i­folds re­vis­ited,” pp. 59–​82 in Mod­ern geo­metry: a cel­eb­ra­tion of the work of Si­mon Don­ald­son. Edi­ted by V. Muñoz, I. Smith, and R. P. Thomas. Proc. Sym­pos. Pure Math. 99. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2018. MR 3838879 Zbl 1448.​53083 incollection

[91] Y. Eli­ash­berg: “Ri­gid and flex­ible fa­cets of sym­plect­ic to­po­logy,” pp. 493–​514 in Geo­metry in his­tory. Edi­ted by S. G. Dani and A. Papado­poulos. Spring­er (Cham, Switzer­land), 2019. MR 3965772 Zbl 1454.​53002 incollection

[92] Y. Eli­ash­berg, S. Gan­atra, and O. Laz­ar­ev: “Flex­ible Lag­rangi­ans,” Int. Math. Res. Not. 2020 : 8 (2020), pp. 2408–​2435. MR 4090744 Zbl 1437.​53067 article

[93] Y. Eli­ash­berg and N. Mis­hachev: The space of tight con­tact struc­tures on \( {\mathbb R}^3 \) is con­tract­ible. Pre­print, 2021. ArXiv 2108.​09452 techreport

[94] K. Cieliebak and Y. Eli­ash­berg: “New ap­plic­a­tions of sym­plect­ic to­po­logy in sev­er­al com­plex vari­ables,” J. Geom. Anal. 31 : 3 (2021), pp. 3252–​3271. MR 4225841 Zbl 1461.​53001 article

[95] Y. Eli­ash­berg, N. Ogawa, and T. Yoshiy­asu: “Sta­bil­ized con­vex sym­plect­ic man­i­folds are Wein­stein,” Kyoto J. Math. 61 : 2 (2021), pp. 323–​337. MR 4342379 Zbl 1470.​53069 article

[96] D. Álvarez-Gavela, Y. Eli­ash­berg, and D. Nadler: Pos­it­ive ar­boreal­iz­a­tion of po­lar­ized Wein­stein man­i­folds. Pre­print, 2022. ArXiv 2011.​08962 techreport

[97] D. Álvarez-Gavela, Y. Eli­ash­berg, and D. Nadler: “Geo­mor­pho­logy of Lag­rangi­an ridges,” J. To­pol. 15 : 2 (2022), pp. 844–​877. MR 4441606 Zbl 07738220 article

[98]Y. M. Eli­ash­berg and W. P. Thur­ston: “Con­tact struc­tures and fo­li­ations on 3-man­i­folds,” pp. 257–​273 in Col­lec­ted works of Wil­li­am P. Thur­ston with com­ment­ary, vol. 1: Fo­li­ations, sur­faces and dif­fer­en­tial geo­metry. Edi­ted by B. Farb, D. Gabai, and S. P. Ker­ck­hoff. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2022. MR 4554445 incollection

[99] Y. M. Eli­ash­berg and W. P. Thur­ston: “Con­foli­ations,” pp. 281–​351 in Col­lec­ted works of Wil­li­am P. Thur­ston with com­ment­ary, vol. 1: Fo­li­ations, sur­faces and dif­fer­en­tial geo­metry. Edi­ted by B. Farb, D. Gabai, and S. P. Ker­ck­hoff. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2022. MR 4554446 incollection

[100] Y. Eli­ash­berg and E. Murphy: “Mak­ing cobor­d­isms sym­plect­ic,” J. Amer. Math. Soc. 36 : 1 (2023), pp. 1–​29. MR 4495837 Zbl 1509.​57022 article

[101] Y. Eli­ash­berg and D. M. Pan­choli: “Honda–Huang’s work on con­tact con­vex­ity re­vis­ited,” pp. 453–​492 in Es­says in geo­metry — ded­ic­ated to Norbert A’Campo. Edi­ted by A. Papado­poulos. IRMA Lect. Math. The­or. Phys. 34. EMS Press (Ber­lin), 2023. MR 4631278 incollection

[102] D. Álvarez-Gavela, Y. Eli­ash­berg, and D. Nadler: “Ar­boreal mod­els and their sta­bil­ity,” J. Sym­plect­ic Geom. 21 : 2 (2023), pp. 331–​381. MR 4653157 Zbl 07744114 article