return

Celebratio Mathematica

Maryam Mirzakhani

Complete Bibliography

[1] E. S. Mah­moo­di­an and M. Mirza­kh­ani: “De­com­pos­i­tion of com­plete tri­part­ite graphs in­to 5-cycles,” pp. 235–​241 in Com­bin­at­or­ics ad­vances: Pa­pers presen­ted at the 25th an­nu­al Ir­a­ni­an math­em­at­ics con­fer­ence (Tehran, 28–31 March 1994). Edi­ted by C. J. Col­bourn and E. S. Mah­moo­di­an. Math­em­at­ics and its Ap­plic­a­tions 329. Kluwer Aca­dem­ic Pub­lish­ers (Dordrecht), 1995. MR 1366852 Zbl 0837.​05088 incollection

[2] M. Mirza­kh­ani: “A small non-4-choos­able planar graph,” Bull. Inst. Com­bin. Ap­pl. 17 (1996), pp. 15–​18. MR 1386951 Zbl 0860.​05029 article

[3] M. Mirza­kh­ani: “A simple proof of a the­or­em of Schur,” Am. Math. Mon. 105 : 3 (March 1998), pp. 260–​262. MR 1615548 Zbl 0916.​15004 article

[4] M. Mirza­kh­ani: Simple geodesics on hy­per­bol­ic sur­faces and the volume of the mod­uli space of curves. Ph.D. thesis, Har­vard Uni­versity, 2004. Ad­vised by C. T. McMul­len. MR 2705986 phdthesis

[5] M. Mirza­kh­ani: “Weil–Petersson volumes and in­ter­sec­tion the­ory on the mod­uli space of curves,” J. Am. Math. Soc. 20 : 1 (2007), pp. 1–​23. MR 2257394 Zbl 1120.​32008 article

[6] M. Mirza­kh­ani: “Simple geodesics and Weil–Petersson volumes of mod­uli spaces of bordered Riemann sur­faces,” In­vent. Math. 167 : 1 (2007), pp. 179–​222. MR 2264808 Zbl 1125.​30039 article

[7] M. Mirza­kh­ani: “Ran­dom hy­per­bol­ic sur­faces and meas­ured lam­in­a­tions,” pp. 179–​198 in In the tra­di­tion of Ahlfors–Bers, IV (Ann Ar­bor, MI, 19–22 May 2005). Edi­ted by D. Ca­nary, J. Gil­man, J. Heinon­en, and H. Mas­ur. Con­tem­por­ary Math­em­at­ics 432. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2007. Avail­able open access here. MR 2342816 Zbl 1129.​32011 incollection

[8] M. Mirza­kh­ani: “Growth of the num­ber of simple closed geodesics on hy­per­bol­ic sur­faces,” Ann. Math. (2) 168 : 1 (2008), pp. 97–​125. MR 2415399 Zbl 1177.​37036 article

[9] M. Mirza­kh­ani: “Er­god­ic the­ory of the earth­quake flow,” Int. Math. Res. Not. 2008 (2008). MR 2416997 Zbl 1189.​30087 article

[10] E. Linden­strauss and M. Mirza­kh­ani: “Er­god­ic the­ory of the space of meas­ured lam­in­a­tions,” Int. Math. Res. Not. 2008 (2008). MR 2424174 Zbl 1160.​37006 article

[11] M. Mirza­kh­ani: “On Weil–Petersson volumes and geo­metry of ran­dom hy­per­bol­ic sur­faces,” pp. 1126–​1145 in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians (Hy­dera­bad, In­dia, 19–27 Au­gust 2010), vol. 2. Edi­ted by R. Bha­tia, A. Pal, G. Ranga­ra­jan, V. Srinivas, and M. Van­ninath­an. Hindus­tan Book Agency (New Del­hi), 2010. MR 2827834 Zbl 1239.​32013 incollection

[12] A. Eskin and M. Mirza­kh­ani: “Count­ing closed geodesics in mod­uli space,” J. Mod. Dyn. 5 : 1 (2011), pp. 71–​105. MR 2787598 Zbl 1219.​37006 article

[13] J. Ath­reya, A. Bufetov, A. Eskin, and M. Mirza­kh­ani: “Lat­tice point asymp­tot­ics and volume growth on Teichmüller space,” Duke Math. J. 161 : 6 (2012), pp. 1055–​1111. MR 2913101 Zbl 1246.​37009 article

[14] M. Mirza­kh­ani: “Growth of Weil–Petersson volumes and ran­dom hy­per­bol­ic sur­faces of large genus,” J. Diff. Geom. 94 : 2 (2013), pp. 267–​300. MR 3080483 Zbl 1270.​30014 article

[15] M. Mirza­kh­ani and P. Zo­graf: “To­wards large genus asymp­tot­ics of in­ter­sec­tion num­bers on mod­uli spaces of curves,” Geom. Funct. Anal. 25 : 4 (2015), pp. 1258–​1289. MR 3385633 Zbl 1327.​14136 article

[16] A. Eskin, M. Mirza­kh­ani, and A. Mo­ham­madi: “Isol­a­tion, equidistri­bu­tion, and or­bit clos­ures for the \( \mathrm{SL}(2,\mathbb{R}) \) ac­tion on mod­uli space,” Ann. Math. (2) 182 : 2 (2015), pp. 673–​721. MR 3418528 Zbl 1357.​37040 article

[17] M. Mirza­kh­ani and J. Von­drák: “Sper­n­er’s col­or­ings, hy­per­graph la­beling prob­lems and fair di­vi­sion,” pp. 873–​886 in Pro­ceed­ings of the twenty-sixth an­nu­al ACM-SIAM sym­posi­um on dis­crete al­gorithms (San Diego, CA, 4–6 Janu­ary 2015). Edi­ted by P. In­dyk. SIAM (Phil­adelphia), 2015. MR 3451084 Zbl 1371.​05094 incollection

[18] M. Mirza­kh­ani and A. Wright: “The bound­ary of an af­fine in­vari­ant sub­man­i­fold,” In­vent. Math. 209 : 3 (2017), pp. 927–​984. MR 3681397 Zbl 06786974 article