return

Celebratio Mathematica

Andrew Pollard Ogg

Hecke operators on modular forms: old and new

by Wen-Ching Winnie Li

1. Introduction

1.1 Ogg’s impact on classical modular forms

The group \( \operatorname{SL}_2(\mathbb R) \) acts on the up­per half-plane \( \mathfrak H \) by frac­tion­al lin­ear trans­form­a­tions. A clas­sic­al mod­u­lar form is a holo­morph­ic func­tion on \( \mathfrak H \) with sym­met­ries with re­spect to a con­gru­ence sub­group \( \Gamma \) of \( \operatorname{SL}_2(\mathbb Z) \). It is called a cusp form if it van­ishes at the cusps of \( \Gamma \). A mod­u­lar form has a Four­i­er ex­pan­sion. His­tor­ic­ally, the arith­met­ic of mod­u­lar forms is un­der­stood by way of study­ing their Four­i­er coef­fi­cients. The twen­ti­eth cen­tury wit­nessed fant­ast­ic ad­vance­ments in mod­u­lar forms, from the­ory to ap­plic­a­tions. Lis­ted be­low are some land­mark break­throughs rel­ev­ant to the theme of this art­icle.

  1. In the 1930s Hecke in­tro­duced the Hecke op­er­at­ors \( T_p \) for primes \( p \) act­ing on mod­u­lar forms, thereby re­du­cing the study of mod­u­lar forms to com­mon ei­gen­forms of \( T_p \) (see [e5], Num­bers 39, 40).
  2. Weil’s con­verse the­or­em [e9] of 1967 provides an ana­lyt­ic cri­terion for a holo­morph­ic func­tion on \( \mathfrak H \) defined by giv­en Four­i­er coef­fi­cients to be a mod­u­lar form for \( \Gamma_0(N) \). This ori­gin­ates from Hecke’s con­verse the­or­em for mod­u­lar forms for \( \operatorname{SL}_2(\mathbb Z) \), namely the case \( N=1 \) [e1].
  3. Atkin and Lehner’s new­form the­ory [e10] of 1970 fur­ther re­duces the study of com­mon Hecke ei­gen­forms for con­gru­ence sub­groups of type \( \Gamma_0(N) \) to new­forms.

The con­verse the­or­em (2) and the new­form the­ory (3) were ex­ten­ded to all clas­sic­al mod­u­lar forms in the 1970s by Miyake [e12] and Li [e16].

An­drew Ogg made im­port­ant con­tri­bu­tions to clas­sic­al mod­u­lar forms in the 1960s and the 1970s. His 1969 Ben­jamin notes Mod­u­lar Forms and Di­rich­let Series [1] elab­or­ated the con­verse the­or­em by Hecke and Weil, among oth­er things. It was a pop­u­lar book in mod­u­lar forms for a long time.

To ex­plain his con­tri­bu­tion to the new­form the­ory, let \[ f(\tau) = \sum_{n\ge 1} a_n e^{2\pi i n\tau} \] be a cuspid­al new­form of weight \( k \) level \( N \) and char­ac­ter \( \chi \), nor­mal­ized with \( a_1=1 \). Then \( f \) is an ei­gen­func­tion of the Hecke op­er­at­or \( T_p \) with ei­gen­value \( a_p \) for primes \( p\, \nmid\, N \), and the Four­i­er coef­fi­cients \( a_n \) are de­term­ined by \( a_p \) for all primes \( p \) in the fol­low­ing way, ex­pressed in terms of the L-func­tion at­tached to \( f \): \begin{align*} L(f,s) &=\sum_{n\ge 1} a_n n^{-s}\\ &= \prod_{p\,|\,N}\,\frac{1}{1-a_p p^{-s}} ~\prod_{p\, \nmid\, N}\,\frac{1}{1 - a_pp^{-s} + \chi(p)p^{k-1-2s}}. \end{align*}

For primes \( p \,\nmid\, N \), the Ramanu­jan con­jec­ture, proved by De­ligne [e13], [e14] for weight \( k > 2 \), by Eichler and Shimura [e2], [e4] for \( k=2 \), and by De­ligne and Serre [e15] for \( k=1 \), as­serts that \[ |a_p| \le 2p^{(k-1)/2}. \] The size of \( a_p \) for \( p\,|\,N \), as de­scribed be­low, was proved in [e16] us­ing a the­or­em of Ogg in [3]:

\( |a_p| = p^{(k-1)/2} \) if \( \chi \) is not a char­ac­ter mod \( N/p \); when \( \chi \) is a char­ac­ter mod \( N/p \), then \( a_p^2 = \chi(p)p^{k-2} \) if \( p\parallel N \), and \( a_p=0 \) oth­er­wise.

Ogg also stud­ied con­vo­lu­tion of L-series at­tached to cusp forms. Giv­en two cusp forms \( f \) and \( g \) of weight \( k \) and level \( N \) with Four­i­er coef­fi­cients \( \{a_n\} \) and \( \{b_n\} \) re­spect­ively, Rankin in­tro­duced the con­vo­luted L-series \[ L_{f,g}(s) = \prod_{p\,\nmid\, N}\,\frac{1}{1-p^{-2s}} \,\sum_{n \ge 1} \,a_n \overline{b_n} n^{-(s-k+1)} \] defined for \( \Re s \) large. When \( N=1 \), he showed that it had an ana­lyt­ic con­tinu­ation to the whole com­plex plane and ob­tained a func­tion­al equa­tion re­lat­ing the val­ues at \( s \) and \( 1-s \). Ogg [2] ex­ten­ded this to square-free \( N \) by sup­ple­ment­ing the miss­ing Euler factors at primes di­vid­ing \( N \).

The case for any pair of new­forms was done in late 1970s in [e16], [e19]. Lang­lands re­in­ter­preted the L-func­tions at­tached to cuspid­al new­forms as L-func­tions at­tached to cuspid­al auto­morph­ic rep­res­ent­a­tions of \( \operatorname{GL}_2 \) over \( \mathbb Q \). In the con­text of rep­res­ent­a­tion the­ory, the above res­ult can be re­ph­rased as de­term­in­ing the loc­al L- and \( \epsilon \)-factors of \( \pi_1 \times \pi_2 \) for two cuspid­al auto­morph­ic rep­res­ent­a­tions \( \pi_1 \) and \( \pi_2 \) of \( \operatorname{GL}_2 \) over \( \mathbb Q \) so that, when mul­ti­plied to­geth­er, they give rise to a glob­al func­tion­al equa­tion for the L-func­tion \( L(\pi_1 {\times} \pi_2, s) \) un­der \( s \to 1-s \).

1.2 Computing traces of Hecke operators

We have seen that a new­form is a com­mon ei­gen­func­tion of the Hecke op­er­at­ors and is de­term­ined by the ei­gen­val­ues of the Hecke op­er­at­ors. Thus it is nat­ur­al to ask, giv­en a con­gru­ence sub­group \( \Gamma \) of \( \operatorname{SL}_2(\mathbb R) \), how to com­pute the traces of Hecke op­er­at­ors on the space of mod­u­lar forms for \( \Gamma \) with a giv­en weight. Since the space of mod­u­lar forms for \( \Gamma \) de­com­poses as the dir­ect sum of the space of Ei­s­en­stein series and the space of cusp forms, and the former is well un­der­stood, we are in­ter­ested in ex­pli­cit trace for­mu­lae of Hecke op­er­at­ors on the space \( S_{k+2}(\Gamma) \) of cusp forms of weight \( k+2\ge 2 \) for \( \Gamma \). When \( k=0 \), the cusp forms of weight 2 are in one-to-one cor­res­pond­ence with holo­morph­ic dif­fer­en­tials on the com­pac­ti­fied mod­u­lar curve \( X_\Gamma= \Gamma \backslash \mathfrak H^* \), where \( \mathfrak H^* \) is \( \mathfrak H \) for \( \Gamma \) cocom­pact, and it is \( \mathfrak H \cup \{\text{cusps}\} \) for \( \Gamma \) non-cocom­pact; hence the di­men­sion of the space \( S_2(\Gamma) \) is the genus of \( X_\Gamma \). In par­tic­u­lar, \( S_2(\Gamma) \) is trivi­al if \( X_\Gamma \) has genus 0. Fur­ther­more, we shall as­sume \( k \) even if \( -\operatorname{Id} \in \Gamma \) be­cause in this case the space is trivi­al for \( k \) odd.

This was done by Ahl­gren [e27] for \( \Gamma_0(4) \); Ahl­gren and Ono [e26] for \( \Gamma_0(8) \); Frechette, Ono and Papan­ikolas [e28] for new­forms of \( \Gamma_0(8) \); Fuse­li­er [e31], [e35] for \( \operatorname{SL}_2(\mathbb Z) \); and Len­non [e33], [e32] for \( \Gamma_0(3) \) and \( \Gamma_0(9) \). They all fol­lowed Ihara’s ap­proach in [e8], com­bin­ing count­ing el­lipt­ic curves over fi­nite fields with the Sel­berg trace for­mula. In [e38] Ono and Saad did it for \( \Gamma_0(2) \) and \( \Gamma_0(4) \), fol­low­ing Za­gi­er’s work [e25] for \( \operatorname{SL}_2(\mathbb Z) \). Their meth­od uses the Rankin–Co­hen brack­ets of Za­gi­er’s mock mod­u­lar form.

All the groups men­tioned above have genus 0 and are non-cocom­pact. When \( \Gamma \) is cocom­pact, the mod­u­lar curve \( X_\Gamma \) is called a Shimura curve. It has no cusps. In this case we identi­fy the space of mod­u­lar forms with cusp forms of \( \Gamma \) by ab­use of lan­guage. Ogg was in­ter­ested in Shimura curves \( X_\Gamma \) and mod­u­lar forms for \( \Gamma \) in the 1980s. See [4], [5]. While Hecke op­er­at­ors on forms for a cocom­pact \( \Gamma \) is defined the same way as \( \Gamma \) non-cocom­pact, however, due to the lack of cusps, there is no a pri­ori choice of a point on the Shimura curve \( X_\Gamma \) to play the role of the cusp at \( \infty \) for non-cocom­pact groups to fa­cil­it­ate the study of the Hecke op­er­at­ors. This has been a ma­jor obstacle in study­ing the arith­met­ic of mod­u­lar forms on Shimura curves. Yang’s pa­per [e34] well il­lus­trates this point.

In­spired by Long, Li and Tu [e37] and by Scholl [e22], in a re­cent joint work with Hoff­man, Long and Tu [e39], we ob­tained ex­pli­cit trace for­mu­lae of Hecke op­er­at­ors on \( S_{k+2}(\Gamma) \) in terms of hy­per­geo­met­ric char­ac­ter sums for cer­tain arith­met­ic tri­angle groups \( \Gamma \). Our geo­met­ric ap­proach gives a uni­fied treat­ment for \( \Gamma \) el­lipt­ic mod­u­lar (the non-cocom­pact case), in­clud­ing afore­men­tioned groups, and \( \Gamma \) arising from the in­def­in­ite qua­ternion al­gebra \( B_6 = \bigl(\frac{-1, 3}{\mathbb{Q}}\bigr) \) over \( \mathbb{Q} \) with dis­crim­in­ant 6 (the cocom­pact case). The same meth­od can also be ap­plied to ob­tain ei­gen­val­ues of the Hecke op­er­at­ors as well.

1.3 Geometric interpretation of the trace formula

Let \( \Gamma \) be a con­gru­ence sub­group com­men­sur­able with \( \operatorname{SL}_2(\mathbb Z) \) (hence non-cocom­pact) or the norm 1 group \( \mathcal O^1 \) of a max­im­al or­der \( \mathcal O \) of an in­def­in­ite non­split qua­ternion al­gebra \( B \) over \( \mathbb{Q} \) (hence cocom­pact). As­sume the com­pac­ti­fied mod­u­lar curve \( X_\Gamma \) has Shimura ca­non­ic­al mod­el defined over \( \mathbb{Q} \).

The first geo­met­ric in­ter­pret­a­tion of the Hecke op­er­at­ors was the cel­eb­rated Eichler–Shimura con­gru­ence re­la­tion in­tro­duced by Eichler [e2] and gen­er­al­ized by Shimura [e4] for Hecke op­er­at­ors act­ing on weight-2 cusp forms for el­lipt­ic mod­u­lar groups. This was ex­ten­ded to qua­ternion­ic groups by Kuga and Shimura [e7]. For forms of weight \( k+2 \ge 3 \), us­ing the mod­uli in­ter­pret­a­tion of \( X_\Gamma \), De­ligne [e13] for \( \Gamma \) non-cocom­pact and Ohta [e20] for \( \Gamma \) cocom­pact con­struc­ted, for each prime \( \ell \), an auto­morph­ic \( \ell \)-ad­ic sheaf \( V^k(\Gamma)_\ell \) on \( X_\Gamma \otimes \overline {\mathbb Q} \) which provided the fol­low­ing geo­met­ric in­ter­pret­a­tion of the Hecke traces.

The­or­em 1: [De­ligne [e13] for \( \Gamma \) el­lipt­ic mod­u­lar and Ohta [e21] for \( \Gamma \) qua­ternion­ic] Let \( \Gamma \) be as above. Giv­en a prime \( \ell \), for all primes \( p \ne \ell \) where \( X_\Gamma \) has good re­duc­tion, we have \[ {\operatorname{Tr}}\bigl(T_p\mid S_{k+2} (\Gamma)\bigr) = {\operatorname{Tr}} \bigl(\operatorname{Frob}_p \mid H_{\text{ét}}^1(X_\Gamma \otimes \overline {\mathbb Q}, V^k(\Gamma)_\ell)\bigr). \]

Com­bined with the Grothen­dieck–Lef­schetz fixed point for­mula, we ob­tain a geo­met­ric in­ter­pret­a­tion of the Hecke trace in terms of the sum of Frobeni­us traces: \begin{eqnarray} -{\operatorname{Tr}} (T_p\mid S_{k+2} (\Gamma)) = \sum_{\lambda \in X_{\Gamma}(\mathbb F_p)} {\operatorname{Tr}}({\operatorname{Frob}}_\lambda \mid (V^{k} (\Gamma)_{\ell})_{\bar{\lambda}} ). \end{eqnarray}

Here \[ {\operatorname{Tr}}({\operatorname{Frob}}_\lambda \mid (V^{k} (\Gamma)_{\ell})_{\bar{\lambda}} )= {\operatorname{Tr}}({\operatorname{Frob}}_\mathfrak P \mid (V^{k} (\Gamma)_{\ell})_{\bar{\lambda^{\prime}}} ) \] for any al­geb­ra­ic point \( \lambda^{\prime} \) on \( X_\Gamma \) which re­duces to \( \lambda \) mod­ulo a de­gree-1 prime \( \mathfrak P \) above \( p \).

1.4 Our approach

Equa­tion (1) would give an ex­pli­cit Hecke trace for­mula if one could com­pute the Frobeni­us traces on stalks of the auto­morph­ic sheaf. We show that this can be car­ried out when the group \( \Gamma \) is an arith­met­ic tri­angle group of type (a) or (b) as spe­cified in Sec­tion 2.1. More pre­cisely, we prove that, for such a \( \Gamma \), the auto­morph­ic sheaf with min­im­al \( k \), namely \( V^1(\Gamma)_\ell \) for \( \Gamma \) of type (a) and \( V^2(\Gamma)_\ell \) for \( \Gamma \) of type (b), up to twist by a de­gree-1 sheaf, is iso­morph­ic to the hy­per­geo­met­ric sheaf at­tached to the hy­per­geo­met­ric datum \( \operatorname{HD}(\Gamma) \) in­tro­duced by Katz in [e24] [e30] and fur­ther ex­ten­ded by Beuk­ers, Co­hen and Mel­lit in [e36] for which the Galois ac­tion on a stalk has Frobeni­us traces ex­pli­citly ex­pressed by hy­per­geo­met­ric char­ac­ter sums. Since, as ex­plained in Sec­tion 3.1, for the groups we con­sider the Frobeni­us traces on sheaves with lar­ger \( k \) are sym­met­ric powers of those with min­im­al \( k \), we ob­tain de­sired Hecke traces for all \( k \ge 1 \).

Our uni­fied ap­proach has the fol­low­ing two mer­its.

I. Sup­pose the space \( S_{k+2}(\Gamma) \) has di­men­sion \( m \). Us­ing the same meth­od, we can com­pute the traces of \( (\operatorname{Frob}_{p})^r \) for \( 1 \le r \le m \), which in turn give rise to the ei­gen­val­ues of \( T_p \) on \( S_{k+2}(\Gamma) \). This is es­pe­cially use­ful when we ex­plore Hecke ei­gen­val­ues for mod­u­lar forms on Shimura curves.

II. Let \( \Gamma^{\prime} \) be a con­gru­ence sub­group of \( \Gamma \), where \( \Gamma \) is an arith­met­ic tri­angle group of type (a) or (b) while \( \Gamma^{\prime} \) is not. As­sume that the curve \( X_{\Gamma^{\prime}} \) is defined over \( \mathbb{Q} \) and there is an ex­pli­cit \( \mathbb{Q} \)-ra­tion­al cov­er­ing map \( \pi: X_{\Gamma^{\prime}} \to X_{\Gamma} \). Then the auto­morph­ic sheaves on \( X_{\Gamma^{\prime}} \) are the pull-backs of those on \( X_{\Gamma} \) via \( \pi^* \). By pulling back the hy­per­geo­met­ric sheaf on \( X_\Gamma \) via \( \pi^* \) we can ex­press the Hecke traces on \( S_{k+2}(\Gamma^{\prime}) \) ex­pli­citly in terms of the hy­per­geo­met­ric char­ac­ter sums at­tached to \( \operatorname{HD}(\Gamma) \).

1.5 Organization of this paper

This pa­per is or­gan­ized as fol­lows. After de­scrib­ing in Sec­tion 2.1 the arith­met­ic tri­angle sub­groups \( \Gamma \) of types (a) and (b) to be con­sidered in this pa­per, in Sec­tion 2.2 the ex­pli­cit trace for­mula for the Hecke op­er­at­or \( T_p \) on \( S_{k+2}(\Gamma) \) is stated in The­or­em 2 for \( \Gamma \) of type (a) and in The­or­em 3 of type (b). Two ex­amples for the cocom­pact group \( \Gamma=(2,4,6) \) of type (b) are il­lus­trated in Sec­tion 2.3. The first is the trace for­mula for the one-di­men­sion­al \( S_8(2,4,6) \), in this case the trace of \( T_p \) is also the ei­gen­value of \( T_p \). The second is the two-di­men­sion­al \( S_{24}(2,4,6) \). We demon­strate that by ap­ply­ing the same meth­od to com­pute the traces of \( \operatorname{Frob}_p \) and \( (\operatorname{Frob}_{p})^2 \), we ob­tain the two ei­gen­val­ues of \( T_p \). As an ap­plic­a­tion, The­or­em 4 in Sec­tion 2.4 gives the trace of \( T_p \) on \( S_{k+2}(2,6,6) \) ex­pressed in terms of hy­per­geo­met­ric char­ac­ter sums at­tached to the datum for \( (2,4,6) \). Ob­serve that \( (2,6,6) \) is not of type (a) or (b). The trace for­mula is ob­tained by pulling back the hy­per­geo­met­ric sheaf on \( X_{(2,4,6)} \) along the ex­pli­cit 2-fold pro­jec­tion \( \pi_2: X_{(2,6,6)} \to X_{(2,4,6)} \) defined over \( \mathbb{Q} \). The auto­morph­ic sheaves \( V^k(\Gamma) \) and hy­per­geo­met­ric sheaves \( \mathcal H(\operatorname{HD}(\Gamma)) \) on \( X_\Gamma \) as well as their key prop­er­ties are re­called in Sec­tion 3.1 and Sec­tion 3.2, re­spect­ively, each hav­ing a com­plex part af­ford­ing the ac­tion of \( \Gamma \) and an \( \ell \)-ad­ic coun­ter­part for each prime \( \ell \) af­ford­ing Galois ac­tions. In geo­met­ric lan­guage, these two parts can be com­bined and re­in­ter­preted as a sheaf on \( X_\Gamma \) of its étale fun­da­ment­al group. A sketch of the proof of our main res­ults, The­or­ems 2 and 3, is giv­en in Sec­tion 4. We use Katz’s ri­gid­ity the­or­em (The­or­em 7) and our com­par­is­on the­or­em (The­or­em 8) to prove that \( V^1(\Gamma) \simeq \mathcal H(\operatorname{HD}(\Gamma)) \) for \( \Gamma \) of type (a) and \( V^2(\Gamma) \) is iso­morph­ic to the twist of \( \mathcal H(\operatorname{HD}(\Gamma)) \) by an ex­pli­cit de­gree-1 sheaf for \( \Gamma \) of type (b). This gives rise to the con­tri­bu­tions of \( \operatorname{Frob}_\lambda \) at nonsin­gu­lar \( \lambda \in X_\Gamma(\mathbb F_p) \) in (1), which cor­res­pond to \( \lambda \in \mathbb F_p^\times, \lambda \ne 1 \) in the trace for­mu­las stated in The­or­ems 2 and 3. Sin­gu­lar points of \( X_\Gamma(\mathbb F_p) \) arise from the cusps and el­lipt­ic points of \( X_\Gamma \). The con­tri­bu­tion at a cusp is 1 for \( k \) even; for \( k \) odd, it is \( \pm 1 \) or 0, de­pend­ing on the type of re­duc­tion at \( p \) of the de­gen­er­ate el­lipt­ic curve rep­res­ent­ing the cusp. Each el­lipt­ic point \( \lambda \) of \( X_\Gamma \) is a CM point. The con­tri­bu­tion at \( \lambda \) de­pends on \( k \), the or­der of the point and the be­ha­vi­or of \( p \) in the CM field. The con­tri­bu­tions at sin­gu­lar points are com­puted sep­ar­ately, and the cel­eb­rated Néron–Ogg–Sha­far­ev­ich cri­terion is used.

2. Main results

2.1 The groups we consider

Let \( e_1, e_2, e_3 \) be ele­ments in \( \mathbb Z_{ > 0} \cup\{\infty\} \). Defined in terms of gen­er­at­ors and re­la­tions, an arith­met­ic tri­angle group \[ (e_1, e_2, e_3) := \langle g_1, g_2, g_3~|~g_1^{e_1} = g_2^{e_2} = g_3^{e_3} = g_1g_2g_3= \operatorname{Id} \rangle \] can be real­ized as a dis­crete sub­group \( \Gamma \) of \( \operatorname{PSL}_2(\mathbb R) \) act­ing on \( \mathfrak H \). A fun­da­ment­al do­main of \( \Gamma \) is a tri­angle with the three ver­tices \( v_1, v_2, v_3 \) sta­bil­ized by (a con­jug­ate of) \( g_1, g_2, g_3 \), re­spect­ively. Here \( v_i \) is a cusp of \( \Gamma \) if \( e_i = \infty \); if \( e_i \) is a pos­it­ive in­teger, then \( v_i \) is an el­lipt­ic point of or­der \( e_i \). These groups are clas­si­fied by Takeu­chi [e17], [e18]. In or­der that the com­pac­ti­fied mod­u­lar curve \( X_\Gamma \) af­ford a hy­per­geo­met­ric sheaf over \( \mathbb{Q} \), it must be of genus zero and its Shimura ca­non­ic­al mod­el must be defined over \( \mathbb{Q} \) with the three ver­tices of \( X_\Gamma \) of or­ders \( e_1, e_2, e_3 \) be­ing \( \mathbb{Q} \)-ra­tion­al. As ex­plained in ([e39], Sec­tion 3), the con­cerns on the re­quired prop­er­ties of the hy­per­geo­met­ric sheaves on \( X_\Gamma \) led us to the sev­en sub­groups, \( \Gamma = (e_1, e_2, e_3) \) lis­ted be­low; those of type (a) are iso­morph­ic to a sub­group of \( \operatorname{SL}_2(\mathbb Z) \) not con­tain­ing \( -\operatorname{Id} \), while those of type (b) are iso­morph­ic to a sub­group of \( \operatorname{SL}_2(\mathbb R) \) mod­ulo \( \pm \operatorname{Id}{:} \)

  1. \( (3, \infty, \infty) \simeq \Gamma_1(3) \),
    \( (\infty, \infty, \infty) \simeq \Gamma_1(4) \);
  2. \( (2, \infty, \infty) \simeq \Gamma_0(2)/\{\pm \operatorname{Id}\} \),
    \( (2,3, \infty) \simeq \operatorname{PSL}_2(\mathbb Z) \),
    \( (2,4, \infty) \simeq \langle \Gamma_0(2), w_2\rangle/\{\pm \operatorname{Id}\}=\Gamma_0(2)^+/\{\pm \operatorname{Id}\} \),
    \( (2,6,\infty) \simeq \langle \Gamma_0(3), w_3 \rangle/\{\pm \operatorname{Id}\}=\Gamma_0(3)^+/\{\pm \operatorname{Id}\} \),
    \( (2,4,6) = \langle \mathcal O_{B_6}^1, w_2, w_3, w_6\rangle/\{\pm \operatorname{Id}\} \).

Here \( w_2, w_3, w_6 \) are the Atkin–Lehner in­vol­u­tions. They are well known for con­gru­ence sub­groups of \( \operatorname{SL}_2(\mathbb Z) \). We ex­plain those for the qua­ternion al­gebra \( B_6 \). A max­im­al or­der of \( B_6 \), which is unique up to con­jug­a­tion, is \[ \mathcal O_{B_6} = \mathbb Z + \mathbb ZI + \mathbb ZJ + \mathbb Z \,\frac{1+I+J+IJ}{2}, \] where \( I^2=-1 \),  \( J^2=3 \),  \( IJ=-JI \). The Atkin–Lehner in­vol­u­tions \( w_6, w_2, w_3 \) are defined as the ele­ments \( 3I+IJ \),  \( 1+I \),  \( (3+3I+J+IJ)/2 \) of \( \mathcal O_{B_6} \), re­spect­ively, nor­mal­ized by di­vid­ing by the pos­it­ive square root of the re­spect­ive re­duced norm 6, 2, 3. They act on the curve \( X_{(2,4,6)} \) and sta­bil­ize the el­lipt­ic points of or­ders \( 2,4,6 \), re­spect­ively.

2.2 Statements of main results

A hy­per­geo­met­ric datum is a set \( \operatorname{HD}=\{\alpha, \beta\} \), where \( \alpha=\{a_1,\dots, a_n\} \) and \( \beta=\{b_1=1, b_2,\dots, b_n\} \) are multis­ets with \( a_i, b_j \in \mathbb{Q}^\times \). It is prim­it­ive if \( a_i -b_j \notin \mathbb Z \) for \( 1 \le i, j \le n \). We as­so­ci­ate a prim­it­ive hy­per­geo­met­ric datum \( \operatorname{HD}(\Gamma) = \{\alpha(\Gamma), \beta(\Gamma)\} \) to each of the above sev­en sub­groups \( \Gamma \), as shown in Table 1. \begin{gather*} \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \Gamma=(e_1,e_2,e_3)&(3, \infty, \infty) & (\infty, \infty, \infty) & (2,\infty,\infty)&(2,3,\infty)&(2,4,\infty)&(2,6,\infty)&(2,4,6)\\ \hline \alpha(\Gamma) & \bigl\{\frac13, \frac23\bigr\} & \bigl\{\frac12, \frac12\bigr\} & \bigl\{\frac12,\frac12,\frac12\bigr\} &\bigl\{\frac12,\frac16,\frac56\bigr\}&\bigl\{\frac12,\frac14,\frac34\bigr\}&\bigl\{\frac12,\frac13,\frac23\bigr\}&\bigl\{\frac12,\frac14,\frac34\bigr\}\\ \beta(\Gamma)& \{1,1\} & \{1,1\} & \{1,1,1\}&\{1,1,1\}&\{1,1,1\}&\{1,1,1\}& \bigl\{1,\frac56,\frac76\bigr\}\\ \hline \end{array} \\ \textbf{Table 1.}\,\text{The hypergeometric datum } \operatorname{HD}(\Gamma) \text{ attached to } \Gamma. \end{gather*}

When the sets \( \alpha, \beta \) in a prim­it­ive hy­per­geo­met­ric datum \( \operatorname{HD}=\{\alpha, \beta\} \) are defined over \( \mathbb{Q} \), for each prime \( p \) and \( \lambda \in \mathbb F_p^\times \), Beuk­ers, Co­hen and Mel­lit defined in [e36] the hy­per­geo­met­ric char­ac­ter sum \( H_p(\operatorname{HD}, \lambda) \). The de­tailed defin­i­tion is a bit long and will be omit­ted. To give a fla­vor, sup­pose \( \alpha=\{a_1,\dots, a_n\} \), \( \beta=\{b_1=1, b_2,\dots, b_n\} \). Con­sider primes \( p \equiv 1 \pmod M \), where \( M = \operatorname{lcd}(\operatorname{HD}) \) is the least com­mon de­nom­in­at­or of all \( a_i \) and \( b_j \). Let \( \lambda \in \mathbb F_p^\times \). Then \( H_p(\operatorname{HD}, \lambda) \) can be ex­pressed in terms of Gauss sums as fol­lows: \[ H_p(\operatorname{HD}(\Gamma), \lambda) = \,\frac{1}{1-p}\sum_{s=0}^{p-2}\omega^s((-1)^n\lambda)\prod_{j=1}^n\,\frac{g(\omega^{(p-1)a_j+s})g(\bar{\omega}^{(p-1)b_j+s})}{g(\omega^{(p-1)a_j})g(\bar{\omega}^{(p-1)b_j})}. \] In the above, \( \omega \) is a char­ac­ter of \( \mathbb F_p^\times \) of or­der \( p-1 \), and \( g(\omega^j) \) is the Gauss sum at­tached to the char­ac­ter \( \omega^j \) and a fixed non­trivi­al ad­dit­ive char­ac­ter of \( \mathbb F_p \). The res­ult­ing ex­pres­sion is in­de­pend­ent of the choice of the ad­dit­ive char­ac­ter and \( \omega \) for our \( \alpha, \beta \) since they are defined over \( \mathbb{Q} \). Note that when char­ac­ters \( \omega^{(p-1)b_j+s} \) and \( \omega^{(p-1)b_j} \) are non­trivi­al, we have \[ \omega^s(-1)\,\frac{g(\omega^{(p-1)a_j+s})g(\bar{\omega}^{(p-1)b_j+s})}{g(\omega^{(p-1)a_j})g(\bar{\omega}^{(p-1)b_j})} = \frac{g(\omega^{(p-1)a_j+s})/g(\omega^{(p-1)a_j})}{g(\omega^{(p-1)b_j+s})/g(\omega^{(p-1)b_j})} \] by a Gauss sum iden­tity. There­fore \( H_p(\operatorname{HD},\lambda) \) is re­garded as a fi­nite field ana­log of the com­plex-val­ued clas­sic­al hy­per­geo­met­ric func­tion \( _nF_{n-1}(\alpha, \beta; \lambda) \) defined by \[_nF_{n-1}(\alpha, \beta; \lambda) = \sum_{s=0}^{\infty} \prod_{j=1}^n \,\frac{\Gamma(a_j+s)/\Gamma(a_j)}{\Gamma(b_j+s)/\Gamma(b_j)} \lambda^s \] in terms of the usu­al \( \Gamma \)-func­tion for \( \lambda \in {\mathbb C} \) such that the series con­verges.

We shall ex­press Tr\( (T_p, S_{k+2}(\Gamma)) \) in terms of these hy­per­geo­met­ric char­ac­ter sums ac­cord­ing to the type of \( \Gamma \).

The­or­em 2: [e39] Let \( \Gamma \in \{(3, \infty, \infty), (\infty, \infty, \infty)\} \) be a group of type (a). Then for all in­tegers \( k \ge 1 \) and a prime \( p \) where \( X_\Gamma \) has good re­duc­tion, we have \begin{align*} -{\operatorname{Tr}}(T_p, S_{k+2}(\Gamma)) &= \sum_{\lambda \in \mathbb F_p^\times, \lambda\ne 1} \sum_{j=0}^{\lfloor k/2 \rfloor}(-1)^j\binom{k-j}{j}\,p^j\cdot H_p\bigl(\operatorname{HD}(\Gamma); 1/\lambda\bigr)^{k-2j}\\ &\qquad\qquad {}+ \mathcal E_{\Gamma}(p,k), \end{align*} where \[ \mathcal E_{(\infty, \infty, \infty)}(p,k)= 1 + \bigl(\tfrac{-1}{p}\bigr)^k + \tfrac{1+(-1)^k}{2}, \] and \begin{multline*} \mathcal E_{(3, \infty, \infty)}(p,k)= 1 + \bigl(\tfrac{-3}{p}\bigr)^k \\ + \begin{cases} 0& \text{ if } p\equiv -1 \pmod 3, \, k\equiv 1 \pmod2,\\ (-p)^{k/2}& \text{ if } p\equiv -1 \pmod 3, \, k\equiv 0 \pmod2,\\ (-1)^k \mkern-10mu\displaystyle\sum_{\overset{0\le i\le k}{ k\equiv 2i \pmod 3}}\mkern-15mu p^i \cdot J_\omega\bigl(\tfrac13,\tfrac13\bigr)^{k-2i} & \text{ if } p\equiv 1 \pmod 3, \end{cases} \end{multline*} in which \( \widehat{\mathbb F_p^\times}= \langle \omega\rangle \) and \( J_\omega(a,b)=\sum_{x\in \mathbb F_p} \omega^{(p-1)a}(x)\omega^{(p-1)b}(1-x) \) is a Jac­obi sum.

De­note by \( N_\Gamma = 3 \) (resp. 4) the level of the group \( (3, \infty, \infty)=\Gamma_1(3) \) (resp. \( (\infty, \infty, \infty) = \Gamma_1(4) \)). Ob­serve that \( {\operatorname{Tr}}(T_p, S_{k+2}(\Gamma))=0 \) when \( p \equiv -1 \mod N_\Gamma \) and \( k \) is odd.

To state our res­ults for groups of type (b), for in­tegers \( m \ge 1 \), let \( F_m(S, T) \) be the de­gree-\( m \) poly­no­mi­al in \( S \) and \( T \) defined by the re­curs­ive re­la­tion \begin{align} & F_{m+1}(S, T) = (S-T)F_m(S, T) - T^2F_{m-1}(S, T),\notag\\ \label{F_m} & F_0(S, T) = 1, \quad F_1(S, T)=S. \end{align}

The­or­em 3: [e39] Let \( \Gamma \in \{(2,\infty,\infty),(2,3,\infty),(2,4,\infty),(2,6,\infty), (2,4,6)\} \) be a group of type (b). Then each el­lipt­ic point \( z \) of \( X_\Gamma \) is a CM point by an ima­gin­ary quad­rat­ic field \( K_z =\mathbb{Q}(\sqrt {d_z}) \) as fol­lows: \[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \Gamma& (2,\infty,\infty)&(2,3,\infty)&(2,4,\infty)&(2,6,\infty)&(2,4,6)\\ \hline \sqrt{d_{z}}& \sqrt{-4},\,\,\text{-}\,,\text{-}&\sqrt{-4}, \sqrt{-3},\,\text{-}& \sqrt{-8}, \sqrt{-4},\,\text{-}& \sqrt{-3}, \sqrt{-3},\,\text{-} & \sqrt{-24}, \sqrt{-4}, \sqrt{-3} \\\hline \end{array} \] De­note by \( N(z) \) its or­der. Let \( p \) be a prime where \( X_\Gamma \) has good re­duc­tion. Then for each even in­teger \( k \ge 2 \) we have \begin{align*} -{\operatorname{Tr}}(T_p, S_{k+2}(\Gamma)) &= \sum_{\lambda \in \mathbb F_p^\times, \lambda \ne 1} F_{k/2}(a_\Gamma(\lambda, p),p)\\ &\qquad + \sum_{z \in X_\Gamma(\mathbb F_p)~\mathrm{ is~a~cusp}} 1 + \sum_{z \in X_\Gamma(\mathbb F_p)~\mathrm{ is~elliptic~}} \mathcal E_\Gamma(z,p, k), \end{align*} where \begin{equation} \label{eq:a_G} a_\Gamma(\lambda,p) = \begin{cases} \bigl(\frac{1-1/\lambda}{p}\bigr)H_p(\operatorname{HD}(\Gamma), 1/\lambda) & \text{ if }\,\Gamma \ne (2,4,6),\\ \bigl(\frac{-3(1-1/\lambda)}{p}\bigr)pH_p(\operatorname{HD}(\Gamma), 1/\lambda)& \text { if } \,\Gamma=(2,4,6), \end{cases} \end{equation} and \begin{equation} \label{eq_fo} \mathcal E_\Gamma(z,p, k)= \begin{cases} (-p)^{k/2} &\text{ if } p \text{ is inert in } K_z,\\ \sum_{-\frac{k}{2N(z)} \le i\le \frac{k}{2N(z)}} p^{k/2} (\alpha_{N(z),p}^2/p)^{iN(z)} &\text{ if }p\text{ splits in }K_z. \end{cases} \end{equation} In the lat­ter case, upon pick­ing any prime ideal \( \wp \) of the ring of in­tegers of \( K_z \) above \( p \), \( \alpha_{N(z),p} \) can be chosen as any gen­er­at­or of the prin­cip­al ideal \( \wp \) when \( N(z) > 2 \). When \( N(z)=2 \),  \( \alpha_{N(z),p}^2 \) can be taken as any root of \[ T^2-\bigl(\tfrac{-3}p\bigr)^{u}p^uH_p\bigl(\operatorname{HD}(\Gamma);1\bigr)T+p^2=0 ,\] where \( u=1 \) if \( \Gamma=(2,4,6) \), and \( u=0 \) else.

In fact, we may choose \( \alpha_{N(z),p} \) to be the Jac­obi sum \( J_\omega\bigl(\frac13,\frac13\bigr) \) (resp. \( J_\omega\bigl(\frac14,\frac14\bigr) \)) if \( N(z) \in \{3, 6\} \) (resp. \( N(z) = 4 \)). Here \( \omega \) is any gen­er­at­or of the group of char­ac­ters of \( \mathbb F_p^\times \). We re­mark that a Jac­obi sum \( J_\omega(a,b) \) is it­self a hy­per­geo­met­ric char­ac­ter sum.

2.3 Examples

To ex­hib­it con­crete ex­amples, con­sider mod­u­lar forms on the Shimura curve \( X_{(2,4,6)} \) arising from the qua­ternion al­gebra \( B_6 \). The group \( \mathcal O_{B_6}^1 \) of norm 1 ele­ments in \( \mathcal O_{B_6} \) mod­ulo cen­ter \( \{\pm \operatorname{Id}\} \) is de­noted by \( (2,2,3,3) \) since its fun­da­ment­al do­main con­tains four el­lipt­ic points, two of or­der 2 and two of or­der 3. As ex­plained by Baba and Granath in ([e29], Sec­tion 3.1), the al­gebra of mod­u­lar forms on \( (2,2,3,3) \) is a poly­no­mi­al ring gen­er­ated by forms \( h_4, h_6, h_{12} \) of weights \( 4, 6, 12 \), re­spect­ively, sub­ject to one re­la­tion \( h_{12}^2 + 3h_6^4 + h_4^6 = 0 \). In oth­er words, \[ \bigoplus_{k \ge0} S_{2k}(2,2,3,3)= \mathbb C[h_4, h_6, h_{12}]/(h_{12}^2 + 3h_6^4 + h_4^6). \] Moreover, \( h_4, h_6, h_{12} \) are ei­gen­func­tions of the Atkin–Lehner op­er­at­ors \( w_2 \) and \( w_3 \) with ei­gen­val­ues \[ -1, -1, \quad +1, -1,\quad\text{ and }\quad -1, +1,\quad\text{respectively}. \] Hence they are also ei­gen­func­tions of \( w_2w_3=w_6 \).

As \( (2,4,6) = \langle \mathcal O_{B_6}^1, w_2, w_3 \rangle/\{\pm \operatorname{Id}\} \), the low­est \( k \) with non­trivi­al \( S_{k+2}(2,4,6) \) is \( k=6 \), in which case \( S_8(2,4,6)=\langle h_4^2 \rangle \) is one-di­men­sion­al. By Jac­quet–Lang­lands cor­res­pond­ence [e11], [e34], \( h_4^2 \) cor­res­ponds to the nor­mal­ized weight-8 level 6 cuspid­al new­form \( f_{6.8.a.a} \) in the L-func­tions and Mod­u­lar Forms Data­base (LMF­DB) nota­tion. For primes \( p > 5 \), de­note by \( a_p(f) \) the ei­gen­value of \( T_p \) on an ei­gen­func­tion \( f \). Thus \( a_p(h_4^2) \) is equal to \( a_p(f_{6.8.a.a}) \). The­or­em 3 above gives \[ \eqalign{ - a_p(h_4^2) &= -a_p(f_{6.8.a.a})\cr &=\sum_{\lambda \in \mathbb{F}_p,\lambda \neq 0,1} \bigl(a_{(2,4,6)}(\lambda,p)^3-2pa_{(2,4,6)}(\lambda,p)^2-p^2a_{(2,4,6)}(\lambda,p)+p^3\bigr)\cr &\qquad{}+p\bigl((pH_p(\operatorname{HD}(2,4,6);1))^2-p^2\bigr) +\Bigl(\bigl(\tfrac{-1}p\bigl)+\bigl(\tfrac{-3}p\bigr)+\bigl(\tfrac{-6}p\bigr)\Bigr)p^3, } \] where \[ a_{(2,4,6)}(\lambda, p) = \bigl(\tfrac{-3(1-1/\lambda)}{p}\bigr)pH_p(\operatorname{HD}(2,4,6), 1/\lambda). \]

The space \( S_{24}(2,4,6)=\langle h_4^6, h_6^4 \rangle \) is two-di­men­sion­al. We il­lus­trate how to ob­tain the two ei­gen­val­ues \( a_{1,p} \) and \( a_{2,p} \) of \( T_p \) on this space for a prime \( p > 3 \). Com­put­ing the traces of \( \operatorname{Frob}_p \) and \( (\operatorname{Frob}_p)^2 \) on \[ H^1_{\text{ét}}(X_{(2,4,6)}\otimes\overline{\mathbb{Q}}, V^{22}(2,4,6)_{\ell}) \] for a prime \( \ell \neq p \), we ob­tain \begin{align*} -(a_{1,p}+a_{2,p}) &= \sum_{\lambda \in X_{(2,4,6)}(\mathbb F_p)} \operatorname{Tr}(\operatorname{Frob}_\lambda \mid (V^{22}(2,4,6)_{\ell})_{\bar{\lambda}} ) \\ &= \mathcal E(p)+\sum_{\lambda \in \mathbb F_p,\lambda \neq 0,1}F_{11}(a_{(2,4,6)}(\lambda,p),p),\\ -(a_{1,p}^2+a_{2,p}^2) &= -4p^{23}+\mathcal E(p^2)+\sum_{\lambda \in \mathbb F_{p^2},\lambda \neq 0,1}F_{11}(a_{(2,4,6)}(\lambda,p^2),p^2), \end{align*} where \( \mathcal E(q) \) de­notes the total con­tri­bu­tion from the el­lipt­ic points in \( X_{(2,4,6)}(\mathbb F_q) \). Its value for \( q=p \) is as stated in The­or­em 3, and for \( q=p^2 \) it is \[ \mathcal E(p^2)=\sum_{N=2,4,6} \sum_{-\frac{22}{2N} \le i\le \frac{22}{2N}} p^{22} (\alpha_{N,p^2}^2/p^2)^{iN}, \] where \[ \alpha_{4,p^2}= J_\omega\bigl(\tfrac14,\tfrac14\bigr)^2,\quad \alpha_{6,p^2}=J_\omega\bigl(\tfrac13,\tfrac13\bigr)^2 \] for a gen­er­at­or \( \omega \) of \( \widehat{\mathbb F_{p^2}^\times} \), and \( \alpha_{2,p^2}^2 \) is any root of \[ T^2-p^2H_{p^2}(\operatorname{HD}(2,4,6),1)T+p^4=0 .\] The com­pu­ta­tions give \[ \begin{array}{c|ccccc} p& 5&7&11\\ \hline a_{1,p}+a_{2,p} & 25248156 & 5764462768 & 1017121470024\\ a_{1,p}^2+a_{2,p}^2 & 70010194261011336 & 60171677733273590912 & 3068149691314205892000288 \end{array} \] from which we get the ei­gen­val­ues \[ 12624078\pm 5184\beta, \quad 2882231384\pm 129600\beta\quad \text{ and }\quad 508560735012 \pm 31363200\beta \] with \( \beta=\sqrt{1296640489} \) for \( p=5,7,11 \), re­spect­ively. The two Hecke ei­gen­forms in \( S_{24}(2,4,6) \) cor­res­pond to the new­forms in the new­form or­bit 6.24.a.d in LMF­DB.

2.4 Applications

The ca­non­ic­al mod­el of the Shimura curve \( X_{(2,2,3,3)} \) is \[ x^2 + 3y^2+z^2=0 ;\] it is defined over \( \mathbb{Q} \), of genus 0, and con­tains no real points. The Atkin–Lehner in­vol­u­tion \( w_2 \) (resp. \( w_3 \)) sends \( [x:y:z] \) to \( [x:-y:z] \) (resp. \( [-x: y:z] \)) with fixed points \( z_2^{\pm} = [1:0:\pm i] \) (resp. \( z_3^{\pm} = [0:1: \pm \sqrt{-3}] \)) el­lipt­ic of or­der 2 (resp. 3). The fixed points \[ z_6^\pm = [\pm \sqrt{-3}:1:0] \] of \( w_6 \) are not el­lipt­ic points. The three groups \[ \langle \mathcal O_{B_6}^1, w_i\rangle/\{\pm \operatorname{Id}\} \] for \( i = 3,2,6 \) are de­noted \( (2,6,6) \), \( (3,4,4) \) and \( (2,2,2,3) \). As de­scribed in [e29], the Shimura curve \( X_{(2,2,3,3)} \) is a 2-fold cov­er of the curves \[ X_{(2,6,6)},\quad X_{(3,4,4)}, \quad\text{ and }\quad X_{(2,2,2,3)}, \] all pro­ject­ive lines over \( \mathbb{Q} \), with the cov­er­ing maps send­ing \[ [x:y:z] \in X_{(2,2,3,3)} \] to \[ [y:z],\quad [x:z], \quad \text{ and } \quad [x:y],\quad\text{respectively}. \] It fol­lows from the defin­i­tion that \( X_{(2,6,6)} \), \( X_{(3,4,4)} \) and \( X_{(2,2,2,3)} \) are 2-fold cov­ers of \( X_{(2,4,6)} \) un­der the \( \mathbb{Q} \)-ra­tion­al cov­er­ing maps \begin{align*} \pi_2 &: [y:z] \mapsto [-3y^2-z^2 : y^2],\\ \pi_6 &: [x:z] \mapsto \Bigl[x^2 : \frac{-x^2-z^2}{3}\Bigr],\\ \pi_3 &: [x:y] \mapsto [x^2: y^2]. \end{align*}

The re­la­tions among these curves are de­pic­ted in the dia­gram be­low. All cov­er­ing maps are ex­pli­cit and \( \mathbb{Q} \)-ra­tion­al. The three el­lipt­ic points on \( X_{(2,4,6)} \) are im­ages of \( z_6^{\pm} \), \( z_2^{\pm} \) and \( z_3^{\pm} \), all \( \mathbb{Q} \)-ra­tion­al.

Ob­serve that, while the ca­non­ic­al mod­els for \( X_{(2,6,6)} \), \( X_{(3,4,4)} \) and \( X_{(2,2,2,3)} \) are pro­ject­ive lines over \( \mathbb{Q} \), each curve con­tains an el­lipt­ic point which is ra­tion­al only over a quad­rat­ic ex­ten­sion of \( \mathbb{Q} \). This ex­plains why \( (2,6,6) \) and \( (3,4,4) \) are not one of the sev­en \( \Gamma \)’s con­sidered be­fore. Non­ethe­less, us­ing the ex­pli­cit pro­jec­tions \( \pi_2, \pi_6, \pi_3 \) defined above, we can pull back the hy­per­geo­met­ric sheaf on \( X_{(2,4,6)} \) to sheaves on the three 2-fold cov­ers \( X_{(2,6,6)} \), \( X_{(3,4,4)} \) and \( X_{(2,2,2,3)} \) to ob­tain ex­pli­cit for­mu­lae of the traces of Hecke op­er­at­ors on the spaces of mod­u­lar forms for \( (2,6,6) \), \( (3,4,4) \) and \( (2,2,2,3) \) re­spect­ively, and then those for \( (2,2,3,3) \) by in­clu­sion and ex­clu­sion. See Sec­tion 7.1 of [e39] for more de­tail. Here we state the Hecke trace for­mula for \( \Gamma = (2,6,6) \) as an ex­ample.

The­or­em 4: [e39] The mod­u­lar curve \( X_\Gamma \) for \( \Gamma=(2,6,6) \) para­met­rized by \( t \) has three el­lipt­ic points, at \( t = 0 \), \( \pm 1/\sqrt{-3} \) of or­der \( N(t) = 2,6,6 \) with CM fields \( K_t = \mathbb{Q}(\sqrt{-1}) \), \( \mathbb{Q}(\sqrt{-3}) \), \( \mathbb{Q}(\sqrt{-3}) \), re­spect­ively. Their im­ages un­der the pro­jec­tion \( \pi_2 \) are the el­lipt­ic points on \( X_{(2,4,6)} \) of re­spect­ive or­der \( 4,6,6 \). For any even in­teger \( k \ge 2 \) and any prime \( p \) where \( X_\Gamma \) has good re­duc­tion, we have \begin{multline*} -{\operatorname{Tr}}(T_p, S_{k+2}(\Gamma))= \sum_{\lambda \in X_\Gamma(\mathbb F_p), \,\lambda \ne 0, \pm 1/\sqrt{-3}} F_{k/2}(a_\Gamma(\lambda, p), p) \\ + \mathcal E_{(2,4,6)}(\pi_2(0),p,k) + \Bigl(1+\bigl(\tfrac{-3}{p}\bigr)\Bigr) \, \mathcal E_{(2,4,6)}\Bigl(\pi_2\bigl(\tfrac{1}{\sqrt{-3}}\bigr), p, k\Bigr) \end{multline*} where \[ a_\Gamma(t, p) = \begin{cases} \Bigl(\tfrac{{-3}{(1+3t^2)}}p\Bigr)pH_p\bigl(\operatorname{HD}(2,4,6), 1/\bigl(1+\tfrac1{3t^2}\bigr)\bigr), & \text { if } {t\neq \infty},\\ pH_p\bigl(\operatorname{HD}(2,4,6), 1)\bigr)+\bigl(\tfrac{-6}p\bigr)p, & \text{ if } {t= \infty}, \end{cases} \] and \( \mathcal E_{(2,4,6)}(z,p,k) \) is as in \eqref{eq_fo}.

We elab­or­ate more on the con­tri­bu­tions from el­lipt­ic points \( \lambda \in X_\Gamma(\mathbb F_p) \). When \( \lambda \) comes from the \( \mathbb{Q} \)-ra­tion­al el­lipt­ic point \( t=0 \) of \( (2,6,6) \) of or­der 2, \( \pi_2(0) \) is the el­lipt­ic point on \( X_{(2,4,6)} \) of or­der 4 and the con­tri­bu­tion de­pends on the be­ha­vi­or of \( p \) in \( \mathbb{Q}(\sqrt{-1}) \) as de­scribed by \eqref{eq_fo}. This is the unique el­lipt­ic point on \( X_\Gamma(\mathbb F_p) \) when \( -3 \) is a non­square \( \!\!\pmod p \). In this case there are \( p \) terms in the first sum, com­ing from \( \lambda \in P^1(\mathbb F_p), \lambda \ne 0 \). When \( -3 \) is a square \( \!\!\pmod p \), \( X_\Gamma(\mathbb F_p) \) has two more el­lipt­ic points, from \( t=\pm 1/\sqrt{-3} \), which are pro­jec­ted to the el­lipt­ic point of or­der 6 on \( X_{(2,4,6)} \) by \( \pi_2 \). Hence they give rise to the same con­tri­bu­tion, as de­scribed by the second rule in \eqref{eq_fo} since \( p \) splits in the CM field \( \mathbb{Q}(\sqrt{-3}) \). In this case the first sum con­sists of \( p-2 \) terms, com­ing from \( \lambda \in P^1(\mathbb F_p), \lambda \ne 0, \pm 1/\sqrt{-3} \).

Re­mark 1: If a dif­fer­ent \( \mathbb{Q} \)-mod­el on \( X_{(2,6,6)} \) is chosen such that all three el­lipt­ic points are \( \mathbb{Q} \)-ra­tion­al, then it has an as­so­ci­ated datum \[ \operatorname{HD}(2,6,6)=\bigl\{\bigl\{\tfrac12,\tfrac13,\tfrac23\bigr\},\bigl\{1,\tfrac16,\tfrac56\bigr\}\bigr\}. \] The two \( \mathbb{Q} \)-mod­els on \( X_{(2,6,6)} \) are iso­morph­ic over \( \mathbb{Q}(\sqrt{-3}) \) and not \( \mathbb{Q} \). Con­sequently, the for­mula ob­tained us­ing \( H_p(\operatorname{HD}(2,6,6);\lambda) \) agrees with that from The­or­em 4 only for \( p\equiv 1\mod 6 \).

Sim­il­ar res­ults can be ob­tained for oth­er suit­able sub­groups of \( (2,4,6) \) or with \( (2,4,6) \) re­placed by the oth­er six \( \Gamma \) stud­ied in The­or­ems 2 and 3.

Ex­pli­cit Hecke trace for­mu­lae have many ap­plic­a­tions. For in­stance, know­ing Hecke trace can lead to spe­cial val­ues of hy­per­geo­met­ric func­tions. As an ex­ample, it fol­lows from the reas­on­ing in Yang [e34] that the Hecke trace \( a_7(h_4^2) \) above yields the iden­tity \[ {}_3F_2\Biggl[\begin{matrix} \frac12 &\frac13 &\frac34\\ &\frac56 &\frac76 \end{matrix} ;\ \frac{2^{10}\cdot3^{3}\cdot5^{6}\cdot7}{11^{4}\cdot 23^4}\Biggr] =\frac{11\cdot 23}{140\sqrt 3} \,\frac{2^{1/3}(4+2\sqrt 2)}{7^{7/6}} \,\frac{\Gamma(7/6)\Gamma(13/24)\Gamma(19/24)}{\Gamma(5/6)\Gamma(17/24)\Gamma(23/24)}. \] The trace for­mu­lae in this pa­per are used by Grove in [e40] to ob­tain the ver­tic­al Sato–Tate dis­tri­bu­tion, as \( p \to \infty \), of the nor­mal­ized \( H_p(\operatorname{HD}(\Gamma); \lambda) \),  \( \lambda \in \mathbb F_p^\times \), for \( \Gamma \) of type (a). The dis­tri­bu­tion of that for \( \Gamma \) of type (b) can be ob­tained by a sim­il­ar idea.

3. Sheaves

3.1 Automorphic sheaves \( V^k(\Gamma)_{\mathbb C} \) and \( V^k(\Gamma)_\ell \)

Write \( X_\Gamma^\circ = X_\Gamma \setminus \{ \)cusps, el­lipt­ic points\( \} \). The auto­morph­ic sheaves \( V^k(\Gamma)_{\mathbb C} \) and \( V^k(\Gamma)_\ell \) on \( X_\Gamma \) are first defined on \( X_\Gamma^\circ \), then ex­ten­ded to \( X_\Gamma \) along the in­clu­sion \( \iota: X_\Gamma^\circ \to X_\Gamma \). The sheaves are first defined for \( \Gamma \) tor­sion-free, then use the push-for­ward to get sheaves for groups with tor­sion ele­ments. When \( \Gamma \) is tor­sion-free, the nat­ur­al map \( \mathfrak H \to X_\Gamma^{\circ} \) is a uni­ver­sal cov­er with cov­er­ing group \( \Gamma \) be­ing the fun­da­ment­al group \( \pi_1(X_\Gamma^{\circ}, *) \). If \( \Gamma \) is not tor­sion-free, then \( \Gamma \) mod its cen­ter is a quo­tient of \( \pi_1(X_\Gamma^{\circ}, *) \).

The group \( \operatorname{SL}_2(\mathbb R) \) acts on \( {\mathbb C}^2 \) ca­non­ic­ally and it gives rise to the ac­tion on \( \operatorname{Sym}^k ({\mathbb C}^2) \). Re­strict­ing to the sub­group \( \Gamma \) gives the ac­tion of \( \Gamma \) on \( \operatorname{Sym}^k ({\mathbb C}^2) \). For each in­teger \( k\ge 1 \), the com­plex sheaf \( V^k(\Gamma)_{\mathbb C} \) is a rank \( k+1 \) loc­al sys­tem on \( X_\Gamma \) defined by \[ V^k(\Gamma)_{\mathbb C} = \Gamma \backslash \bigl(\mathfrak H^* \times \operatorname{Sym}^k ({\mathbb C}^2)\bigr). \] The stalk at \( x \in X_\Gamma^\circ \) is \( \operatorname{Sym}^k ({\mathbb C}^2) \), that at \( x \) a cusp or el­lipt­ic point is \[ \bigl(\operatorname{Sym}^k ({\mathbb C}^2)\bigr)^{\Gamma_x}, \] the sub­space fixed by the sta­bil­izer \( \Gamma_x \) of \( x \) in \( \Gamma \). It was shown by Eichler [e3] and Shimura [e6] for \( \Gamma \) non-cocom­pact and by Kuga and Shimura [e7] for \( \Gamma \) cocom­pact that \[ H^1(X_\Gamma, V^k(\Gamma)_{\mathbb C}) \simeq S_{k+2}(\Gamma) \oplus \overline{S_{k+2}(\Gamma)}. \]

De­ligne [e13] and Ohta [e20] con­struc­ted, for each in­teger \( k \ge 1 \) and a prime \( \ell \), an \( \ell \)-ad­ic sheaf \( V^k(\Gamma)_\ell \) on \( X_\Gamma \otimes \overline {\mathbb Q} \) us­ing the mod­uli in­ter­pret­a­tion of \( X_\Gamma \). To ease our nota­tion, we use \( V^k(\Gamma)_{\ell, \bar \lambda} \) to de­note the stalk at the point \( \lambda \) of the sheaf \( V^k(\Gamma)_\ell \). For \( \Gamma \) el­lipt­ic mod­u­lar and tor­sion-free, \( V^k(\Gamma)_\ell \) has rank \( k+1 \). More pre­cisely, from the uni­ver­sal el­lipt­ic curve \( \mathcal E \) over \( X_\Gamma^\circ \), the stalk at an al­geb­ra­ic point \( \lambda \in X_\Gamma^\circ(K) \) over a num­ber field \( K \) is \[ V^k(\Gamma)_{\ell,\bar \lambda} = \operatorname{Sym}^{k}~ \bigl(V^1(\Gamma)_{\ell,\bar \lambda}\bigr), \] where \[ V^1(\Gamma)_{\ell, \bar \lambda} = H_{\text{ét}}^1(\mathcal E_\lambda \otimes \overline{\mathbb{Q}}, {\mathbb Q}_\ell) \] en­dowed with the ac­tion of \( \operatorname{Gal}(\overline {\mathbb{Q}}/K) \). In par­tic­u­lar, if \( \Gamma \) is el­lipt­ic mod­u­lar and \( -\operatorname{Id} \notin \Gamma \), then at \( \lambda \in X_\Gamma^\circ(\mathbb{Q}) \) we have, for all \( k \ge 1 \) and al­most all primes \( p \), \[ \operatorname{Tr} (\operatorname{Frob}_{p} | V^k(\Gamma)_{\ell,\bar {\lambda}}) = \sum_{j=0}^{\lfloor \frac k2 \rfloor }(-1)^j\binom{k-j}{j} p^j \operatorname{Tr} \bigl(\operatorname{Frob}_{p} | V^1(\Gamma)_{\ell,\bar {\lambda}}\bigr)^{k-2j}. \] This is the re­la­tion used in The­or­em 2.

For \( \Gamma \) arising from the in­def­in­ite non­split qua­ternion al­gebra \( B \) over \( \mathbb{Q} \) and tor­sion-free, \( V^k(\Gamma)_\ell \) has rank \( k+1 \) for \( k \) even. From the uni­ver­sal abeli­an sur­face over \( X_\Gamma \) with qua­ternion mul­ti­plic­a­tion by \( B \), at \( \lambda \in X_\Gamma(K) \) there is an \( \ell \)-ad­ic de­gree-2 rep­res­ent­a­tion \( \rho_{\ell,\lambda} \) of \( \operatorname{Gal}(\overline{\mathbb{Q}}/K) \) such that \[ V^{k}(\Gamma)_{\ell,\bar\lambda} = \operatorname{Sym}^{k}~ (\rho_{\ell,\lambda}), \] sim­il­ar to the el­lipt­ic mod­u­lar case. The rank of \( V^k(\Gamma)_\ell \) for \( k \) odd is very dif­fer­ent. For ex­ample, \( V^1(\Gamma)_\ell \) has rank 4. See ([e39], Sec­tion 2.2) for more de­tail.

If \( \Gamma \) con­tains \( -\operatorname{Id} \), be it el­lipt­ic mod­u­lar or qua­ternion­ic, \( V^{k}(\Gamma)_\ell \) and \( V^k(\Gamma)_{\mathbb C} \) are both zero for \( k \) odd; for \( k \ge 2 \) even, \( \lambda \in X_\Gamma^\circ(\mathbb{Q}) \), and al­most all primes \( p \), \[ \operatorname{Tr}\bigl(\operatorname{\operatorname{Frob}}_{p} | V^k(\Gamma)_{\ell,\bar {\lambda}}\bigr) = F_{k/2}\Bigl(\operatorname{Tr}\bigl(\operatorname{\operatorname{Frob}}_{p} | V^2(\Gamma)_{\ell,\bar {\lambda}}\bigr), p\Bigr), \] where \( F_m \) is defined by (2). This is the re­la­tion used in The­or­em 3.

Hence we only need to re­place \( V^2(\Gamma)_\ell \) or \( V^1(\Gamma)_\ell \) by a sheaf whose Frobeni­us traces are com­put­able. Our goal is to show that, for each of the sev­en tri­angle sub­groups \( \Gamma \) in Sec­tion 2.1, this can be achieved us­ing the hy­per­geo­met­ric sheaf as­so­ci­ated to \( \operatorname{HD}(\Gamma) = \{\alpha(\Gamma), \beta(\Gamma)\} \).

3.2 Hypergeometric sheaves \( \mathcal H(\operatorname{HD})_{\mathbb C} \) and \( \mathcal H(\operatorname{HD})_\ell \)

In this sub­sec­tion we in­tro­duce the hy­per­geo­met­ric sheaf, both com­plex and \( \ell \)-ad­ic, at­tached to a prim­it­ive hy­per­geo­met­ric datum \[ \operatorname{HD} = \{\alpha \,{=}\, \{a_1, \dots,a_n\}, \beta\,{=}\,\{b_1{=}1, b_2,\dots,b_n\}\} \] of length \( n \).

As we have seen in Sec­tion 2.2, the clas­sic­al hy­per­geo­met­ric func­tion as­so­ci­ated to \( \operatorname{HD} \) is \[_nF_{n-1}(\operatorname{HD}; z)= \sum_{r\ge 0} \prod_{1 \le i \le n}\frac{\Gamma(a_i+r)/\Gamma(a_i)}{\Gamma(b_i+r)/\Gamma(b_i)} ~z^r. \] Beuk­ers and Heck­man showed in [e23] that \( _nF_{n-1}(\operatorname{HD}; z) \) sat­is­fies the \( n \)-th or­der lin­ear or­din­ary dif­fer­en­tial equa­tion \begin{align*} & \bigl[\theta (\theta + b_2-1) \cdots (\theta + b_n-1) - z(\theta+a_1)\cdots (\theta+a_n)\bigr]F = 0,\\ & \theta = z \frac{d}{dz} \end{align*} which has three reg­u­lar sin­gu­lar­it­ies at \( 0, 1, \infty \) with loc­al ex­po­nents \[ \eqalign{ &0=1-b_1, 1-b_2,\dots, 1-b_n & \quad\text{ at } z&=0,\cr &a_1,\dots, a_n & \quad\text{ at } z&=\infty,\cr &0, 1,2,\dots, n-2, -1 + \textstyle\sum_{j} (b_j - a_j) & \quad\text{ at } z&=1. } \]

By as­sem­bling solu­tions of this dif­fer­en­tial equa­tion through the nonsin­gu­lar points we define a rank-\( n \) com­plex loc­al sys­tem on \( \mathbb P^1({\mathbb C})\setminus\{0, 1 \), \( \infty\} \). Fix a base point \( z_0 \in \mathbb P^1({\mathbb C})\setminus\{0, 1 \), \( \infty\} \). For \( i \in \{0, 1 \), \( \infty\} \), de­note by \( C_i \) a simple coun­ter­clock­wise loop start­ing and end­ing at \( z_0 \) en­clos­ing \( i \) and not the oth­er two sin­gu­lar­it­ies. Then \( \pi_1(\mathbb P^1({\mathbb C})\setminus\{0, 1 \), \( \infty\}, \) \( z_0) \) is gen­er­ated by the ho­mo­topy classes \( [C_0] \), \( [C_1] \), \( [C_\infty] \) with one re­la­tion \( [C_\infty][C_1][C_0] = \operatorname{Id} \). Let \( g_0, g_1 \), \( g_\infty \in \operatorname{GL}_n({\mathbb C}) \) be the mono­dromy ac­tion on the fiber at \( z_0 \) by ex­tend­ing solu­tions ana­lyt­ic­ally along \( C_0, C_1, C_\infty \), re­spect­ively.

The mono­dromy group of \( \operatorname{HD} \) is the tri­angle group \[ \langle g_0, g_1, g_\infty ~|~ g_\infty g_1 g_0 = \operatorname{Id} \rangle = ( e_0, e_1, e_\infty ), \] where \( e_i \) is the or­der of \( g_i \). The ei­gen­val­ues of \( g_\infty \) are \( e^{2\pi i a_j} \), those of \( g_0 \) are \( e^{-2\pi i b_j} \), while \( g_1 \) is a pseu­dore­flec­tion, that is, \( g_1-I_n \) has rank 1. This de­scribes the com­plex hy­per­geo­met­ric sheaf \( \mathcal H(\operatorname{HD})_{\mathbb C} \) on \( \mathbb P^1({\mathbb C})\setminus\{0, 1 \), \( \infty\} \) with the mono­dromy group \( ( e_0, e_1 \), \( e_\infty) \).

On the al­geb­ra­ic side, for each prime \( \ell \), Katz [e24], [e30] in­tro­duced an \( \ell \)-ad­ic rank-\( n \) hy­per­geo­met­ric sheaf \( \mathcal H(\operatorname{HD})_\ell \) on the mul­ti­plic­at­ive group \( \mathbb G_m \) with the ac­tion of \( \operatorname{Gal}(\overline {\mathbb{Q}}/\mathbb{Q}(\zeta_M)) \), where \( M =\operatorname{lcd}(\operatorname{HD}) \). Its ac­tion on the fiber at \( \lambda \in \mathbb{Q}(\zeta_M)^\times \) has Frobeni­us traces giv­en by hy­per­geo­met­ric char­ac­ter sums which are fi­nite field ana­log of \( {}_nF_{n-1}(\operatorname{HD};1/\lambda) \). When the datum \( \operatorname{HD} \) is defined over \( \mathbb{Q} \), that is, the set of the column vec­tors \[\Bigl\{ \Bigl(\,\begin{matrix} a_i\\b_i \end{matrix}\,\Bigr) \mod {\mathbb Z} \Bigr\} \] is in­vari­ant un­der mul­ti­plic­a­tion by ele­ments in \( (\mathbb Z/M\mathbb Z)^\times \), the Galois ac­tion at the fiber above \( \lambda \in \mathbb{Q}^\times \) can be ex­ten­ded to \( \operatorname{Gal}(\overline {\mathbb{Q}}/\mathbb{Q}) \). One such ex­ten­sion, de­noted \( \rho^{\operatorname{BCM}}_{\operatorname{HD},\lambda, \ell} \), was stud­ied by Beuk­ers, Co­hen and Mil­let [e36]. We sum­mar­ize key prop­er­ties of this rep­res­ent­a­tion be­low.

The­or­em 5: [Katz, Beuk­ers–Co­hen–Mel­lit] Sup­pose \( \operatorname{HD}=\{\alpha, \beta\} \) is prim­it­ive, of length \( n \), defined over \( \mathbb{Q} \), and with \( \operatorname{lcd}(\operatorname{HD})=M \). As­sume that ex­actly \( m \) ele­ments in \( \beta \) are in­tegers. Let \( \lambda \in \mathbb{Q}^\times \). Then for each prime \( \ell \), there hold the fol­low­ing:
  • for primes \( p\,\nmid\, M\ell \) such that \( \operatorname{ord}_p \lambda = 0 \), we have \[ \operatorname{Tr}\rho_{\operatorname{HD},\lambda,\ell}^{\operatorname{BCM}}(\operatorname{Frob}_p) = \bigl(\tfrac{-1}{p}\bigr)^\delta p^{(n-m)/2} H_p\bigl(\operatorname{HD}; \tfrac{1}{\lambda}\bigr); \]
  • the de­gree of \( \rho_{\operatorname{HD},\lambda,\ell}^{\operatorname{BCM}} \) is \( n \) for \( \lambda \ne 1 \), and \( n-1 \) for \( \lambda = 1 \);
  • the char­ac­ter­ist­ic poly­no­mi­al of  \( \operatorname{Frob}_p \) has coef­fi­cients in \( {\mathbb Z} \) and all roots in \( {\mathbb C} \) have the same ab­so­lute value \( p^{(n-1)/2} \).

Here \( n-m \) is even, \( \delta = 1 \) when \( \sum a_i \equiv 1/2 \mod {\mathbb Z} \) and \( 2\| M \), and \( \delta=0 \) oth­er­wise. Moreover, the fam­ily of rep­res­ent­a­tions \[ \bigl\{\rho_{\operatorname{HD},\lambda,\ell}^{\operatorname{BCM}} : \text{prime }\ell\bigr\} \] of \( \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) is com­pat­ible so that the trace of \( \operatorname{Frob}_p \) is in­de­pend­ent of the choice of \( \ell \ne p \).

There­fore, in or­der that \( V^2(\Gamma) \) or \( V^1(\Gamma) \) is iso­morph­ic to a hy­per­geo­met­ric sheaf or its twist by a char­ac­ter, the mod­u­lar curve \( X_\Gamma \) has to pos­sess the fol­low­ing prop­er­ties:

  • \( X_\Gamma \) is defined over \( \mathbb{Q} \) and iso­morph­ic to \( \mathbb P^1 \);
  • \( X_\Gamma \setminus X_\Gamma^\circ \) con­sists of three \( \mathbb{Q} \)-ra­tion­al points, which we may as­sume to be \( 0, 1, \infty \);
  • \( \Gamma \) or \( \bar \Gamma :=\Gamma/\Gamma\cap \{\pm \operatorname{Id}\} \) is an arith­met­ic tri­angle group.

For the sev­en sub­groups \( \Gamma \) in Sec­tion 2.1, the mod­u­lar curves \( X_\Gamma \) meet these con­di­tions, and the data \( \operatorname{HD}(\Gamma)=\{\alpha(\Gamma) \), \( \beta(\Gamma)\} \) in Table 1 are defined over \( \mathbb{Q} \) so that The­or­em 5 ap­plies.

Re­mark 2: In geo­met­ric lan­guage, de­note by \( X \) the vari­ety \( \mathbb P^1 \smallsetminus\{0,1 \), \( \infty\} \) viewed as a scheme over \( \operatorname{Spec}(\mathbb{Q}) \), and by \( \mathbb{Q}(X) \) its func­tion field. Let \( \bar \xi \) be a geo­met­ric gen­er­ic point. For an al­geb­ra­ic ex­ten­sion \( L \) of \( \mathbb{Q} \), de­note by \( \pi_1(X_L \), \( \bar\xi) \) the étale fun­da­ment­al group of \( X_L \). Then \( \pi_1(X_{\overline{\mathbb{Q}}} \), \( \bar \xi) \) is the profin­ite com­ple­tion of the to­po­lo­gic­al fun­da­ment­al group \( \pi_1(X_{\mathbb C} \), \( z_0) \), and we have the short ex­act se­quence \begin{eqnarray} \label{fundamental} 0 \to \pi_1(X_{\overline{\mathbb{Q}}}, \bar \xi) \to \pi_1(X_{\mathbb{Q}}, \bar \xi) \to \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to 0. \end{eqnarray} Al­geb­ra­ic­ally, \( \mathbb{Q}(X) \) is the ra­tion­al func­tion field \( \mathbb{Q}(t) \), \[ \pi_1(X_\mathbb{Q}, \bar \xi) \simeq \operatorname{Gal}(K/\mathbb{Q}(t)) \] where \( K \) is the max­im­al sub­field of \( \overline{\mathbb{Q}(t)} \) gen­er­ated by fi­nite ex­ten­sions of \( \mathbb{Q}(t) \) un­rami­fied out­side \( 0, 1 \), \( \infty \), and \[ \pi_1(X_{\overline{\mathbb{Q}}}, \bar \xi) \simeq \operatorname{Gal}(K/\overline{\mathbb{Q}}(t)). \] Hence \eqref{fundamental} can be re­writ­ten as \begin{eqnarray} 0 \to \operatorname{Gal}(K/\overline{\mathbb{Q}}(t)) \to \operatorname{Gal}(K/\mathbb{Q}(t)) \to \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to 0. \end{eqnarray}

For our sev­en sub­groups \( \Gamma \) in Sec­tion 2.1, we have defined com­plex and \( \ell \)-ad­ic auto­morph­ic sheaves \( V^k(\Gamma) \) and hy­per­geo­met­ric sheaves \( \mathcal H(\operatorname{HD}(\Gamma)) \), first on \( X_\Gamma^\circ \simeq \mathbb P^1 \smallsetminus \{0, 1 \), \( \infty\} = X \), then ex­ten­ded to \( X_\Gamma \) along the in­clu­sion \( \iota: X_\Gamma^\circ \to X_\Gamma \). Upon choos­ing an iso­morph­ism between \( \overline{{\mathbb Q}_\ell} \) and \( {\mathbb C} \), we may com­bine the com­plex and \( \ell \)-ad­ic \( V^k(\Gamma) \) (re­spect­ively \( \mathcal H(\operatorname{HD}(\Gamma)) \)) to­geth­er as a sheaf on \( X_\Gamma \) with ac­tion by the étale fun­da­ment­al group \[ \pi_1(X_\mathbb{Q}, \bar \xi)=\operatorname{Gal}(K/\mathbb{Q}(t)) .\]

4. A sketch of the proof of main theorems

Let \( \Gamma=(e_0, e_1, e_\infty) \) be one of the sev­en tri­angle sub­groups in Sec­tion 2.1, and let \( \lambda = \lambda(\Gamma) \) be the para­met­er of the curve \( X_\Gamma \) tak­ing val­ues \( 0, 1, \infty \) at the three points of or­der \( e_0, e_1, e_\infty \), re­spect­ively. At a prime \( p \) where \( X_\Gamma \) has good re­duc­tion, \[ X_\Gamma(\mathbb F_p) = \mathbb P^1(\mathbb F_p) = \mathbb F_p \cup \{\infty\}. \] The con­tri­bu­tion to the trace of \( T_p \) on \( S_{k+2}(\Gamma) \) from a nonsin­gu­lar \( \lambda \in X_\Gamma(\mathbb F_p) \), namely \[ \lambda \in \mathbb F_p^\times, \quad \lambda \ne 1, \] fol­lows from the the­or­em be­low, in which \( \chi_d \) de­notes the quad­rat­ic char­ac­ter at­tached to \( \mathbb{Q}(\sqrt d) \), which we identi­fy as a char­ac­ter of \( \operatorname{Gal}(\overline {\mathbb{Q}}/\mathbb{Q}) \) by class field the­ory, or a char­ac­ter of \( \operatorname{Gal}(K/\mathbb{Q}(t)) \) trivi­al on \( \operatorname{Gal}(K/\overline{\mathbb{Q}}(t)) \) by (6).

The­or­em 6: [e39] Let \( \Gamma \) be one of the sev­en tri­angle sub­groups in Sec­tion 2.1 and let \[ \operatorname{HD}(\Gamma)=\{\alpha(\Gamma), \beta(\Gamma)\} \] be as in Table 1. Fix a prime \( \ell \).
  1. For \( \Gamma \) of type (a), that is, \( \Gamma \) is \( (\infty, \infty, \infty) \) or \( (3, \infty, \infty) \), we have \[ V^1(\Gamma)_\ell \simeq \mathcal H(\operatorname{HD}(\Gamma))_\ell. \]
  2. For \( \Gamma \) of type (b), that is, \( \Gamma \) is one of \( (2, \infty, \infty), (2,3,\infty), (2,4,\infty), (2,6,\infty),(2,4,6) \), we have \[ V^2(\Gamma)_\ell \simeq \chi_\Gamma \otimes \mathcal H\bigl(\bigl\{\{1/2\},\{1\}\bigr\}\bigr)_\ell\otimes \mathcal H(\operatorname{HD}(\Gamma))_\ell. \] Here \( \chi_\Gamma \) is a char­ac­ter equal to \( \chi_{-1} \) for \( \Gamma= (2,4,\infty) \),  \( \chi_{3} \) for \( \Gamma = (2,4,6) \), and trivi­al for the oth­er three groups.

To prove The­or­em 6, we take the geo­met­ric view­point ex­plained in Re­mark 2 to com­pare the auto­morph­ic sheaf and the hy­per­geo­met­ric sheaf oc­curred in (i) and (ii). Two gen­er­al res­ults are used. The first one is Katz’s ri­gid­ity the­or­em which com­pares two com­plex sheaves.

The­or­em 7: [Ri­gid­ity the­or­em [e24]] Let \( \mathcal F \) and \( \mathcal G \) be two ir­re­du­cible loc­al sys­tems on \( \mathbb G_m({\mathbb C}) \) of the same rank \( \ge 1 \), and sat­is­fy­ing
  1. The loc­al mono­drom­ies at 1 of both \( \mathcal F \) and \( \mathcal G \) are pseu­dore­flec­tions;
  2. At both 0 and \( \infty \), \( \mathcal F \) and \( \mathcal G \) have the same char­ac­ter­ist­ic poly­no­mi­als of loc­al mono­drom­ies.

    Then \( \mathcal F \) and \( \mathcal G \) are iso­morph­ic.

The table be­low shows that \( V^1(\Gamma)_{\mathbb C} \simeq \mathcal H(\operatorname{HD}(\Gamma))_{\mathbb C} \) for \( \Gamma \) of type (a): \begin{gather*} \begin{array}{|c|c|c|c|c|c|c|c|} \hline (e_0,e_1,e_\infty)&\text{Generators}& \text{Exponents}& {\operatorname{HD}(\Gamma)} & {\mathcal H(\operatorname{HD}(\Gamma))_{\mathbb C}}\\ \hline (\infty,\infty,3) & g_0=T:= \bigl({1 \atop 0}{1\atop 1}\bigr) & (1,1) & \alpha=\bigl\{\frac{1}{3}, \frac{2}{3}\bigr\} &\mathcal H\bigl(\bigl\{\frac1{3},\frac23\bigr\},\{1,1\}\bigr)_{\mathbb C}\\ \cong \Gamma_1(3) & g_1=S:= \bigl({-2 \atop -3}{3\atop4}\bigr) &(1,1)&\beta=\{1,1\}& \\ & g_\infty=(ST)^{-1} &\bigl(\frac13,\frac23\bigr)& &\\ \hline (\infty,\infty,\infty) & g_1=T:= \bigl({1\atop 0}{1\atop1}\bigr) & (1,1) &\alpha=\bigl\{\frac12, \frac12\bigr\} &\mathcal H\bigl(\bigl\{\frac1{2},\frac12\bigr\},\{1,1\}\bigr)_{\mathbb C}\\ \cong \Gamma_1(4) &g_0=(ST)^{-1} &(1,1)&\beta=\{1,1\} & \\ & g_\infty=S:= \bigl({1\atop4}{-1\atop-3}\bigr) &\bigl(\frac12,\frac12\bigr)& &\\ \hline \end{array} \end{gather*} A sim­il­ar table for type (b) groups shows \( V^2(\Gamma)_{\mathbb C} \simeq \mathcal H(\{\{1/2\},\{1\}\})_{\mathbb C} \otimes\mathcal H(\operatorname{HD}(\Gamma))_{\mathbb C} \).

Once the two com­plex sheaves are shown to be iso­morph­ic, the fol­low­ing com­par­is­on the­or­em says that their \( \ell \)-ad­ic coun­ter­parts may dif­fer at most by a twist by a char­ac­ter of \( \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \).

The­or­em 8: [Com­par­is­on the­or­em [e39]] Let \( \mathcal F \) and \( \mathcal G \) be two geo­met­ric­ally ir­re­du­cible sheaves on the same curve such that \( \mathcal F_{\mathbb C} \simeq \mathcal G_{\mathbb C} \). Then there is a con­tinu­ous \( \ell \)-ad­ic char­ac­ter \[ \chi : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \overline {{\mathbb Q}_\ell}^\times \] such that \( \mathcal F_\ell \simeq \chi \otimes \mathcal G_\ell \).

We then com­pare the two sheaves at a fiber to de­term­ine the twist char­ac­ter \( \chi_\Gamma \) for each \( \Gamma \).

It re­mains to com­pute the con­tri­bu­tions from the three sin­gu­lar points on \( X_\Gamma \). These are done sep­ar­ately and the cel­eb­rated Néron–Ogg–Sha­far­ev­ich cri­terion is used. At a cusp it is equal to 1 for \( k \) even, as done in Scholl [e22]; while for \( k \) odd, it is \( \pm 1 \) or 0 de­pend­ing on the type of re­duc­tion at \( p \) of the de­gen­er­ate el­lipt­ic curve rep­res­ent­ing the cusp. All el­lipt­ic points are CM points. We first de­term­ine the CM struc­ture at each el­lipt­ic point, then com­pute the con­tri­bu­tion at \( p \) from each el­lipt­ic point, which mainly de­pends on \( k \), the or­der of the point and the be­ha­vi­or of \( p \) in the CM field, as shown in The­or­ems 2 and 3.

Wen-Ching Win­nie Li re­ceived her Ph.D. from the Uni­versity of Cali­for­nia, Berke­ley in 1974, su­per­vised by An­drew P. Ogg. In 1979 she joined the Pennsylvania State Uni­versity, where she has been Dis­tin­guished Pro­fess­or of Math­em­at­ics since 2012.

Works

[1] A. Ogg: Mod­u­lar forms and Di­rich­let series. W. A. Ben­jamin (New York–Am­s­ter­dam), 1969. MR 256993 Zbl 0191.​38101 book

[2] A. P. Ogg: “On a con­vo­lu­tion of \( L \)-series,” In­vent. Math. 7 (1969), pp. 297–​312. MR 246819 Zbl 0205.​50902 article

[3] A. P. Ogg: “On the ei­gen­val­ues of Hecke op­er­at­ors,” Math. Ann. 179 (1969), pp. 101–​108. MR 269597 Zbl 0169.​10102 article

[4] A. P. Ogg: “Real points on Shimura curves,” pp. 277–​307 in Arith­met­ic and geo­metry, I. Edi­ted by M. Artin and J. Tate. Pro­gr. Math. 35. Birkhäuser (Bo­ston), 1983. MR 717598 Zbl 0531.​14014 incollection

[5] A. P. Ogg: “Mauvaise réduc­tion des courbes de Shimura,” pp. 199–​217 in Sémin­aire de théorie des nombres, Par­is 1983–84. Edi­ted by C. Gold­stein. Pro­gr. Math. 59. Birkhäuser (Bo­ston), 1985. MR 902833 Zbl 0581.​14024 incollection