return

Celebratio Mathematica

Robert Fones Williams

Complete Bibliography

[1] R. F. Wil­li­ams: “Loc­al con­trac­tions of com­pact met­ric spaces which are not loc­al iso­met­ries,” Proc. Am. Math. Soc. 5 : 4 (1954), pp. 652–​654. MR 63028 Zbl 0057.​14905 article

[2] R. F. Wil­li­ams: Re­duc­tion of open map­pings. Ph.D. thesis, 1954. Ad­vised by G. T. Why­burn. A short art­icle based on this thes­is was pub­lished in Proc. Am. Math. Soc. 7:2 (1956). phdthesis

[3] R. F. Wil­li­ams: “A note on un­stable homeo­morph­isms,” Proc. Am. Math. Soc. 6 : 2 (1955), pp. 308–​309. MR 68211 Zbl 0067.​15402 article

[4] R. F. Wil­li­ams: “Loc­al prop­er­ties of open map­pings,” Duke Math. J. 22 : 3 (September 1955), pp. 339–​346. MR 75580 Zbl 0065.​38201 article

[5] R. F. Wil­li­ams: “Re­duc­tion of open map­pings,” Proc. Am. Math. Soc. 7 : 2 (1956), pp. 312–​318. This is based on the au­thor’s 1954 PhD thes­is. MR 77112 Zbl 0073.​17901 article

[6] R. F. Wil­li­ams: “The ef­fect of maps upon the di­men­sion of sub­sets of the do­main space,” Proc. Am. Math. Soc. 8 : 3 (1957), pp. 580–​583. MR 87920 Zbl 0079.​38801 article

[7] R. F. Wil­li­ams: “Loc­al con­trac­tions and the size of a com­pact met­ric space,” Duke Math. J. 26 : 2 (June 1959), pp. 277–​289. MR 105074 Zbl 0085.​17002 article

[8] R. F. Wil­li­ams: “Le­besgue area of maps from Haus­dorff spaces,” Acta Math. 102 : 1–​2 (1959), pp. 33–​46. MR 110785 Zbl 0144.​30001 article

[9] R. F. Wil­li­ams: “Le­besgue area zero, di­men­sion and fine cyc­lic ele­ments,” Riv. Mat. Univ. Parma 10 (1959), pp. 131–​143. MR 140663 Zbl 0107.​27501 article

[10] R. Wil­li­ams: “Open map­pings and solen­oids,” No­tices Am. Math. Soc. 6 (1959), pp. 867. article

[11] F. Ray­mond and R. F. Wil­li­ams: “Ex­amples of \( p \)-ad­ic trans­form­a­tion groups,” Bull. Am. Math. Soc. 66 : 5 (1960), pp. 392–​394. Full de­scrip­tions of these ex­amples are giv­en in an art­icle pub­lished in Ann. Math. 78:1 (1963). MR 123634 Zbl 0096.​17202 article

[12] G. E. Bredon, F. Ray­mond, and R. F. Wil­li­ams: “\( p \)-ad­ic groups of trans­form­a­tions,” Trans. Am. Math. Soc. 99 : 3 (1961), pp. 488–​498. MR 142682 Zbl 0109.​15901 article

[13] R. F. Wil­li­ams: “A use­ful func­tor and three fam­ous ex­amples in to­po­logy,” Trans. Am. Math. Soc. 106 : 2 (1963), pp. 319–​329. MR 146832 Zbl 0113.​37803 article

[14] F. Ray­mond and R. F. Wil­li­ams: “Ex­amples of \( p \)-ad­ic trans­form­a­tion groups,” Ann. Math. (2) 78 : 1 (July 1963), pp. 92–​106. These ex­amples ori­gin­ated in an art­icle pub­lished in Bull. Am. Math. Soc. 66:5 (1960). MR 150769 Zbl 0178.​26003 article

[15] R. F. Wil­li­ams: “The con­struc­tion of cer­tain 0-di­men­sion­al trans­form­a­tion groups,” Trans. Am. Math. Soc. 129 : 1 (1967), pp. 140–​156. MR 212127 Zbl 0169.​25903 article

[16] R. F. Wil­li­ams: “One-di­men­sion­al non-wan­der­ing sets,” To­po­logy 6 : 4 (November 1967), pp. 473–​487. MR 217808 Zbl 0159.​53702 article

[17] M. E. Ma­howald and R. F. Wil­li­ams: “The stable ho­mo­topy of \( K(Z,n) \),” Bol. Soc. Mat. Mex., II. Ser. 11 (1967), pp. 22–​28. MR 235563 Zbl 0178.​57203 article

[18] R. F. Wil­li­ams: “The zeta func­tion of an at­tract­or,” pp. 155–​161 in Con­fer­ence on the to­po­logy of man­i­folds (East Lans­ing, MI, 15–17 March 1967). Edi­ted by J. G. Hock­ing. Com­ple­ment­ary Series in Math­em­at­ics 13. Prindle, Weber & Schmidt (Bo­ston), 1968. MR 235573 Zbl 0179.​51902 incollection

[19] R. F. Wil­li­ams: “Com­pact non-Lie groups,” pp. 366–​369 in Pro­ceed­ings of the con­fer­ence on trans­form­a­tion groups (New Or­leans, 8 May–2 June 1967). Edi­ted by P. S. Mostert. Spring­er (Ber­lin), 1968. MR 245724 Zbl 0193.​52502 incollection

[20] R. F. Wil­li­ams: “Non-com­pact Lie group ac­tions,” pp. 441–​445 in Pro­ceed­ings of the con­fer­ence on trans­form­a­tion groups (New Or­leans, 8 May–2 June 1967). Edi­ted by P. S. Mostert. Spring­er (Ber­lin), 1968. Zbl 0193.​52501 incollection

[21] R. F. Wil­li­ams: “Ex­pand­ing at­tract­ors,” pp. 79–​89 in Col­loque de to­po­lo­gie différen­ti­elle [Dif­fer­en­tial to­po­logy col­loqui­um] (Mont-Aig­ou­al, France, 1–6 June 1969). Edi­ted by C. God­bil­lon and H. Rosen­berg. Uni­versité de Mont­pel­li­er, 1969. MR 287581 Zbl 0208.​25801 incollection

[22] M. Shub and R. F. Wil­li­ams: “Fu­ture sta­bil­ity is not gen­er­ic,” Proc. Am. Math. Soc. 22 : 2 (1969), pp. 483–​484. MR 242193 Zbl 0181.​51402 article

[23] R. F. Wil­li­ams: “The ‘\( \mathrm{DA} \)’ maps of Smale and struc­tur­al sta­bil­ity,” pp. 329–​334 in Glob­al ana­lys­is (Berke­ley, CA, 1–26 Ju­ly 1968). Edi­ted by S.-S. Chern and S. Smale. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 14. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1970. MR 264705 Zbl 0213.​50303 incollection

[24] R. F. Wil­li­ams: “Clas­si­fic­a­tion of one di­men­sion­al at­tract­ors,” pp. 341–​361 in Glob­al ana­lys­is (Berke­ley, CA, 1–26 Ju­ly 1968). Edi­ted by S.-S. Chern and S. Smale. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 14. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1970. MR 266227 Zbl 0213.​50401 incollection

[25] R. F. Wil­li­ams: “Zeta func­tion in glob­al ana­lys­is,” pp. 335–​339 in Glob­al ana­lys­is (Berke­ley, CA, 1–26 Ju­ly 1968). Edi­ted by S.-S. Chern and S. Smale. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 14. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1970. MR 266252 Zbl 0213.​50402 incollection

[26] R. F. Wil­li­ams: “The struc­ture of at­tract­ors,” pp. 947–​951 in Act­es du Con­grès In­ter­na­tion­al des Mathématiciens [Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians] (Nice, France, 1–10 Septem­ber 1970), vol. 2. Gau­th­i­er-Vil­lars (Par­is), 1971. MR 650645 Zbl 0228.​58008 incollection

[27] R. F. Wil­li­ams: “Clas­si­fic­a­tion of sym­bol spaces of fi­nite type,” Bull. Am. Math. Soc. 77 : 3 (May 1971), pp. 439–​443. MR 300263 Zbl 0213.​50403 article

[28] R. F. Wil­li­ams: “Com­pos­i­tion of con­trac­tions,” Bol. Soc. Brasil. Mat. 2 : 2 (1971), pp. 55–​59. MR 367962 Zbl 0335.​54026 article

[29] R. Wil­li­ams: “Ex­pand­ing at­tract­ors,” pp. 125–​127 in Pro­ceed­ings of the sym­posi­um on dif­fer­en­tial equa­tions and dy­nam­ic­al sys­tems (Cov­entry, UK, Septem­ber 1968–Au­gust 1969). Edi­ted by D. Chilling­worth. Lec­ture Notes in Math­em­at­ics 206. Spring­er (Ber­lin), 1971. incollection

[30] R. C. Robin­son and R. F. Wil­li­ams: “Fi­nite sta­bil­ity is not gen­er­ic,” pp. 451–​462 in Dy­nam­ic­al sys­tems (Sal­vador, Brazil, 26 Ju­ly–14 Au­gust 1971). Edi­ted by M. M. Peix­oto. Aca­dem­ic Press (New York), 1973. MR 331430 Zbl 0305.​58009 incollection

[31] R. F. Wil­li­ams: “Clas­si­fic­a­tion of sub­shifts of fi­nite type,” pp. 281–​285 in Re­cent ad­vances in to­po­lo­gic­al dy­nam­ics: Pro­ceed­ings of a con­fer­ence in to­po­lo­gic­al dy­nam­ics (New Haven, CT, 19–23 June 1972). Edi­ted by A. Beck. Lec­ture Notes in Math­em­at­ics 318. Spring­er (Ber­lin), 1973. Con­fer­ence in hon­or of Gust­av Arnold Hed­lund. MR 391060 Zbl 0267.​54038 incollection

[32] R. F. Wil­li­ams: “Clas­si­fic­a­tion of sub­shifts of fi­nite type,” Ann. Math. (2) 98 : 1 (July 1973), pp. 120–​153. Er­rata were pub­lished in Ann. Math. 99:2 (1974). MR 331436 Zbl 0282.​58008 article

[33] R. F. Wil­li­ams: “Paul Sch­weitzer’s solu­tion of the Seifert prob­lem,” pp. 301–​304 in Glob­al ana­lys­is and its ap­plic­a­tions (Trieste, Italy, 4 Ju­ly–25 Au­gust 1972), vol. 3. IAEA (Vi­enna), 1974. MR 436164 Zbl 0306.​57010 incollection

[34] R. F. Wil­li­ams: “Strange at­tract­ors,” pp. 293–​300 in Glob­al ana­lys­is and its ap­plic­a­tions (Trieste, Italy, 4 Ju­ly–25 Au­gust 1972), vol. 3. IAEA (Vi­enna), 1974. MR 440623 Zbl 0303.​58013 incollection

[35] R. F. Wil­li­ams: “Ex­pand­ing at­tract­ors,” Inst. Hautes Études Sci. Publ. Math. 43 (1974), pp. 169–​203. MR 348794 Zbl 0279.​58013 article

[36] R. F. Wil­li­ams: “Er­rata to ‘Clas­si­fic­a­tion of sub­shifts of fi­nite type’,” Ann. Math. (2) 99 : 2 (1974), pp. 380–​381. Er­rata for an art­icle pub­lished in Ann. Math. 98:1 (1973). article

[37] M. Shub and R. F. Wil­li­ams: “En­tropy and sta­bil­ity,” To­po­logy 14 : 4 (November 1975), pp. 329–​338. MR 415680 Zbl 0329.​58010 article

[38] D. Sul­li­van and R. F. Wil­li­ams: “On the ho­mo­logy of at­tract­ors,” To­po­logy 15 : 3 (1976), pp. 259–​262. MR 413185 Zbl 0332.​58011 article

[39] S. Smale and R. F. Wil­li­ams: “The qual­it­at­ive ana­lys­is of a dif­fer­ence equa­tion of pop­u­la­tion growth,” J. Math. Biol. 3 : 1 (1976), pp. 1–​4. MR 414147 Zbl 0342.​92014 article

[40] C. Robin­son and R. Wil­li­ams: “Clas­si­fic­a­tion of ex­pand­ing at­tract­ors: An ex­ample,” To­po­logy 15 : 4 (1976), pp. 321–​323. MR 415682 Zbl 0338.​58013 article

[41] R. F. Wil­li­ams: “The struc­ture of Lorenz at­tract­ors,” pp. 94–​112 in Tur­bu­lence sem­in­ar (Berke­ley, CA, 1976–1977). Edi­ted by P. Bern­ard and T. Ra­tiu. Lec­ture Notes in Math­em­at­ics 615. Spring­er (Ber­lin), 1977. Lec­ture VII. With ap­pendix “Com­puter pic­tures of the Lorenz at­tract­or.”. This ap­pears to have been ad­ap­ted for an art­icle pub­lished in Inst. Hautes Études Sci. Publ. Math. 50 (1979). MR 461581 Zbl 0363.​58005 incollection

[42] W. Parry and R. F. Wil­li­ams: “Block cod­ing and a zeta func­tion for fi­nite Markov chains,” Proc. Lon­don Math. Soc. (3) 35 : 3 (1977), pp. 483–​495. MR 466490 Zbl 0383.​94011 article

[43] J. Guck­en­heimer and R. F. Wil­li­ams: “Struc­tur­al sta­bil­ity of Lorenz at­tract­ors,” Inst. Hautes Études Sci. Publ. Math. 50 (1979), pp. 59–​72. Ded­ic­ated to the memory of Ru­fus Bowen. MR 556582 Zbl 0436.​58018 article

[44] R. F. Wil­li­ams: “The struc­ture of Lorenz at­tract­ors,” Inst. Hautes Études Sci. Publ. Math. 50 (1979), pp. 73–​99. Ded­ic­ated to the memory of Ru­fus Bowen. Seem­ingly based on a lec­ture pub­lished in Tur­bu­lence sem­in­ar (1977). MR 556583 Zbl 0484.​58021 article

[45] R. F. Wil­li­ams: “The bi­furc­a­tion space of the Lorenz at­tract­or,” pp. 393–​399 in Bi­furc­a­tion the­ory and ap­plic­a­tions in sci­entif­ic dis­cip­lines (New York, 31 Oc­to­ber–4 Novem­ber 1977). Edi­ted by O. Gurel and O. E. Roessler. An­nals of the New York Academy of Sci­ences 316. New York Academy of Sci­en­cies, 1979. MR 556844 Zbl 0472.​58016 incollection

[46] J. Franks and B. Wil­li­ams: “An­om­al­ous Anosov flows,” pp. 158–​174 in Glob­al the­ory of dy­nam­ic­al sys­tems (Evan­ston, IL, 18–22 June 1979). Edi­ted by Z. Nitecki and C. Robin­son. Lec­ture Notes in Math­em­at­ics 819. Spring­er, 1980. MR 591182 Zbl 0463.​58021 incollection

[47] J. S. Birman and R. F. Wil­li­ams: “Knot­ted peri­od­ic or­bits in dy­nam­ic­al sys­tems, I: Lorenz’s equa­tions,” To­po­logy 22 : 1 (1983), pp. 47–​82. Part II was pub­lished in Low-di­men­sion­al to­po­logy (1983). MR 682059 Zbl 0507.​58038 article

[48] J. S. Birman and R. F. Wil­li­ams: “Knot­ted peri­od­ic or­bits in dy­nam­ic­al sys­tem, II: Knot hold­ers for fibered knots,” pp. 1–​60 in Low-di­men­sion­al to­po­logy. Edi­ted by S. J. Lomonaco\( Jr. \). Con­tem­por­ary Math­em­at­ics 20. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1983. Part I was pub­lished in To­po­logy 22:1 (1983). MR 718132 Zbl 0526.​58043 incollection

[49] R. F. Wil­li­ams: “Lorenz knots are prime,” Er­god­ic The­ory Dy­nam. Sys­tems 4 : 1 (March 1984), pp. 147–​163. MR 758900 Zbl 0595.​58037 article

[50] R. F. Wil­li­ams: “At­tract­ors, strange and per­verse,” pp. 473–​495 in Pro­ceed­ings of the 1981 Shang­hai sym­posi­um on dif­fer­en­tial geo­metry and dif­fer­en­tial equa­tions (Shang­hai and He­fei, China, 20 Au­gust–13 Septem­ber 1981). Edi­ted by C. H. Gu. Sci­entif­ic Press (Beijing), 1984. MR 825292 Zbl 0679.​58029 incollection

[51] J. Franks and R. F. Wil­li­ams: “En­tropy and knots,” Trans. Am. Math. Soc. 291 : 1 (1985), pp. 241–​253. MR 797057 Zbl 0587.​58038 article

[52] P. Holmes and R. F. Wil­li­ams: “Knot­ted peri­od­ic or­bits in sus­pen­sions of Smale’s horse­shoe: Tor­us knots and bi­furc­a­tion se­quences,” Arch. Ra­tion­al Mech. Anal. 90 : 2 (1985), pp. 115–​194. MR 798342 Zbl 0593.​58027 article

[53] J. Franks and R. F. Wil­li­ams: “Braids and the Jones poly­no­mi­al,” Trans. Amer. Math. Soc. 303 : 1 (1987), pp. 97–​108. MR 896009 Zbl 0647.​57002 article

[54] M. Shub, D. Tischler, and R. F. Wil­li­ams: “The New­to­ni­an graph of a com­plex poly­no­mi­al,” SIAM J. Math. Anal. 19 : 1 (1988), pp. 246–​256. MR 924558 Zbl 0653.​58013 article

[55] R. F. Wil­li­ams: “The braid in­dex of an al­geb­ra­ic link,” pp. 697–​703 in Braids (Santa Cruz, CA, 13–26 Ju­ly 1986). Edi­ted by J. S. Birman and A. Libgober. Con­tem­por­ary Math­em­at­ics 78. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1988. MR 975103 Zbl 0673.​57003 incollection

[56] R. F. Wil­li­ams: “Geo­met­ric the­ory of dy­nam­ic­al sys­tems,” pp. 67–​75 in Work­shop on dy­nam­ic­al sys­tems (Trieste, Italy, Septem­ber 1988). Edi­ted by Z. Coelho and E. Shiels. Pit­man Re­search Notes in Math­em­at­ics 221. Long­man Sci­entif­ic & Tech­nic­al (Har­low, UK), 1990. MR 1096341 Zbl 0688.​58029 incollection

[57] R. F. Wil­li­ams: “How big is the in­ter­sec­tion of two thick Can­tor sets?,” pp. 163–​175 in Con­tinuum the­ory and dy­nam­ic­al sys­tems (Ar­cata, CA, 17–23 June 1989). Edi­ted by M. Brown. Con­tem­por­ary Math­em­at­ics 117. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1991. MR 1112813 Zbl 0734.​54022 incollection

[58] R. F. Wil­li­ams: “The braid in­dex of gen­er­al­ized cables,” Pac. J. Math. 155 : 2 (1992), pp. 369–​375. MR 1178031 Zbl 0811.​57013 article

[59] R. F. Wil­li­ams: “Strong shift equi­val­ence of matrices in \( \mathrm{GL}(2,\mathbb{Z}) \),” pp. 445–​451 in Sym­bol­ic dy­nam­ics and its ap­plic­a­tions (New Haven, CT, 28 Ju­ly–2 Au­gust 1991). Edi­ted by P. Wal­ters. Con­tem­por­ary Math­em­at­ics 135. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1992. MR 1185108 Zbl 0768.​58039 incollection

[60] C. Tress­er and R. F. Wil­li­ams: “Split­ting words and Lorenz braids,” pp. 15–​21 in Homo­clin­ic chaos (Brus­sels, 6–9 May 1991), published as Phys. D 62 : 1–​4. Issue edi­ted by P. Gas­pard, A. Arneodo, R. Kapral, and C. Spar­row. El­sevi­er (Am­s­ter­dam), 1993. MR 1207414 Zbl 0783.​58041 incollection

[61] R. F. Wil­li­ams: “A new zeta func­tion, nat­ur­al for links,” pp. 270–​278 in From to­po­logy to com­pu­ta­tion: Pro­ceed­ings of the Smal­efest (Berke­ley, CA, 5–9 Au­gust 1990). Edi­ted by M. W. Hirsch, J. E. Marsden, and M. Shub. Spring­er (New York), 1993. MR 1246126 Zbl 0851.​58037 incollection

[62] R. F. Wil­li­ams, D. Karp, D. Brown, O. Lan­ford, P. Holmes, R. Thom, E. C. Zee­man, and M. M. Peix­oto: “Fi­nal pan­el,” pp. 589–​605 in From to­po­logy to com­pu­ta­tion: Pro­ceed­ings of the Smal­efest (Berke­ley, CA, 5–9 Au­gust 1990). Edi­ted by M. W. Hirsch, J. E. Marsden, and M. Shub. Spring­er (New York), 1993. MR 1246149 incollection

[63] S. Kennedy, M. Stafford, and R. F. Wil­li­ams: “A new Cay­ley–Hamilton the­or­em,” pp. 247–​251 in Glob­al ana­lys­is in mod­ern math­em­at­ics (Hou­s­ton, TX). Edi­ted by K. Uh­len­beck. Pub­lish or Per­ish, 1993. Sym­posi­um in hon­or of Richard Pal­ais’ six­tieth birth­day. MR 1278758 Zbl 0972.​15004 incollection

[64] R. F. Wil­li­ams: “Pisot–Vi­jayar­ghavan num­bers and pos­it­ive matrices,” pp. 268–​277 in Dy­nam­ic­al sys­tems and chaos (Ha­chioji, Ja­pan, 23–27 May 1994), vol. 1. Edi­ted by N. Aoki, K. Shiraiwa, and Y. Taka­hashi. World Sci­entif­ic (River Edge, NJ), 1995. MR 1479944 Zbl 0989.​57500 incollection

[65] R. F. Wil­li­ams: “Spaces that won’t say no,” pp. 236–​246 in In­ter­na­tion­al con­fer­ence on dy­nam­ic­al sys­tems (Montivideo, Ur­uguay, 27 March–1 April 1995). Edi­ted by F. Le­drap­pi­er, J. Le­wow­icz, and S. Ne­w­house. Pit­man Re­search Notes in Math­em­at­ics 362. Long­man Sci­entif­ic & Tech­nic­al (Har­low, UK), 1996. Pro­ceed­ings ded­ic­ated to Ri­cardo Mañé. MR 1460809 Zbl 0876.​57044 incollection

[66] R. F. Wil­li­ams: “The uni­ver­sal tem­plates of Ghrist,” Bull. Am. Math. Soc. (N.S.) 35 : 2 (1998), pp. 145–​156. MR 1602073 Zbl 0902.​57001 article

[67] Z. Coelho, W. Parry, and R. Wil­li­ams: “A note on Livšic’s peri­od­ic point the­or­em,” pp. 223–​230 in To­po­lo­gic­al dy­nam­ics and ap­plic­a­tions (Min­neapol­is, MN, 5–6 April 1995). Edi­ted by M. G. Ner­urkar, D. P. Dokken, and D. B. El­lis. Con­tem­por­ary Math­em­at­ics 215. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1998. Volume in hon­or of Robert El­lis. MR 1603197 Zbl 0897.​58037 incollection

[68] M. Barge and R. F. Wil­li­ams: “Clas­si­fic­a­tion of Den­joy con­tinua,” To­po­logy Ap­pl. 106 : 1 (September 2000), pp. 77–​89. MR 1769334 Zbl 0983.​37013 article

[69] R. F. Wil­li­ams: “The Pen­rose, Am­mann and DA tiling spaces are Can­tor set fiber bundles,” Er­god­ic The­ory Dy­nam. Sys­tems 21 : 6 (2001), pp. 1883–​1901. MR 1869076 Zbl 1080.​37012 article

[70] L. Sadun and R. F. Wil­li­ams: “Tiling spaces are Can­tor set fiber bundles,” Er­god­ic The­ory Dy­nam. Sys­tems 23 : 1 (February 2003), pp. 307–​316. MR 1971208 Zbl 1038.​37014 article

[71] R. F. Wil­li­ams: 2D con­tin­ued frac­tions and pos­it­ive matrices. Pre­print 10-28, Uni­versity of Texas, 2010. techreport

[72] M. Barge and R. Wil­li­ams: Asymp­tot­ic struc­tures in Pen­rose, Tübin­gen and oc­ta­gon tilings, 2012. Con­fer­ence pa­per. misc

[73] M. Barge, S. Štim­ac, and R. F. Wil­li­ams: “Pure dis­crete spec­trum in sub­sti­tu­tion tiling spaces,” Dis­crete Con­tin. Dyn. Syst. 33 : 2 (2013), pp. 579–​597. MR 2975125 Zbl 1291.​37024 article

[74] R. F. Wil­li­ams: “Anosov and ex­pand­ing at­tract­ors,” Sci. China, Math. 63 : 9 (2020), pp. 1929–​1934. MR 4145925 Zbl 1451.​37032 article