Celebratio Mathematica

Robert Fones Williams

An Autobiography

Filter the Bibliography List

clear

R. F. Wil­li­ams: “A note on un­stable homeo­morph­isms,” Proc. Am. Math. Soc. 6 : 2 (1955), pp. 308–​309. MR 68211 Zbl 0067.​15402 article

R. F. Wil­li­ams: “Loc­al prop­er­ties of open map­pings,” Duke Math. J. 22 : 3 (September 1955), pp. 339–​346. MR 75580 Zbl 0065.​38201 article

R. F. Wil­li­ams: “Re­duc­tion of open map­pings,” Proc. Am. Math. Soc. 7 : 2 (1956), pp. 312–​318. This is based on the au­thor’s 1954 PhD thes­is. MR 77112 Zbl 0073.​17901 article

R. F. Wil­li­ams: “The ef­fect of maps upon the di­men­sion of sub­sets of the do­main space,” Proc. Am. Math. Soc. 8 : 3 (1957), pp. 580–​583. MR 87920 Zbl 0079.​38801 article

R. F. Wil­li­ams: “Loc­al con­trac­tions and the size of a com­pact met­ric space,” Duke Math. J. 26 : 2 (June 1959), pp. 277–​289. MR 105074 Zbl 0085.​17002 article

R. F. Wil­li­ams: “Le­besgue area of maps from Haus­dorff spaces,” Acta Math. 102 : 1–​2 (1959), pp. 33–​46. MR 110785 Zbl 0144.​30001 article

R. F. Wil­li­ams: “Le­besgue area zero, di­men­sion and fine cyc­lic ele­ments,” Riv. Mat. Univ. Parma 10 (1959), pp. 131–​143. MR 140663 Zbl 0107.​27501 article

F. Ray­mond and R. F. Wil­li­ams: “Ex­amples of \( p \)-ad­ic trans­form­a­tion groups,” Bull. Am. Math. Soc. 66 : 5 (1960), pp. 392–​394. Full de­scrip­tions of these ex­amples are giv­en in an art­icle pub­lished in Ann. Math. 78:1 (1963). MR 123634 Zbl 0096.​17202 article

G. E. Bredon, F. Ray­mond, and R. F. Wil­li­ams: “\( p \)-ad­ic groups of trans­form­a­tions,” Trans. Am. Math. Soc. 99 : 3 (1961), pp. 488–​498. MR 142682 Zbl 0109.​15901 article

R. F. Wil­li­ams: “One-di­men­sion­al non-wan­der­ing sets,” To­po­logy 6 : 4 (November 1967), pp. 473–​487. MR 217808 Zbl 0159.​53702 article

R. F. Wil­li­ams: “The zeta func­tion of an at­tract­or,” pp. 155–​161 in Con­fer­ence on the to­po­logy of man­i­folds (East Lans­ing, MI, 15–17 March 1967). Edi­ted by J. G. Hock­ing. Com­ple­ment­ary Series in Math­em­at­ics 13. Prindle, Weber & Schmidt (Bo­ston), 1968. MR 235573 Zbl 0179.​51902 incollection

M. Shub and R. F. Wil­li­ams: “Fu­ture sta­bil­ity is not gen­er­ic,” Proc. Am. Math. Soc. 22 : 2 (1969), pp. 483–​484. MR 242193 Zbl 0181.​51402 article

R. F. Wil­li­ams: “Clas­si­fic­a­tion of one di­men­sion­al at­tract­ors,” pp. 341–​361 in Glob­al ana­lys­is (Berke­ley, CA, 1–26 Ju­ly 1968). Edi­ted by S.-S. Chern and S. Smale. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 14. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1970. MR 266227 Zbl 0213.​50401 incollection

R. F. Wil­li­ams: “The struc­ture of at­tract­ors,” pp. 947–​951 in Act­es du Con­grès In­ter­na­tion­al des Mathématiciens [Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians] (Nice, France, 1–10 Septem­ber 1970), vol. 2. Gau­th­i­er-Vil­lars (Par­is), 1971. MR 650645 Zbl 0228.​58008 incollection

R. F. Wil­li­ams: “Com­pos­i­tion of con­trac­tions,” Bol. Soc. Brasil. Mat. 2 : 2 (1971), pp. 55–​59. MR 367962 Zbl 0335.​54026 article

R. C. Robin­son and R. F. Wil­li­ams: “Fi­nite sta­bil­ity is not gen­er­ic,” pp. 451–​462 in Dy­nam­ic­al sys­tems (Sal­vador, Brazil, 26 Ju­ly–14 Au­gust 1971). Edi­ted by M. M. Peix­oto. Aca­dem­ic Press (New York), 1973. MR 331430 Zbl 0305.​58009 incollection

R. F. Wil­li­ams: “Clas­si­fic­a­tion of sub­shifts of fi­nite type,” Ann. Math. (2) 98 : 1 (July 1973), pp. 120–​153. Er­rata were pub­lished in Ann. Math. 99:2 (1974). MR 331436 Zbl 0282.​58008 article

R. F. Wil­li­ams: “Ex­pand­ing at­tract­ors,” Inst. Hautes Études Sci. Publ. Math. 43 (1974), pp. 169–​203. MR 348794 Zbl 0279.​58013 article

M. Shub and R. F. Wil­li­ams: “En­tropy and sta­bil­ity,” To­po­logy 14 : 4 (November 1975), pp. 329–​338. MR 415680 Zbl 0329.​58010 article

S. Smale and R. F. Wil­li­ams: “The qual­it­at­ive ana­lys­is of a dif­fer­ence equa­tion of pop­u­la­tion growth,” J. Math. Biol. 3 : 1 (1976), pp. 1–​4. MR 414147 Zbl 0342.​92014 article

D. Sul­li­van and R. F. Wil­li­ams: “On the ho­mo­logy of at­tract­ors,” To­po­logy 15 : 3 (1976), pp. 259–​262. MR 413185 Zbl 0332.​58011 article

C. Robin­son and R. Wil­li­ams: “Clas­si­fic­a­tion of ex­pand­ing at­tract­ors: An ex­ample,” To­po­logy 15 : 4 (1976), pp. 321–​323. MR 415682 Zbl 0338.​58013 article

R. F. Wil­li­ams: “The struc­ture of Lorenz at­tract­ors,” pp. 94–​112 in Tur­bu­lence sem­in­ar (Berke­ley, CA, 1976–1977). Edi­ted by P. Bern­ard and T. Ra­tiu. Lec­ture Notes in Math­em­at­ics 615. Spring­er (Ber­lin), 1977. Lec­ture VII. With ap­pendix “Com­puter pic­tures of the Lorenz at­tract­or.”. This ap­pears to have been ad­ap­ted for an art­icle pub­lished in Inst. Hautes Études Sci. Publ. Math. 50 (1979). MR 461581 Zbl 0363.​58005 incollection

W. Parry and R. F. Wil­li­ams: “Block cod­ing and a zeta func­tion for fi­nite Markov chains,” Proc. Lon­don Math. Soc. (3) 35 : 3 (1977), pp. 483–​495. MR 466490 Zbl 0383.​94011 article

J. Guck­en­heimer and R. F. Wil­li­ams: “Struc­tur­al sta­bil­ity of Lorenz at­tract­ors,” Inst. Hautes Études Sci. Publ. Math. 50 (1979), pp. 59–​72. Ded­ic­ated to the memory of Ru­fus Bowen. MR 556582 Zbl 0436.​58018 article

R. F. Wil­li­ams: “The struc­ture of Lorenz at­tract­ors,” Inst. Hautes Études Sci. Publ. Math. 50 (1979), pp. 73–​99. Ded­ic­ated to the memory of Ru­fus Bowen. Seem­ingly based on a lec­ture pub­lished in Tur­bu­lence sem­in­ar (1977). MR 556583 Zbl 0484.​58021 article

J. Franks and B. Wil­li­ams: “An­om­al­ous Anosov flows,” pp. 158–​174 in Glob­al the­ory of dy­nam­ic­al sys­tems (Evan­ston, IL, 18–22 June 1979). Edi­ted by Z. Nitecki and C. Robin­son. Lec­ture Notes in Math­em­at­ics 819. Spring­er, 1980. MR 591182 Zbl 0463.​58021 incollection

J. S. Birman and R. F. Wil­li­ams: “Knot­ted peri­od­ic or­bits in dy­nam­ic­al sys­tems, I: Lorenz’s equa­tions,” To­po­logy 22 : 1 (1983), pp. 47–​82. Part II was pub­lished in Low-di­men­sion­al to­po­logy (1983). MR 682059 Zbl 0507.​58038 article

J. S. Birman and R. F. Wil­li­ams: “Knot­ted peri­od­ic or­bits in dy­nam­ic­al sys­tem, II: Knot hold­ers for fibered knots,” pp. 1–​60 in Low-di­men­sion­al to­po­logy. Edi­ted by S. J. Lomonaco\( Jr. \). Con­tem­por­ary Math­em­at­ics 20. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1983. Part I was pub­lished in To­po­logy 22:1 (1983). MR 718132 Zbl 0526.​58043 incollection

R. F. Wil­li­ams: “Lorenz knots are prime,” Er­god­ic The­ory Dy­nam. Sys­tems 4 : 1 (March 1984), pp. 147–​163. MR 758900 Zbl 0595.​58037 article

J. Franks and R. F. Wil­li­ams: “En­tropy and knots,” Trans. Am. Math. Soc. 291 : 1 (1985), pp. 241–​253. MR 797057 Zbl 0587.​58038 article

P. Holmes and R. F. Wil­li­ams: “Knot­ted peri­od­ic or­bits in sus­pen­sions of Smale’s horse­shoe: Tor­us knots and bi­furc­a­tion se­quences,” Arch. Ra­tion­al Mech. Anal. 90 : 2 (1985), pp. 115–​194. MR 798342 Zbl 0593.​58027 article

J. Franks and R. F. Wil­li­ams: “Braids and the Jones poly­no­mi­al,” Trans. Amer. Math. Soc. 303 : 1 (1987), pp. 97–​108. MR 896009 Zbl 0647.​57002 article

R. F. Wil­li­ams: “The Pen­rose, Am­mann and DA tiling spaces are Can­tor set fiber bundles,” Er­god­ic The­ory Dy­nam. Sys­tems 21 : 6 (2001), pp. 1883–​1901. MR 1869076 Zbl 1080.​37012 article

L. Sadun and R. F. Wil­li­ams: “Tiling spaces are Can­tor set fiber bundles,” Er­god­ic The­ory Dy­nam. Sys­tems 23 : 1 (February 2003), pp. 307–​316. MR 1971208 Zbl 1038.​37014 article

M. Barge and R. Wil­li­ams: Asymp­tot­ic struc­tures in Pen­rose, Tübin­gen and oc­ta­gon tilings, 2012. Con­fer­ence pa­per. misc