Celebratio Mathematica

Marc Yor

Complete Bibliography

Works connected to Miklós Csörgő

Filter the Bibliography List

clear

Y. Hu and M. Yor: “Con­ver­gence in law and con­ver­gence of mo­ments: An ex­ample re­lated to Bessel pro­cesses,” pp. 387–​397 in Asymp­tot­ic meth­ods in prob­ab­il­ity and stat­ist­ics (Ot­t­awa, ON, 8–13 Ju­ly 1997). Edi­ted by B. Szyszkow­icz. North-Hol­land/El­sevi­er (Am­s­ter­dam), 1998. A volume in hon­our of Miklós Csörgő. MR 1661495 Zbl 0933.​60021 incollection

M. Csör­gő, Z. Shi, and M. Yor: “Some asymp­tot­ic prop­er­ties of the loc­al time of the uni­form em­pir­ic­al pro­cess,” Bernoulli 5 : 6 (1999), pp. 1035–​1058. MR 1735784 Zbl 0960.​60023 article

E. Csáki, Z. Shi, and M. Yor: “Frac­tion­al Browni­an mo­tions as ‘high­er-or­der’ frac­tion­al de­riv­at­ives of Browni­an loc­al times,” pp. 365–​387 in Lim­it the­or­ems in prob­ab­il­ity and stat­ist­ics: Fourth Hun­gari­an col­loqui­um on lim­it the­or­ems in prob­ab­il­ity and stat­ist­ics (Balaton­lelle, Hun­gary, 28 June–2 Ju­ly 1999), vol. 1. Edi­ted by I. Berkes, E. Csáki, and M. Csör­gő. János Bolyai Math­em­at­ic­al So­ci­ety (Bud­apest), 2002. Ded­ic­ated to Pál Révész on the oc­ca­sion of his 65th birth­day. MR 1979974 Zbl 1030.​60073 incollection

G. Pec­cati and M. Yor: “Hardy’s in­equal­ity in \( L^2([0,1]) \) and prin­cip­al val­ues of Browni­an loc­al times,” pp. 49–​74 in Asymp­tot­ic meth­ods in stochastics: Fest­s­chrift for Miklós Csörgő (Ot­t­awa, 23–25 May 2002). Edi­ted by L. Hor­várth and B. Szyszkow­icz. Fields In­sti­tute Com­mu­nic­a­tions 44. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2004. MR 2106848 Zbl 1074.​60029 incollection

G. Pec­cati and M. Yor: “Four lim­it the­or­ems for quad­rat­ic func­tion­als of Browni­an mo­tion and Browni­an bridge,” pp. 75–​87 in Asymp­tot­ic meth­ods in stochastics: Fest­s­chrift for Miklós Csörgő (Ot­t­awa, 23–25 May 2002). Edi­ted by L. Hor­várth and B. Szyszkow­icz. Fields In­sti­tute Com­mu­nic­a­tions 44. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2004. MR 2106849 Zbl 1071.​60017 incollection

F. Hirsch, B. Roynette, and M. Yor: “Keller­er’s the­or­em re­vis­ited,” pp. 347–​363 in Asymp­tot­ic laws and meth­ods in stochastics: A volume in hon­our of Miklós Csörgő on the oc­ca­sion of his 80th birth­day (Ot­t­awa, 3–6 Ju­ly 2012). Edi­ted by D. Dawson, R. Ku­lik, M. Ould Haye, B. Szyszkow­icz, and Y. Zhao. Fields In­sti­tute Com­mu­nic­a­tions 76. Fields In­sti­tute (Toronto), 2015. MR 3409839 Zbl 1368.​60045 incollection