R. Salem and A. Zygmund :
“Lacunary power series and Peano curves ,”
Duke Math. J.
12 : 4
(1945 ),
pp. 569–578 .
MR
0015154
Zbl
0060.20402
article
People
BibTeX
@article {key0015154m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {Lacunary power series and {P}eano curves},
JOURNAL = {Duke Math. J.},
FJOURNAL = {Duke Mathematical Journal},
VOLUME = {12},
NUMBER = {4},
YEAR = {1945},
PAGES = {569--578},
DOI = {10.1215/S0012-7094-45-01251-8},
NOTE = {MR:0015154. Zbl:0060.20402.},
ISSN = {0012-7094},
}
R. Salem and A. Zygmund :
“Capacity of sets and Fourier series ,”
Trans. Am. Math. Soc.
59 : 1
(1946 ),
pp. 23–41 .
MR
0015537
Zbl
0060.18511
article
Abstract
People
BibTeX
In [1939] A. Beurling proved that if the series
\[ \sum n(a_n^2 + b_n^2) \]
converges then the points of divergence of the Fourier series
\[ a_0/2 + \sum_1^{\infty}a_n\cos nx + b_n\sin nx \]
form a set of logarithmic capacity zero. In the same paper, he stated the following result, the proof of which was due to appear, but to our knowledge has not appeared, in the Arkiv für Matematik: if \( 0 < \alpha \leq 1 \) and if the series
\[ \sum n^{\alpha-\epsilon}(a_n^2 + b_n^2) \]
converges for every \( \epsilon > 0 \) , the above Fourier series is summable by Abel’s method except in a set whose \( \beta \) -capacity is zero for every \( \beta > 1 - \alpha \) .
The present paper has its origin in the desire of the authors to find a more direct and simpler proof of Beurling’s results and to extend them. In the course of the work, however, some other theorems of independent interest have been established, and are presented here.
@article {key0015537m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {Capacity of sets and {F}ourier series},
JOURNAL = {Trans. Am. Math. Soc.},
FJOURNAL = {Transactions of the American Mathematical
Society},
VOLUME = {59},
NUMBER = {1},
YEAR = {1946},
PAGES = {23--41},
DOI = {10.1090/S0002-9947-1946-0015537-9},
NOTE = {MR:0015537. Zbl:0060.18511.},
ISSN = {0002-9947},
}
R. Salem and A. Zygmund :
“The approximation by partial sums of Fourier series ,”
Trans. Am. Math. Soc.
59 : 1
(1946 ),
pp. 14–22 .
MR
0015538
Zbl
0060.18510
article
People
BibTeX
@article {key0015538m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {The approximation by partial sums of
{F}ourier series},
JOURNAL = {Trans. Am. Math. Soc.},
FJOURNAL = {Transactions of the American Mathematical
Society},
VOLUME = {59},
NUMBER = {1},
YEAR = {1946},
PAGES = {14--22},
DOI = {10.1090/S0002-9947-1946-0015538-0},
NOTE = {MR:0015538. Zbl:0060.18510.},
ISSN = {0002-9947},
}
R. Salem and A. Zygmund :
“On a theorem of Banach ,”
Proc. Natl. Acad. Sci. U. S. A.
33 : 10
(October 1947 ),
pp. 293–295 .
MR
0021611
Zbl
0029.20801
article
People
BibTeX
@article {key0021611m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {On a theorem of {B}anach},
JOURNAL = {Proc. Natl. Acad. Sci. U. S. A.},
FJOURNAL = {Proceedings of the National Academy
of Sciences of the United States of
America},
VOLUME = {33},
NUMBER = {10},
MONTH = {October},
YEAR = {1947},
PAGES = {293--295},
DOI = {10.1073/pnas.33.10.293},
NOTE = {MR:0021611. Zbl:0029.20801.},
ISSN = {0027-8424},
}
R. Salem and A. Zygmund :
“On lacunary trigonometric series ,”
Proc. Natl. Acad. Sci. U. S. A.
33 : 11
(November 1947 ),
pp. 333–338 .
MR
0022263
Zbl
0029.11902
article
Abstract
People
BibTeX
Let us consider a lacunary trigonometric series
\begin{equation*}\tag{1} \sum_{k=1}^{\infty}(a_k\cos n_kx + b_k\sin n_kx), \end{equation*}
with \( n_{k+1}/n_k > q > 1 \) , and let us confine our attention to the interval \( 0 \leq x \leq 2\pi \) . Let \( S_N(X) \) denote the \( N \) -th partial sum of (1), that is to say the sum of the terms with \( k = 1, 2, \dots \) , \( N \) . Let
\[ C_N = \bigl\{\tfrac{1}{2}(a_1^2 + b_1^2 + \cdots + a_N^2 + b_N^2)\bigr\}^{1/2} .\]
In a recent note [1947], J. Ferrand and R. Fortet considered the behavior of the ratio \( S_N(x)/C_N \) . They stated, without proof, that if \( C_N \to +\infty \) as \( N \to\infty \) , the distribution function of \( S_N(x)/C_N \) tends to the Gaussian distribution with mean value 0 and dispersion 1. Clearly, the result as stated cannot be correct since, if
\[ c_k = (a_k^2 + b_k^2)^{1/2} \]
increases very rapidly, the distribution function tends to that of cosine. Thus some kind of restriction on the \( c_k \) is necessary. (Mr. Erdős informs us that a proof of the result, under the condition \( C_n\to\infty \) , \( c_n = O(1) \) , will be published in a paper written jointly by him, Mlle. Ferrand, Fortet and Kac.) In this note we propose to give a complete solution of the problem.
@article {key0022263m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {On lacunary trigonometric series},
JOURNAL = {Proc. Natl. Acad. Sci. U. S. A.},
FJOURNAL = {Proceedings of the National Academy
of Sciences of the United States of
America},
VOLUME = {33},
NUMBER = {11},
MONTH = {November},
YEAR = {1947},
PAGES = {333--338},
DOI = {10.1073/pnas.33.11.333},
NOTE = {MR:0022263. Zbl:0029.11902.},
ISSN = {0027-8424},
}
R. Salem and A. Zygmund :
“On lacunary trigonometric series, II ,”
Proc. Natl. Acad. Sci. U. S. A.
34 : 2
(February 1948 ),
pp. 54–62 .
MR
002936
Zbl
0029.35601
article
People
BibTeX
@article {key002936m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {On lacunary trigonometric series, {II}},
JOURNAL = {Proc. Natl. Acad. Sci. U. S. A.},
FJOURNAL = {Proceedings of the National Academy
of Sciences of the United States of
America},
VOLUME = {34},
NUMBER = {2},
MONTH = {February},
YEAR = {1948},
PAGES = {54--62},
DOI = {10.1073/pnas.34.2.54},
NOTE = {MR:002936. Zbl:0029.35601.},
ISSN = {0027-8424},
}
M. Kac, R. Salem, and A. Zygmund :
“A gap theorem ,”
Trans. Am. Math. Soc.
63 : 2
(1948 ),
pp. 235–243 .
MR
0023937
Zbl
0032.27402
article
People
BibTeX
@article {key0023937m,
AUTHOR = {Kac, M. and Salem, R. and Zygmund, A.},
TITLE = {A gap theorem},
JOURNAL = {Trans. Am. Math. Soc.},
FJOURNAL = {Transactions of the American Mathematical
Society},
VOLUME = {63},
NUMBER = {2},
YEAR = {1948},
PAGES = {235--243},
DOI = {10.2307/1990431},
NOTE = {MR:0023937. Zbl:0032.27402.},
ISSN = {0002-9947},
}
R. Salem and A. Zygmund :
“A convexity theorem ,”
Proc. Natl. Acad. Sci. U. S. A.
34 : 9
(September 1948 ),
pp. 443–447 .
MR
0027083
Zbl
0034.33501
article
People
BibTeX
@article {key0027083m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {A convexity theorem},
JOURNAL = {Proc. Natl. Acad. Sci. U. S. A.},
FJOURNAL = {Proceedings of the National Academy
of Sciences of the United States of
America},
VOLUME = {34},
NUMBER = {9},
MONTH = {September},
YEAR = {1948},
PAGES = {443--447},
DOI = {10.1073/pnas.34.9.443},
NOTE = {MR:0027083. Zbl:0034.33501.},
ISSN = {0027-8424},
}
R. Salem and A. Zygmund :
“La loi du logarithme itéré pour les séries trigonométriques lacunaires ”
[The law of the iterated logarithm for lacunary trigonometric series ],
Bull. Sci. Math. (2)
74
(1950 ),
pp. 209–224 .
MR
0039828
Zbl
0039.07001
article
People
BibTeX
@article {key0039828m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {La loi du logarithme it\'er\'e pour
les s\'eries trigonom\'etriques lacunaires
[The law of the iterated logarithm for
lacunary trigonometric series]},
JOURNAL = {Bull. Sci. Math. (2)},
FJOURNAL = {Bulletin des Sciences Math\'ematiques.
2e S\'erie},
VOLUME = {74},
YEAR = {1950},
PAGES = {209--224},
NOTE = {MR:0039828. Zbl:0039.07001.},
ISSN = {0007-4497},
}
R. Salem and A. Zygmund :
“Sur les séries trigonométriques dont les coefficients ont des signes aléatoires ”
[On trigonometric series whose coefficients have random signs ],
C. R. Acad. Sci. Paris
236
(1953 ),
pp. 571–573 .
MR
0055478
Zbl
0050.07303
article
People
BibTeX
@article {key0055478m,
AUTHOR = {Salem, Rapha\"el and Zygmund, Antoni},
TITLE = {Sur les s\'eries trigonom\'etriques
dont les coefficients ont des signes
al\'eatoires [On trigonometric series
whose coefficients have random signs]},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'eances
de l'Acad\'emie des Sciences, Paris},
VOLUME = {236},
YEAR = {1953},
PAGES = {571--573},
URL = {http://gallica.bnf.fr/ark:/12148/bpt6k3188h/f571},
NOTE = {MR:0055478. Zbl:0050.07303.},
ISSN = {0001-4036},
}
R. Salem and A. Zygmund :
“Some properties of trigonometric series whose terms have random signs ,”
Acta Math.
91 : 1
(1954 ),
pp. 245–301 .
Dedicated to Professor Hugo Steinhaus for his 65th birthday.
MR
0065679
Zbl
0056.29001
article
Abstract
People
BibTeX
Trigonometric series of the type
\[ \sum_1^{\infty} \phi_n(t)(a_n \cos nx + b_n \sin nx), \]
where \( \{\phi_n(t)\} \) denotes the system of Rademacher functions, have been extensively studied in order to discover properties which belong to “almost all” series, that is to say which are true for almost all values of \( t \) [Paley and Zygmund 1930; 1932]. We propose here to add some new contributions to the theory.
@article {key0065679m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {Some properties of trigonometric series
whose terms have random signs},
JOURNAL = {Acta Math.},
FJOURNAL = {Acta Mathematica},
VOLUME = {91},
NUMBER = {1},
YEAR = {1954},
PAGES = {245--301},
DOI = {10.1007/BF02393433},
NOTE = {Dedicated to Professor Hugo Steinhaus
for his 65th birthday. MR:0065679. Zbl:0056.29001.},
ISSN = {0001-5962},
}
R. Salem and A. Zygmund :
“Sur un théorème de Piatetçki–Shapiro ”
[On a theorem of Piatetçki–Shapiro ],
C. R. Acad. Sci. Paris
240 : part 2
(1955 ),
pp. 2040–2042 .
MR
0071580
Zbl
0065.29702
article
People
BibTeX
@article {key0071580m,
AUTHOR = {Salem, Rapha\"el and Zygmund, Antoni},
TITLE = {Sur un th\'eor\`eme de {P}iatet\c{c}ki--{S}hapiro
[On a theorem of {P}iatet\c{c}ki--{S}hapiro]},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'eances
de l'Acad\'emie des Sciences, Paris},
VOLUME = {240},
NUMBER = {part 2},
YEAR = {1955},
PAGES = {2040--2042},
URL = {http://gallica.bnf.fr/ark:/12148/bpt6k2209n/f549},
NOTE = {MR:0071580. Zbl:0065.29702.},
ISSN = {0001-4036},
}
R. Salem and A. Zygmund :
“Sur les ensembles parfaits dissymétriques à rapport constant ”
[On the asymmetric perfect sets of constant ratio ],
C. R. Acad. Sci. Paris
240 : part 2
(1955 ),
pp. 2281–2283 .
MR
0071581
Zbl
0066.31701
article
People
BibTeX
@article {key0071581m,
AUTHOR = {Salem, Rapha\"el and Zygmund, Antoni},
TITLE = {Sur les ensembles parfaits dissym\'etriques
\`a rapport constant [On the asymmetric
perfect sets of constant ratio]},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'eances
de l'Acad\'emie des Sciences, Paris},
VOLUME = {240},
NUMBER = {part 2},
YEAR = {1955},
PAGES = {2281--2283},
URL = {http://gallica.bnf.fr/ark:/12148/bpt6k2209n/f790},
NOTE = {MR:0071581. Zbl:0066.31701.},
ISSN = {0001-4036},
}
R. Salem and A. Zygmund :
“A note on random trigonometric polynomials ,”
pp. 243–246
in
Proceedings of the third Berkeley symposium on mathematical statistics and probability
(Berkeley, CA, 26–31 December 1954 and July–August 1955 ),
vol. 2 .
Edited by J. Neyman .
University of California Press (Berkeley and Los Angeles ),
1956 .
MR
0084622
Zbl
0071.28401
incollection
People
BibTeX
@incollection {key0084622m,
AUTHOR = {Salem, R. and Zygmund, A.},
TITLE = {A note on random trigonometric polynomials},
BOOKTITLE = {Proceedings of the third {B}erkeley
symposium on mathematical statistics
and probability},
EDITOR = {Neyman, Jerzy},
VOLUME = {2},
PUBLISHER = {University of California Press},
ADDRESS = {Berkeley and Los Angeles},
YEAR = {1956},
PAGES = {243--246},
NOTE = {(Berkeley, CA, 26--31 December 1954
and July--August 1955). MR:0084622.
Zbl:0071.28401.},
}