return

Celebratio Mathematica

Georgia Benkart

Complete Bibliography

[1] M. Ben­k­art, Geor­gia: In­ner ideals and the struc­ture of Lie al­geb­ras. Ph.D. thesis, Yale Uni­versity, 1974. Ad­vised by N. Jac­ob­son. MR 2625003 phdthesis

[2] G. Ben­k­art: “The Lie in­ner ideal struc­ture of as­so­ci­at­ive rings,” J. Al­gebra 43 : 2 (December 1976), pp. 561–​584. MR 435149 Zbl 0342.​16009 article

[3] G. M. Ben­k­art and I. M. Isaacs: “On the ex­ist­ence of ad-nil­po­tent ele­ments,” Proc. Am. Math. Soc. 63 : 1 (1977), pp. 39–​40. MR 432721 Zbl 0359.​17008 article

[4] G. Ben­k­art: “On in­ner ideals and ad-nil­po­tent ele­ments of Lie al­geb­ras,” Trans. Am. Math. Soc. 232 (1977), pp. 61–​81. MR 466242 Zbl 0373.​17003 article

[5] G. M. Ben­k­art, I. M. Isaacs, and J. M. Os­born: “Lie al­geb­ras with self-cent­ral­iz­ing ad-nil­po­tent ele­ments,” J. Al­gebra 57 : 2 (April 1979), pp. 279–​309. MR 533800 Zbl 0402.​17013 article

[6] G. M. Ben­k­art, I. M. Isaacs, and J. M. Os­born: “Al­bert–Zassen­haus Lie al­geb­ras and iso­morph­isms,” J. Al­gebra 57 : 2 (April 1979), pp. 310–​338. MR 533801 Zbl 0402.​17014 article

[7] G. M. Ben­k­art and I. M. Isaacs: “Lie al­geb­ras with nil­po­tent cent­ral­izers,” Canad. J. Math. 31 : 5 (1979), pp. 929–​941. MR 546949 Zbl 0373.​17004 article

[8] G. Ben­k­art: “De­riv­a­tions and auto­morph­isms of matrices sym­met­ric re­l­at­ive to a ca­non­ic­al in­vol­u­tion,” J. Al­gebra 62 : 2 (February 1980), pp. 418–​429. To Nath­an Jac­ob­son on his 70th birth­day. MR 563238 Zbl 0424.​17007 article

[9] G. M. Ben­k­art, J. M. Os­born, and D. J. Brit­ten: “Flex­ible Lie-ad­miss­ible al­geb­ras with the solv­able rad­ic­al of \( A^- \) abeli­an and Lie al­geb­ras with nonde­gen­er­ate forms,” Had­ron­ic J. 4 : 2 (1980–1981), pp. 274–​326. MR 613337 Zbl 0456.​17002 article

[10] G. Ben­k­art and J. M. Os­born: “Real di­vi­sion al­geb­ras and oth­er al­geb­ras mo­tiv­ated by phys­ics,” pp. 392–​443 in Pro­ceed­ings of the third work­shop on Lie-ad­miss­ible for­mu­la­tions (4–9 Au­gust 1980, Bo­ston), published as Had­ron­ic J. 4 : 2. Had­ron­ic Press (Non­antum, MA), 1980–1981. MR 613340 Zbl 0456.​17005 incollection

[11] G. Ben­k­art, J. M. Os­born, and D. Brit­ten: “On ap­plic­a­tions of iso­topy to real di­vi­sion al­geb­ras,” pp. 497–​529 in Pro­ceed­ings of the third work­shop on Lie-ad­miss­ible for­mu­la­tions (4–9 Au­gust 1980, Bo­ston), published as Had­ron­ic J. 4 : 2. Had­ron­ic Press (Non­antum, MA), 1980–1981. MR 613342 Zbl 0451.​17002 incollection

[12] G. M. Ben­k­art and J. M. Os­born: “De­riv­a­tions and auto­morph­isms of nonas­so­ci­at­ive mat­rix al­geb­ras,” Trans. Am. Math. Soc. 263 : 2 (1981), pp. 411–​430. MR 594417 Zbl 0453.​16020 article

[13] G. M. Ben­k­art and J. M. Os­born: “Flex­ible Lie-ad­miss­ible al­geb­ras,” J. Al­gebra 71 : 1 (July 1981), pp. 11–​31. MR 627422 Zbl 0467.​17001 article

[14] G. M. Ben­k­art and J. M. Os­born: “The de­riv­a­tion al­gebra of a real di­vi­sion al­gebra,” Am. J. Math. 103 : 6 (December 1981), pp. 1135–​1150. MR 636955 Zbl 0474.​17002 article

[15] G. M. Ben­k­art and J. M. Os­born: “An in­vest­ig­a­tion of real di­vi­sion al­geb­ras us­ing de­riv­a­tions,” Pa­cific J. Math. 96 : 2 (1981), pp. 265–​300. MR 637973 Zbl 0474.​17003 article

[16] G. M. Ben­k­art: “The con­struc­tion of ex­amples of Lie-ad­miss­ible al­geb­ras,” pp. 461–​493 in Pro­ceed­ings of the first in­ter­na­tion­al con­fer­ence on non­po­ten­tial in­ter­ac­tions and their Lie-ad­miss­ible treat­ment (5–9 Janu­ary 1982, Orléans, France), published as Had­ron­ic J. 5 : 5. Had­ron­ic Press (Non­antum, MA), 1981–1982. MR 659292 Zbl 0481.​17009 incollection

[17] G. M. Ben­k­art and J. M. Os­born: “Power-as­so­ci­at­ive products on matrices,” pp. 1859–​1892 in Pro­ceed­ings of the first in­ter­na­tion­al con­fer­ence on non­po­ten­tial in­ter­ac­tions and their Lie-ad­miss­ible treat­ment (5–9 Janu­ary 1982, Orléans, France), published as Had­ron­ic J. 5 : 5. Had­ron­ic Press (Non­antum, MA), 1981–1982. MR 683312 Zbl 0507.​17008 incollection

[18] G. M. Ben­k­art, D. J. Brit­ten, and J. M. Os­born: “Real flex­ible di­vi­sion al­geb­ras,” Canad. J. Math. 34 : 3 (1982), pp. 550–​588. MR 663304 Zbl 0469.​17001 article

[19] G. M. Ben­k­art and J. M. Os­born: “Rep­res­ent­a­tions of rank one Lie al­geb­ras of char­ac­ter­ist­ic \( p \),” pp. 1–​37 in Lie al­geb­ras and re­lated top­ics (29–31 May 1981, New Brun­swick, NJ). Edi­ted by D. Winter. Lec­ture Notes in Math­em­at­ics 933. Spring­er (Ber­lin), 1982. MR 675104 Zbl 0491.​17003 incollection

[20] G. M. Ben­k­art and J. M. Os­born: “On the de­term­in­a­tion of rank one Lie al­geb­ras of prime char­ac­ter­ist­ic,” pp. 263–​265 in Al­geb­ra­ists’ homage: Pa­pers in ring the­ory and re­lated top­ics. Edi­ted by S. A. Amit­sur, D. J. Salt­man, and G. B. Se­lig­man. Con­tem­por­ary Math­em­at­ics 13. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1982. Zbl 0504.​17003 incollection

[21] G. M. Ben­k­art: “Bimod­ules for flex­ible Lie-ad­miss­ible al­geb­ras,” Al­geb­ras Groups Geom. 1 : 1 (1984), pp. 109–​126. MR 744732 Zbl 0535.​17013 article

[22] G. M. Ben­k­art and J. M. Os­born: “Rank one Lie al­geb­ras,” Ann. of Math. (2) 119 : 3 (May 1984), pp. 437–​463. MR 744860 Zbl 0563.​17011 article

[23] G. M. Ben­k­art: “Power-as­so­ci­at­ive Lie-ad­miss­ible al­geb­ras,” J. Al­gebra 90 : 1 (September 1984), pp. 37–​58. MR 757079 Zbl 0542.​17012 article

[24] G. Ben­k­art: “A Kac–Moody bib­li­o­graphy and some re­lated ref­er­ences,” pp. 111–​135 in Lie al­geb­ras and re­lated top­ics (26 June–6 Ju­ly 1984, Wind­sor, ON). Edi­ted by D. J. Brit­ten, F. W. Lemire, and R. V. Moody. CMS Con­fer­ence Pro­ceed­ings 5. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1986. MR 832196 Zbl 0578.​17013 incollection

[25] G. Ben­k­art: “Cartan sub­al­geb­ras in Lie al­geb­ras of Cartan type,” pp. 157–​187 in Lie al­geb­ras and re­lated top­ics (26 June–6 Ju­ly 1984, Wind­sor, ON). Edi­ted by D. J. Brit­ten, F. W. Lemire, and R. V. Moody. CMS Con­fer­ence Pro­ceed­ings 5. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1986. MR 832198 Zbl 0581.​17006 incollection

[26] G. M. Ben­k­art and R. V. Moody: “De­riv­a­tions, cent­ral ex­ten­sions, and af­fine Lie al­geb­ras,” Al­geb­ras Groups Geom. 3 : 4 (1986), pp. 456–​492. MR 901810 Zbl 0619.​17014 article

[27] G. Ben­k­art and J. M. Os­born: “Tor­al rank one Lie al­geb­ras,” J. Al­gebra 115 : 1 (May 1988), pp. 238–​250. MR 937612 Zbl 0644.​17009 article

[28] G. M. Ben­k­art, T. B. Gregory, J. M. Os­born, H. Strade, and R. L. Wilson: “Iso­morph­ism classes of Hamilto­ni­an Lie al­geb­ras,” pp. 42–​57 in Lie al­geb­ras (23–28 Au­gust 1987, Madis­on, WI). Edi­ted by G. Ben­k­art and J. M. Os­born. Lec­ture Notes in Math­em­at­ics 1373. Spring­er (Ber­lin), 1989. MR 1007323 Zbl 0677.​17012 incollection

[29] G. Ben­k­art and T. Gregory: “Graded Lie al­geb­ras with clas­sic­al re­duct­ive null com­pon­ent,” Math. Ann. 285 : 1 (1989), pp. 85–​98. MR 1010192 Zbl 0648.​17005 article

[30] Lie al­geb­ras (23–28 Au­gust 1987, Madis­on, WI). Edi­ted by G. Ben­k­art and J. M. Os­born. Lec­ture Notes in Math­em­at­ics 1373. Spring­er (Ber­lin), 1989. Zbl 0661.​00006 book

[31] G. M. Ben­k­art, D. J. Brit­ten, and F. W. Lemire: Sta­bil­ity in mod­ules for clas­sic­al Lie al­geb­ras — a con­struct­ive ap­proach. Mem­oirs of the Amer­ic­an Math­em­at­ic­al So­ci­ety 430. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1990. MR 1010997 Zbl 0706.​17003 book

[32] G. Ben­k­art: “Simple mod­u­lar Lie al­geb­ras with 1-sec­tions that are clas­sic­al or solv­able,” Comm. Al­gebra 18 : 11 (1990), pp. 3633–​3638. MR 1068610 Zbl 0723.​17019 article

[33] Lie al­geb­ras and re­lated top­ics (22 May–1 June 1988, Madis­on, WI). Edi­ted by G. Ben­k­art and J. M. Os­born. Con­tem­por­ary Math­em­at­ics 110. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1990. MR 1079096 Zbl 0704.​00015 book

[34] G. Ben­k­art: “Par­ti­tions, tableaux, and sta­bil­ity in the rep­res­ent­a­tion the­ory of clas­sic­al Lie al­geb­ras,” pp. 47–​76 in Lie the­ory, dif­fer­en­tial equa­tions and rep­res­ent­a­tion the­ory (1–11 Au­gust 1989, Montreal). Edi­ted by V. Hussin. Pub­lic­a­tions CRM (Montreal), 1990. MR 1121952 Zbl 0735.​17007 incollection

[35] G. Ben­k­art and J. M. Os­born: “Simple Lie al­geb­ras of char­ac­ter­ist­ic \( p \) with de­pend­ent roots,” Trans. Am. Math. Soc. 318 : 2 (April 1990), pp. 783–​807. MR 955488 Zbl 0703.​17009 article

[36] G. Ben­k­art and J. Stroomer: “Tableaux and in­ser­tion schemes for spinor rep­res­ent­a­tions of the or­tho­gon­al Lie al­gebra \( so(2r+1,\mathbb{C}) \),” J. Com­bin. The­ory Ser. A 57 : 2 (July 1991), pp. 211–​237. MR 1111558 Zbl 0747.​17006 article

[37] G. Ben­k­art, D. Brit­ten, and F. Lemire: “Pro­jec­tion maps for tensor products of \( \mathfrak{gl}(r,\mathbb{C}) \)-rep­res­ent­a­tions,” Publ. Res. Inst. Math. Sci. 28 : 6 (1992), pp. 983–​1010. MR 1203757 Zbl 0830.​17004 article

[38] G. Ben­k­art and J. Stroomer: “A com­bin­at­or­i­al mod­el for tensor products of the spin rep­res­ent­a­tion,” pp. 37–​51 in Had­ron­ic mech­an­ics and non­po­ten­tial in­ter­ac­tions (13–17 Au­gust 1990, Ce­dar Falls, IA), part 1: Math­em­at­ics. Edi­ted by H. C. My­ung. Nova Sci­ence Pub­lish­ers, 1992. MR 1269550 Zbl 0813.​17006 incollection

[39] G. Ben­k­art, S.-J. Kang, and K. C. Misra: “Graded Lie al­geb­ras of Kac–Moody type,” Adv. Math. 97 : 2 (February 1993), pp. 154–​190. MR 1201842 Zbl 0854.​17026 article

[40] G. Ben­k­art and C. Lee: “Sta­bil­ity in mod­ules for gen­er­al lin­ear Lie su­per­al­geb­ras,” Nova J. Al­gebra Geom. 2 : 4 (1993), pp. 383–​409. MR 1285098 Zbl 0873.​17003 article

[41] G. Ben­k­art, J. M. Os­born, and H. Strade: “Con­tri­bu­tions to the clas­si­fic­a­tion of simple mod­u­lar Lie al­geb­ras,” Trans. Am. Math. Soc. 341 : 1 (1994), pp. 227–​252. MR 1129435 Zbl 0792.​17016 article

[42] G. Ben­k­art, S.-J. Kang, and K. C. Misra: “In­def­in­ite Kac–Moody al­geb­ras of clas­sic­al type,” Adv. Math. 105 : 1 (April 1994), pp. 76–​110. MR 1275194 Zbl 0824.​17025 article

[43] G. Ben­k­art, M. Chakra­barti, T. Hal­ver­son, R. Le­duc, C. Lee, and J. Stroomer: “Tensor product rep­res­ent­a­tions of gen­er­al lin­ear groups and their con­nec­tions with Brauer al­geb­ras,” J. Al­gebra 166 : 3 (June 1994), pp. 529–​567. For J. Mar­shall Os­born and Louis So­lomon on their 60th birth­days. MR 1280591 Zbl 0815.​20028 article

[44] G. Ben­k­art and S. Kass: “Weight mul­ti­pli­cit­ies for af­fine Kac–Moody al­geb­ras,” pp. 1–​12 in Mod­ern trends in Lie al­gebra rep­res­ent­a­tion the­ory (20–22 May 1993, King­ston, ON). Edi­ted by V. Futorny and D. Pol­lack. Queen’s Pa­pers in Pure and Ap­plied Math­em­at­ics 94. Queen’s Uni­versity (King­ston, ON), 1994. Con­fer­ence held on the oc­ca­sion of Al­bert John Cole­man’s 75th birth­day. MR 1281175 Zbl 0818.​17027 incollection

[45] G. Ben­k­art and E. Zel­man­ov: “Lie al­geb­ras graded by root sys­tems,” pp. 31–​38 in Non-as­so­ci­at­ive al­gebra and its ap­plic­a­tions (12–17 Ju­ly 1993, Oviedo, Spain). Edi­ted by S. González. Math­em­at­ics and its Ap­plic­a­tions 303. Kluwer Aca­dem­ic (Dordrecht), 1994. MR 1338154 Zbl 0826.​17030 incollection

[46] G. Ben­k­art, A. I. Kostrikin, and M. I. Kuznet­sov: “Fi­nite-di­men­sion­al simple Lie al­geb­ras with a nonsin­gu­lar de­riv­a­tion,” J. Al­gebra 171 : 3 (February 1995), pp. 894–​916. MR 1315926 Zbl 0815.​17018 article

[47] G. Ben­k­art, S.-J. Kang, and K. C. Misra: “In­def­in­ite Kac–Moody al­geb­ras of spe­cial lin­ear type,” Pa­cific J. Math. 170 : 2 (October 1995), pp. 379–​404. MR 1363869 Zbl 0857.​17020 article

[48] G. Ben­k­art, A. I. Kostrikin, and M. I. Kuznet­sov: “The simple graded Lie al­geb­ras of char­ac­ter­ist­ic three with clas­sic­al re­duct­ive com­pon­ent \( L_0 \),” Comm. Al­gebra 24 : 1 (1996), pp. 223–​234. MR 1370532 Zbl 0846.​17022 article

[49] G. Ben­k­art: “Com­mut­ing ac­tions — a tale of two groups,” pp. 1–​46 in Lie al­geb­ras and their rep­res­ent­a­tions (23–27 Janu­ary 1995, Seoul). Edi­ted by S.-J. Kang, M.-H. Kim, and I. Lee. Con­tem­por­ary Math­em­at­ics 194. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1996. MR 1395593 Zbl 0874.​17004 incollection

[50] G. Ben­k­art, F. Sot­tile, and J. Stroomer: “Tableau switch­ing: Al­gorithms and ap­plic­a­tions,” J. Com­bin. The­ory Ser. A 76 : 1 (October 1996), pp. 11–​43. MR 1405988 Zbl 0858.​05099 article

[51] G. Ben­k­art and E. Zel­man­ov: “Lie al­geb­ras graded by fi­nite root sys­tems and in­ter­sec­tion mat­rix al­geb­ras,” In­vent. Math. 126 : 1 (1996), pp. 1–​45. MR 1408554 Zbl 0871.​17024 article

[52] G. Ben­k­art, S.-J. Kang, and K. C. Misra: “Weight mul­ti­pli­city poly­no­mi­als for af­fine Kac–Moody al­geb­ras of type \( A^{(1)}_r \),” Com­posi­tio Math. 104 : 2 (1996), pp. 153–​187. MR 1421398 Zbl 0862.​17016 article

[53] G. Ben­k­art, D. Brit­ten, and F. Lemire: “Mod­ules with bounded weight mul­ti­pli­cit­ies for simple Lie al­geb­ras,” Math. Z. 225 : 2 (June 1997), pp. 333–​353. MR 1464935 Zbl 0884.​17004 article

[54] Y. Bahtur­in and G. Ben­k­art: “Highest weight mod­ules for loc­ally fi­nite Lie al­geb­ras,” pp. 1–​31 in Mod­u­lar in­ter­faces (18–20 Fe­bur­ary 1995, River­side, CA). Edi­ted by V. Chari and I. B. Pen­kov. AMS/IP Stud­ies in Ad­vanced Math­em­at­ics 4. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1997. MR 1483900 Zbl 0920.​17011 incollection

[55] G. Ben­k­art, S.-J. Kang, and D. Melville: “Quant­ized en­vel­op­ing al­geb­ras for Borcherds su­per­al­geb­ras,” Trans. Am. Math. Soc. 350 : 8 (1998), pp. 3297–​3319. MR 1451594 Zbl 0913.​17008 article

[56] G. Ben­k­art: “De­riv­a­tions and in­vari­ant forms of Lie al­geb­ras graded by fi­nite root sys­tems,” Canad. J. Math. 50 : 2 (1998), pp. 225–​241. MR 1618175 Zbl 0913.​17015 article

[57] G. Ben­k­art, C. L. Shader, and A. Ram: “Tensor product rep­res­ent­a­tions for or­thosym­plect­ic Lie su­per­al­geb­ras,” J. Pure Ap­pl. Al­gebra 130 : 1 (August 1998), pp. 1–​48. MR 1632811 Zbl 0932.​17008 ArXiv math/​9607232 article

[58] G. Ben­k­art, T. Gregory, and M. I. Kuznet­sov: “On graded Lie al­geb­ras of char­ac­ter­ist­ic three with clas­sic­al re­duct­ive null com­pon­ent,” pp. 149–​164 in The Mon­ster and Lie al­geb­ras (May 1996, Colum­bus, OH). Edi­ted by J. Fer­rar and K. Harada. Ohio State Uni­versity Math­em­at­ic­al Re­search In­sti­tute Pub­lic­a­tions 7. de Gruyter (Ber­lin), 1998. MR 1650657 Zbl 0926.​17016 incollection

[59] G. Ben­k­art and T. Roby: “Down-up al­geb­ras,” J. Al­gebra 209 : 1 (November 1998), pp. 305–​344. An ad­dendum to this art­icle was pub­lished in J. Al­gebra 213:1 (1999). MR 1652138 Zbl 0922.​17006 ArXiv math/​9803159 article

[60] G. Ben­k­art: “Down-up al­geb­ras and Wit­ten’s de­form­a­tions of the uni­ver­sal en­vel­op­ing al­gebra of \( \mathfrak{sl}_2 \),” pp. 29–​45 in Re­cent pro­gress in al­gebra (11–15 Au­gust 1997, Tae­jon, South Korea). Edi­ted by S. G. Hahn, H. C. My­ung, and E. Zel­man­ov. Con­tem­por­ary Math­em­at­ics 224. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1999. MR 1653061 Zbl 0922.​17007 incollection

[61] G. Ben­k­art and T. Roby: “Ad­dendum: ‘Down-up al­geb­ras’,” J. Al­gebra 213 : 1 (1999), pp. 378. Ad­dendum to an art­icle pub­lished in J. Al­gebra 209:1 (1998). MR 1674692 article

[62] G. Ben­k­art, S.-J. Kang, H. Lee, and D.-U. Shin: “The poly­no­mi­al be­ha­vi­or of weight mul­ti­pli­cit­ies for clas­sic­al simple Lie al­geb­ras and clas­sic­al af­fine Kac–Moody al­geb­ras,” pp. 1–​29 in Re­cent de­vel­op­ments in quantum af­fine al­geb­ras and re­lated top­ics (21–24 May 1998, Raleigh, NC). Edi­ted by N. Jing and K. C. Misra. Con­tem­por­ary Math­em­at­ics 248. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1999. MR 1745252 Zbl 0948.​17011 incollection

[63] G. Ben­k­art: “Lie al­geb­ras graded by fi­nite root sys­tems from AD to BC,” pp. 39–​45 in Pro­ceed­ings of the in­ter­na­tion­al con­fer­ence on Jordan struc­tures (June 1997, Málaga, Spain). Edi­ted by A. Cas­tellón Ser­rano, J. A. Cuenca Mira, A. Fernán­dez López, and C. Martín González. Uni­ver­sid­ad de Málaga, 1999. MR 1746560 Zbl 1006.​17501 incollection

[64] G. Ben­k­art and J. M. Pérez-Izquierdo: “A quantum oc­to­nion al­gebra,” Trans. Am. Math. Soc. 352 : 2 (2000), pp. 935–​968. To the memory of Al­berto Izquierdo. MR 1637137 Zbl 0931.​17011 ArXiv math/​9801141 article

[65] G. Ben­k­art, S.-J. Kang, and M. Kashi­wara: “Crys­tal bases for the quantum su­per­al­gebra \( U_q(\mathfrak{gl}(m,n) \),” J. Am. Math. Soc. 13 : 2 (2000), pp. 295–​331. MR 1694051 Zbl 0963.​17010 ArXiv math/​9810092 article

[66] B. Al­lis­on, G. Ben­k­art, and Y. Gao: “Cent­ral ex­ten­sions of Lie al­geb­ras graded by fi­nite root sys­tems,” Math. Ann. 316 : 3 (2000), pp. 499–​527. MR 1752782 Zbl 0989.​17004 article

[67]G. Ben­k­art, I. Ka­plansky, K. Mc­Crim­mon, D. J. Salt­man, and G. B. Se­lig­man: “Nath­an Jac­ob­son (1910–1999),” No­tices Amer. Math. Soc. 47 : 9 (2000), pp. 1061–​1071. MR 1777887 Zbl 1028.​01010

[68] G. Ben­k­art and S.-J. Kang: “Crys­tal bases for quantum su­per­al­geb­ras,” pp. 21–​54 in Com­bin­at­or­i­al meth­ods in rep­res­ent­a­tion the­ory (21–31 Ju­ly and 26 Oc­to­ber–6 Novem­ber 1998, Kyoto). Edi­ted by K. Koike, M. Kashi­wara, S. Okada, I. Terada, and H.-F. Ya­mada. Ad­vanced Stud­ies in Pure Math­em­at­ics 28. Kinok­uniya (Tokyo), 2000. MR 1855589 Zbl 1027.​17009 incollection

[69] G. Ben­k­art, S.-J. Kang, H. Lee, K. C. Misra, and D.-U. Shin: “The poly­no­mi­al be­ha­vi­or of weight mul­ti­pli­cit­ies for the af­fine Kac–Moody al­geb­ras \( A_r^{(1)} \),” Com­posi­tio Math. 126 : 1 (2001), pp. 91–​111. MR 1827864 Zbl 0997.​17013 ArXiv math/​9809026 article

[70] G. Ben­k­art and S. With­er­spoon: “A Hopf struc­ture for down-up al­geb­ras,” Math. Z. 238 : 3 (2001), pp. 523–​553. MR 1869697 Zbl 1006.​16028 article

[71] B. Al­lis­on, G. Ben­k­art, and Y. Gao: Lie al­geb­ras graded by the root sys­tems \( \textrm{BC}_r \), \( r\geq 2 \). Mem­oirs of the Amer­ic­an Math­em­at­ic­al So­ci­ety 751. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provi­cence, RI), 2002. MR 1902499 Zbl 0998.​17031 book

[72] G. Ben­k­art and A. El­duque: “A new con­struc­tion of the Kac Jordan su­per­al­gebra,” Proc. Am. Math. Soc. 130 : 11 (2002), pp. 3209–​3217. To Irving Ka­plansky. MR 1912998 Zbl 1083.​17014 article

[73] G. Ben­k­art and D. Moon: “Tensor product rep­res­ent­a­tions of Tem­per­ley–Lieb al­geb­ras and their cent­ral­izer al­geb­ras,” pp. 151–​166 in Top­ics in Young dia­grams and rep­res­ent­a­tion the­ory (6–9 Novem­ber 2001, Kyoto). Edi­ted by M. Kosuda. Sūrikais­ekiken­kyūsho Kōkyūroku 1262. 2002. Also pub­lished in Com­bin­at­or­i­al and geo­met­ric rep­res­ent­a­tion the­ory (2003). MR 1929395 incollection

[74] G. Ben­k­art and A. El­duque: “Lie su­per­al­geb­ras graded by the root sys­tems \( C(n) \), \( D(m,n) \), \( D(2,1;\alpha) \), \( F(4) \), \( G(3) \),” Canad. Math. Bull. 45 : 4 (2002), pp. 509–​524. To Pro­fess­or Robert Moody with our best wishes on his six­tieth birth­day. MR 1941225 Zbl 1040.​17026 article

[75] G. Ben­k­art and S. Doty: “De­range­ments and tensor powers of ad­joint mod­ules for \( \mathfrak{sl}_n \),” J. Al­geb­ra­ic Com­bin. 16 : 1 (2002), pp. 31–​42. MR 1941983 Zbl 1018.​17003 ArXiv math/​0108106 article

[76] D. Spell­man, G. M. Ben­k­art, A. M. Gagli­one, W. D. Joyn­er, M. E. Kid­well, M. D. Mey­er­son, and W. P. Ward­law: “Prin­cip­al ideals and as­so­ci­ate rings,” JP J. Al­gebra Num­ber The­ory Ap­pl. 2 : 2 (2002), pp. 181–​193. MR 1942384 Zbl 1046.​13004 article

[77] G. Ben­k­art and O. Smirnov: “Lie al­geb­ras graded by the root sys­tem \( \mathrm{BC}_1 \),” J. Lie The­ory 13 : 1 (2003), pp. 91–​132. MR 1958577 Zbl 1015.​17028 article

[78] G. Ben­k­art and D. Moon: “Tensor product rep­res­ent­a­tions of Tem­per­ley–Lieb al­geb­ras and their cent­ral­izer al­geb­ras,” pp. 31–​49 in Com­bin­at­or­i­al and geo­met­ric rep­res­ent­a­tion the­ory (22–26 Oc­to­ber 2001, Seoul). Edi­ted by S.-J. Kang and K.-H. Lee. Con­tem­por­ary Math­em­at­ics 325. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2003. Also pub­lished in Top­ics in Young dia­grams and rep­res­ent­a­tion the­ory (2002). MR 1988984 Zbl 1031.​17003 incollection

[79] G. Ben­k­art and A. El­duque: “The Tits con­struc­tion and the ex­cep­tion­al simple clas­sic­al Lie su­per­al­geb­ras,” Q. J. Math. 54 : 2 (June 2003), pp. 123–​137. MR 1989868 Zbl 1045.​17002 article

[80] G. Ben­k­art and A. El­duque: “Lie su­per­al­geb­ras graded by the root sys­tem \( A(m,n) \),” J. Lie The­ory 13 : 2 (2003), pp. 387–​400. MR 2003150 Zbl 1030.​17029 ArXiv math/​0202284 article

[81] G. Ben­k­art and A. El­duque: “Lie su­per­al­geb­ras graded by the root sys­tem \( \mathrm{B}(m,n) \),” Se­lecta Math. (N.S.) 9 : 3 (2003), pp. 313–​360. MR 2006571 Zbl 1040.​17027 article

[82] Y. Bahtur­in and G. Ben­k­art: “Some con­struc­tions in the the­ory of loc­ally fi­nite simple Lie al­geb­ras,” J. Lie The­ory 14 : 1 (2004), pp. 243–​270. MR 2040179 Zbl 1138.​17311 article

[83] G. Ben­k­art and S. With­er­spoon: “Rep­res­ent­a­tions of two-para­met­er quantum groups and Schur–Weyl du­al­ity,” pp. 65–​92 in Hopf al­geb­ras (1–3 Feb­ru­ary 2002, Chica­go). Edi­ted by J. Ber­gen, S. Catoiu, and W. Chin. Lec­ture Notes in Pure and Ap­plied Math­em­at­ics 237. Dek­ker (New York), 2004. MR 2051731 Zbl 1048.​16021 ArXiv math/​0108038 incollection

[84] G. Ben­k­art and O. Eng: “Weighted Aztec dia­mond graphs and the Weyl char­ac­ter for­mula,” Elec­tron. J. Com­bin. 11 : 1 (2004). Re­search Pa­per 28, 16 pp. MR 2056080 Zbl 1053.​52025 article

[85] V. Bek­kert, G. Ben­k­art, and V. Futorny: “Weight mod­ules for Weyl al­geb­ras,” pp. 17–​42 in Kac–Moody Lie al­geb­ras and re­lated top­ics (28–31 Janu­ary 2002, Chen­nai, In­dia). Edi­ted by N. Sthanu­moorthy and K. C. Misra. Con­tem­por­ary Math­em­at­ics 343. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2004. MR 2056678 Zbl 1057.​16021 ArXiv math/​0202222 incollection

[86] G. Ben­k­art and S. With­er­spoon: “Re­stric­ted two-para­met­er quantum groups,” pp. 293–​318 in Rep­res­ent­a­tions of fi­nite di­men­sion­al al­geb­ras and re­lated top­ics in Lie the­ory and geo­metry (15 Ju­ly–10 Au­gust 2002, Toronto). Edi­ted by V. Dlab and C. M. Ringel. Fields In­sti­tute Com­mu­nic­a­tions 40. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2004. MR 2057401 Zbl 1048.​16020 incollection

[87] G. Ben­k­art and S. With­er­spoon: “Two-para­met­er quantum groups and Drin­fel’d doubles,” Al­gebr. Rep­res­ent. The­ory 7 : 3 (2004), pp. 261–​286. MR 2070408 Zbl 1113.​16041 ArXiv math/​0011064 article

[88] G. Ben­k­art, A. El­duque, and C. Martínez: “\( A(n,n) \)-graded Lie su­per­al­geb­ras,” J. Reine An­gew. Math. 573 (2004), pp. 139–​156. MR 2084585 Zbl 1059.​17017 ArXiv math/​0309395 article

[89] G. Ben­k­art and P. Ter­wil­li­ger: “Ir­re­du­cible mod­ules for the quantum af­fine al­gebra \( U_q(\widehat{\mathfrak{sl}}_2) \) and its Borel sub­al­gebra,” J. Al­gebra 282 : 1 (2004), pp. 172–​194. MR 2095578 Zbl 1106.​17014 ArXiv math/​0311152 article

[90] G. Ben­k­art and D. Moon: “Tensor product rep­res­ent­a­tions of Tem­per­ley–Lieb al­geb­ras and Cheby­shev poly­no­mi­als,” pp. 57–​80 in Rep­res­ent­a­tions of al­geb­ras and re­lated top­ics (15 Ju­ly–10 Au­gust 2002, Toronto). Edi­ted by R.-O. Buch­weitz and H. Len­z­ing. Fields In­sti­tute Com­mu­nic­a­tions 45. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2005. To Pro­fess­or Vlas­timil Dlab with our best wishes on our sev­en­ti­eth birth­day. MR 2146240 Zbl 1179.​17009 incollection

[91] S. Cho, K.-C. Ha, Y.-O. Kim, and D. Moon: “Key ex­change pro­tocol us­ing mat­rix al­geb­ras and its ana­lys­is,” J. Korean Math. Soc. 42 : 6 (2005), pp. 1287–​1309. MR 2176265 Zbl 1083.​94007 article

[92] G. Ben­k­art and E. Ne­her: “The centroid of ex­ten­ded af­fine and root graded Lie al­geb­ras,” J. Pure Ap­pl. Al­gebra 205 : 1 (April 2006), pp. 117–​145. MR 2193194 Zbl 1163.​17306 ArXiv math/​0502561 article

[93] G. Ben­k­art, X. Xu, and K. Zhao: “Clas­sic­al Lie su­per­al­geb­ras over simple as­so­ci­at­ive al­geb­ras,” Proc. Lon­don Math. Soc. (3) 92 : 3 (May 2006), pp. 581–​600. MR 2223537 Zbl 1129.​17009 article

[94] G. Ben­k­art, S.-J. Kang, and K.-H. Lee: “On the centre of two-para­met­er quantum groups,” Proc. Roy. Soc. Ed­in­burgh Sect. A 136 : 3 (2006), pp. 445–​472. MR 2227803 Zbl 1106.​17013 article

[95] G. Ben­k­art and A. Labra: “Rep­res­ent­a­tions of rank 3 al­geb­ras,” Comm. Al­gebra 34 : 8 (2006), pp. 2867–​2877. MR 2250574 Zbl 1127.​17001 article

[96] Rep­res­ent­a­tions of al­geb­ra­ic groups, quantum groups, and Lie al­geb­ras (11–15 Ju­ly 2004, Snow­bird, UT). Edi­ted by G. Ben­k­art, J. C. Jantzen, Z. Lin, D. K. Na­kano, and B. J. Par­shall. Con­tem­por­ary Math­em­at­ics 413. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2006. MR 2259846 Zbl 1097.​20500 book

[97] G. Ben­k­art, I. Fren­kel, S.-J. Kang, and H. Lee: “Level 1 per­fect crys­tals and path real­iz­a­tions of ba­sic rep­res­ent­a­tions at \( q = 0 \),” Int. Math. Res. Not. 2006 (2006). Art­icle ID 10312, 28 pp. MR 2272099 Zbl 1149.​17016 ArXiv math/​0507114 article

[98] G. Ben­k­art and Y. Yoshii: “Lie \( G \)-tori of sym­plect­ic type,” Q. J. Math. 57 : 4 (December 2006), pp. 425–​448. Ded­ic­ated to Pro­fess­or George Se­lig­man with ad­mir­a­tion. MR 2277593 Zbl 1223.​17022 ArXiv math/​0509183 article

[99] G. Ben­k­art and S. With­er­spoon: “Quantum group ac­tions, twist­ing ele­ments, and de­form­a­tions of al­geb­ras,” J. Pure Ap­pl. Al­gebra 208 : 1 (January 2007), pp. 371–​389. MR 2270011 Zbl 1116.​16035 ArXiv math/​0503310 article

[100] G. Ben­k­art and P. Ter­wil­li­ger: “The uni­ver­sal cent­ral ex­ten­sion of the three-point \( \mathfrak{sl}_2 \) loop al­gebra,” Proc. Am. Math. Soc. 135 : 6 (2007), pp. 1659–​1668. MR 2286073 Zbl 1153.​17008 ArXiv math/​0512422 article

[101] G. Ben­k­art, T. Gregory, and A. Pre­met: The re­cog­ni­tion the­or­em for graded Lie al­geb­ras in prime char­ac­ter­ist­ic. Mem­oirs of the Amer­ic­an Math­em­at­ic­al So­ci­ety 920. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2009. MR 2488391 Zbl 1167.​17004 ArXiv math/​0508373 book

[102] G. Ben­k­art and M. On­drus: “Whit­taker mod­ules for gen­er­al­ized Weyl al­geb­ras,” Rep­res­ent. The­ory 13 (2009), pp. 141–​164. MR 2497458 Zbl 1251.​16020 ArXiv 0803.​3570 article

[103] G. Ben­k­art and A. Fernán­dez López: “The Lie in­ner ideal struc­ture of as­so­ci­at­ive rings re­vis­ited,” Comm. Al­gebra 37 : 11 (2009), pp. 3833–​3850. MR 2573222 Zbl 1210.​16038 article

[104] B. Al­lis­on and G. Ben­k­art: “Unit­ary Lie al­geb­ras and Lie tori of type \( \mathrm{BC}_r \), \( r\geq 3 \),” pp. 1–​47 in Quantum af­fine al­geb­ras, ex­ten­ded af­fine Lie al­geb­ras, and their ap­plic­a­tions (2–7 March 2008, Ban­ff, AB). Edi­ted by Y. Gao, N. Jing, M. Lau, and K. C. Misra. Con­tem­por­ary Math­em­at­ics 506. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2010. MR 2642560 Zbl 1262.​17011 ArXiv 0811.​3263 incollection

[105] G. Ben­k­art, B. Srinivas­an, M. Gray, E. May­cock, and L. Roth­schild: “Alice Turn­er Schafer (1915–2009): re­mem­brances,” No­tices Am. Math. Soc. 57 : 9 (October 2010), pp. 1116–​1119. ed­ited by Anne Leg­gett. MR 2730368 Zbl 1197.​01050 article

[106] G. Ben­k­art, M. Pereira, and S. With­er­spoon: “Yet­ter–Drin­feld mod­ules un­der cocycle twists,” J. Al­gebra 324 : 11 (December 2010), pp. 2990–​3006. To Susan Mont­gomery in hon­or of her dis­tin­guished ca­reer. MR 2732983 Zbl 1223.​16011 ArXiv 0908.​1563 article

[107] G. Ben­k­art and P. Ter­wil­li­ger: “The equit­able basis for \( \mathfrak{sl}_2 \),” Math. Z. 268 : 1–​2 (June 2011), pp. 535–​557. MR 2805446 Zbl 1277.​17013 ArXiv 0810.​2066 article

[108] S. Cho, E.-K. Jung, and D. Moon: “A hive-mod­el proof of the second re­duc­tion for­mula of Lit­tle­wood–Richard­son coef­fi­cients,” Ann. Comb. 15 : 2 (2011), pp. 223–​231. MR 2813512 Zbl 1233.​05210 article

[109] G. Ben­k­art and A. El­duque: “Lie al­geb­ras with pre­scribed \( \mathfrak{sl}_3 \) de­com­pos­i­tion,” Proc. Am. Math. Soc. 140 : 8 (2012), pp. 2627–​2638. MR 2910750 Zbl 1329.​17021 ArXiv 1101.​0489 article

[110] G. Ben­k­art: Mul­ti­para­met­er Weyl al­geb­ras. Pre­print, June 2013. ArXiv 1306.​0485 techreport

[111] V. Bek­kert, G. Ben­k­art, V. Futorny, and I. Kashuba: “New ir­re­du­cible mod­ules for Heis­en­berg and af­fine Lie al­geb­ras,” J. Al­gebra 373 (January 2013), pp. 284–​298. MR 2995027 Zbl 1306.​17009 ArXiv 1107.​0893 article

[112] G. Ben­k­art, S. Madariaga, and J. M. Pérez-Izquierdo: “Hopf al­geb­ras with tri­al­ity,” Trans. Am. Math. Soc. 365 : 2 (2013), pp. 1001–​1023. MR 2995381 Zbl 1278.​16032 ArXiv 1106.​4302 article

[113] G. Ben­k­art and D. Moon: “Planar rook al­geb­ras and tensor rep­res­ent­a­tions of \( \mathfrak{gl}(1|1) \),” Comm. Al­gebra 41 : 7 (2013), pp. 2405–​2416. MR 3169400 Zbl 1269.​05115 ArXiv 1201.​2482 article

[114] G. Ben­k­art, S. A. Lopes, and M. On­drus: “A para­met­ric fam­ily of sub­al­geb­ras of the Weyl al­gebra, II: Ir­re­du­cible mod­ules,” pp. 73–​98 in Re­cent de­vel­op­ments in al­geb­ra­ic and com­bin­at­or­i­al as­pects of rep­res­ent­a­tion the­ory (12–16 Au­gust 2010, Ban­galore, In­dia and 18–20 May 2012, River­side, CA). Edi­ted by V. Chari, J. Green­stein, K. C. Misra, K. N. Raghavan, and S. Viswanath. Con­tem­por­ary Math­em­at­ics 602. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2013. Part I was pub­lished in Trans. Am. Math. Soc. 367:3 (2015). Part III ap­peared as a 2014 pre­print. MR 3203899 Zbl 1308.​16022 ArXiv 1212.​1404 incollection

[115] G. Ben­k­art, T. Hal­ver­son, and N. Har­man: A para­met­ric fam­ily of sub­al­geb­ras of the Weyl al­gebra, III: De­riv­a­tions. Pre­print, October 2014. Part I was pub­lished in Trans. Am. Math. Soc. 367:3 (2015). Part II was pub­lished in Re­cent de­vel­op­ments in al­geb­ra­ic and com­bin­at­or­i­al as­pects of rep­res­ent­a­tion the­ory (2013). ArXiv 1406.​1508 techreport

[116] G. Ben­k­art and T. Hal­ver­son: “Motzkin al­geb­ras,” European J. Com­bin. 36 (February 2014), pp. 473–​502. MR 3131911 Zbl 1284.​05333 ArXiv 1106.​5277 article

[117] G. Ben­k­art, S.-J. Kang, S.-j. Oh, and E. Park: “Con­struc­tion of ir­re­du­cible rep­res­ent­a­tions over Khovan­ov–Lauda–Rouquier al­geb­ras of fi­nite clas­sic­al type,” Int. Math. Res. Not. 2014 : 5 (January 2014), pp. 1312–​1366. In memory of Pro­fess­or Hyo Chul My­ung. MR 3178600 Zbl 1355.​17009 ArXiv 1108.​1048 article

[118] G. Ben­k­art, S. Cho, and D. Moon: “The com­bin­at­or­ics of \( \mathbf{A}_2 \)-webs,” Elec­tron. J. Com­bin. 21 : 2 (2014). Re­search Pa­per 2.25, 33 pages. MR 3210659 Zbl 1300.​05316 ArXiv 1312.​1023 article

[119] G. Ben­k­art, S. A. Lopes, and M. On­drus: “A para­met­ric fam­ily of sub­al­geb­ras of the Weyl al­gebra, I: Struc­ture and auto­morph­isms,” Trans. Am. Math. Soc. 367 : 3 (2015), pp. 1993–​2021. Part II was pub­lished in Re­cent de­vel­op­ments in al­geb­ra­ic and com­bin­at­or­i­al as­pects of rep­res­ent­a­tion the­ory (2013). Part III ap­peared as a 2014 pre­print. MR 3286506 Zbl 1312.​16020 ArXiv 1210.​4631 article

[120] G. Ben­k­art, S. A. Lopes, and M. On­drus: “De­riv­a­tions of a para­met­ric fam­ily of sub­al­geb­ras of the Weyl al­gebra,” J. Al­gebra 424 (February 2015), pp. 46–​97. MR 3293213 Zbl 1312.​16019 article

[121] G. Ben­k­art, M. Dža­monja, J. Roit­man, I. Juhász, W. Fleiss­ner, F. Tall, P. Nyikos, K. Kun­en, and A. Miller: “Memor­ies of Mary El­len Rud­in,” No­tices Am. Math. Soc. 62 : 6 (2015), pp. 617–​629. Co­ordin­at­ing ed­it­ors were Geor­gia Ben­k­art, Mirna Dža­monja and Ju­dith Roit­man. MR 3362445 Zbl 1338.​01028 article

[122] G. Ben­k­art and J. Feld­voss: “Some prob­lems in the rep­res­ent­a­tion the­ory of simple mod­u­lar Lie al­geb­ras,” pp. 207–​228 in Lie al­geb­ras and re­lated top­ics: Work­shop on Lie al­geb­ras, in hon­or of Helmut Strade’s 70th birth­day (22–24 May 2013, Mil­an). Edi­ted by M. Avit­abile, J. Feld­voss, and T. Wei­gel. Con­tem­por­ary Math­em­at­ics 652. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2015. MR 3453057 Zbl 06622485 ArXiv 1503.​06762 incollection

[123] G. Ben­k­art and A. El­duque: Cross products, in­vari­ants, and cent­ral­izers. Pre­print, June 2016. Ded­ic­ated to Efim Zel­man­ov on the oc­ca­sion of his 60th birth­day. ArXiv 1606.​07588 techreport

[124] G. Ben­k­art, T. Hal­ver­son, and N. Har­man: Di­men­sions of ir­re­du­cible mod­ules for par­ti­tion al­geb­ras and tensor power mul­ti­pli­cit­ies for sym­met­ric and al­tern­at­ing groups. Pre­print, May 2016. ArXiv 1605.​06543 techreport

[125] G. Ben­k­art, T. Hal­ver­son, and N. Har­man: Chip fir­ing on Dynkin dia­grams and McKay quivers. Pre­print, February 2016. ArXiv 1601.​06849 techreport

[126] G. Ben­k­art and T. Hal­ver­son: Walks on graphs and their con­nec­tions with tensor in­vari­ants and cent­ral­izer al­geb­ras. Pre­print, October 2016. ArXiv 1610.​07837 techreport

[127] G. Ben­k­art: “Poin­caré series for tensor in­vari­ants and the McKay cor­res­pond­ence,” Adv. Math. 290 (February 2016), pp. 236–​259. MR 3451923 Zbl 1342.​14030 ArXiv 1407.​3997 article

[128] J. M. Barnes, G. Ben­k­art, and T. Hal­ver­son: “McKay cent­ral­izer al­geb­ras,” Proc. Lond. Math. Soc. (3) 112 : 2 (2016), pp. 375–​414. MR 3471253 Zbl 1332.​05147 ArXiv 1312.​5254 article

[129] G. Ben­k­art, N. Guay, J. H. Jung, S.-J. Kang, and S. Wil­cox: “Quantum walled Brauer–Clif­ford su­per­al­geb­ras,” J. Al­gebra 454 (May 2016), pp. 433–​474. MR 3473434 Zbl 1342.​17002 ArXiv 1404.​0443 article

[130] G. Ben­k­art and D. Moon: “A Schur–Weyl du­al­ity ap­proach to walk­ing on cubes,” Ann. Comb. 20 : 3 (2016), pp. 397–​417. MR 3537911 Zbl 1347.​05246 ArXiv 1409.​8154 article

[131] G. Ben­k­art and J. Meinel: “The cen­ter of the af­fine nil­Tem­per­ley–Lieb al­gebra,” Math. Z. 284 : 1–​2 (2016), pp. 413–​439. MR 3545499 Zbl 06642709 ArXiv 1505.​02544 article

[132] G. Ben­k­art, L. Colmen­arejo, P. E. Har­ris, R. Orel­lana, G. Pan­ova, A. Schilling, and M. Yip: A min­imaj-pre­serving crys­tal on ordered multis­et par­ti­tions. Pre­print, July 2017. ArXiv 1707.​08709 techreport

[133] G. Ben­k­art and T. Hal­ver­son: Par­ti­tion al­geb­ras \( \mathrm{P}_k(n) \) with \( 2k > n \) and the fun­da­ment­al the­or­ems of in­vari­ant the­ory for the sym­met­ric group \( \mathrm{S}_n \). Pre­print, July 2017. ArXiv 1707.​01410 techreport

[134] G. Ben­k­art, P. Di­ac­onis, M. W. Liebeck, and P. H. Tiep: “Tensor product Markov chains,” J. Al­gebra 561 (2020), pp. 17–​83. MR 4135538 Zbl 1467.​60054 article

[135] G. Ben­k­art, R. Bisw­al, E. Kirk­man, V. C. Nguy­en, and J. Zhu: “McKay matrices for fi­nite-di­men­sion­al Hopf al­geb­ras,” Canad. J. Math. 74 : 3 (2022), pp. 686–​731. MR 4430927 Zbl 1490.​19001 article

[136] G. Ben­k­art, R. Bisw­al, E. Kirk­man, V. C. Nguy­en, and J. Zhu: “Tensor rep­res­ent­a­tions for the Drin­feld double of the Taft al­gebra,” J. Al­gebra 606 (2022), pp. 764–​797. MR 4432247 Zbl 07541265 article