Celebratio Mathematica

Georgia Benkart

Complete Bibliography

Works connected to Daniel John Britten

Filter the Bibliography List

clear

G. M. Ben­k­art, J. M. Os­born, and D. J. Brit­ten: “Flex­ible Lie-ad­miss­ible al­geb­ras with the solv­able rad­ic­al of \( A^- \) abeli­an and Lie al­geb­ras with nonde­gen­er­ate forms,” Had­ron­ic J. 4 : 2 (1980–1981), pp. 274–​326. MR 613337 Zbl 0456.​17002 article

G. Ben­k­art, J. M. Os­born, and D. Brit­ten: “On ap­plic­a­tions of iso­topy to real di­vi­sion al­geb­ras,” pp. 497–​529 in Pro­ceed­ings of the third work­shop on Lie-ad­miss­ible for­mu­la­tions (4–9 Au­gust 1980, Bo­ston), published as Had­ron­ic J. 4 : 2. Had­ron­ic Press (Non­antum, MA), 1980–1981. MR 613342 Zbl 0451.​17002 incollection

G. M. Ben­k­art, D. J. Brit­ten, and J. M. Os­born: “Real flex­ible di­vi­sion al­geb­ras,” Canad. J. Math. 34 : 3 (1982), pp. 550–​588. MR 663304 Zbl 0469.​17001 article

G. Ben­k­art: “A Kac–Moody bib­li­o­graphy and some re­lated ref­er­ences,” pp. 111–​135 in Lie al­geb­ras and re­lated top­ics (26 June–6 Ju­ly 1984, Wind­sor, ON). Edi­ted by D. J. Brit­ten, F. W. Lemire, and R. V. Moody. CMS Con­fer­ence Pro­ceed­ings 5. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1986. MR 832196 Zbl 0578.​17013 incollection

G. Ben­k­art: “Cartan sub­al­geb­ras in Lie al­geb­ras of Cartan type,” pp. 157–​187 in Lie al­geb­ras and re­lated top­ics (26 June–6 Ju­ly 1984, Wind­sor, ON). Edi­ted by D. J. Brit­ten, F. W. Lemire, and R. V. Moody. CMS Con­fer­ence Pro­ceed­ings 5. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1986. MR 832198 Zbl 0581.​17006 incollection

G. M. Ben­k­art, D. J. Brit­ten, and F. W. Lemire: Sta­bil­ity in mod­ules for clas­sic­al Lie al­geb­ras — a con­struct­ive ap­proach. Mem­oirs of the Amer­ic­an Math­em­at­ic­al So­ci­ety 430. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1990. MR 1010997 Zbl 0706.​17003 book

G. Ben­k­art, D. Brit­ten, and F. Lemire: “Pro­jec­tion maps for tensor products of \( \mathfrak{gl}(r,\mathbb{C}) \)-rep­res­ent­a­tions,” Publ. Res. Inst. Math. Sci. 28 : 6 (1992), pp. 983–​1010. MR 1203757 Zbl 0830.​17004 article

G. Ben­k­art, D. Brit­ten, and F. Lemire: “Mod­ules with bounded weight mul­ti­pli­cit­ies for simple Lie al­geb­ras,” Math. Z. 225 : 2 (June 1997), pp. 333–​353. MR 1464935 Zbl 0884.​17004 article