return

Celebratio Mathematica

Michael H. Freedman

Knots

[1] article M. H. Freed­man: “Planes triply tan­gent to curves with non­van­ish­ing tor­sion,” To­po­logy 19 : 1 (1980), pp. 1–​8. MR 0559472 Zbl 0438.​53001

[2] article M. H. Freed­man: “A sur­gery se­quence in di­men­sion four; the re­la­tions with knot con­cord­ance,” In­vent. Math. 68 : 2 (1982), pp. 195–​226. MR 0666159 Zbl 0504.​57016

[3] article M. H. Freed­man: “A new tech­nique for the link slice prob­lem,” In­vent. Math. 80 : 3 (1985), pp. 453–​465. MR 0791669 Zbl 0569.​57002

[4] article M. H. Freed­man: “A note on to­po­logy and mag­net­ic en­ergy in in­com­press­ible per­fectly con­duct­ing flu­ids,” J. Flu­id Mech. 194 (1988), pp. 549–​551. MR 0988303 Zbl 0676.​76095

[5] article M. H. Freed­man and Z.-X. He: “Factor­ing the log­ar­ithmic spir­al,” In­vent. Math. 92 : 1 (1988), pp. 129–​138. MR 0931207 Zbl 0622.​30011

[6] article M. H. Freed­man and Z.-X. He: “A re­mark on in­her­ent dif­fer­en­ti­ab­il­ity,” Proc. Amer. Math. Soc. 104 : 4 (1988), pp. 1305–​1310. MR 0937012 Zbl 0689.​57021

[7] article M. H. Freed­man: “White­head\( {}_3 \) is a ‘slice’ link,” In­vent. Math. 94 : 1 (1988), pp. 175–​182. MR 0958596 Zbl 0678.​57002

[8] article M. H. Freed­man and Z.-X. He: “Links of tori and the en­ergy of in­com­press­ible flows,” To­po­logy 30 : 2 (1991), pp. 283–​287. MR 1098922 Zbl 0731.​57003

[9] article M. H. Freed­man and Z.-X. He: “Di­ver­gence-free fields: En­ergy and asymp­tot­ic cross­ing num­ber,” Ann. of Math. (2) 134 : 1 (1991), pp. 189–​229. MR 1114611 Zbl 0746.​57011

[10] incollection M. H. Freed­man and Z.-X. He: “Re­search an­nounce­ment on the ‘en­ergy’ of knots,” pp. 219–​222 in To­po­lo­gic­al as­pects of the dy­nam­ics of flu­ids and plas­mas (Uni­versity of Cali­for­nia at Santa Bar­bara, Au­gust–Decem­ber 1991). Edi­ted by H. K. Mof­fatt, G. M. Zaslavas­ky, P. Comte, and M. Tabor. NATO ASI Series E: Ap­plied Sci­ences 218. Kluwer Aca­dem­ic Pub­lish­ers (Dordrecht), 1992. MR 1232232 Zbl 0788.​53004

[11] article S. Bryson, M. H. Freed­man, Z.-X. He, and Z. Wang: “Möbi­us in­vari­ance of knot en­ergy,” Bull. Amer. Math. Soc. (N.S.) 28 : 1 (1993), pp. 99–​103. MR 1168514 Zbl 0776.​57003 ArXiv math/​9301212

[12] article M. H. Freed­man: “Link com­pos­i­tions and the to­po­lo­gic­al slice prob­lem,” To­po­logy 32 : 1 (1993), pp. 145–​156. MR 1204412 Zbl 0782.​57010

[13] article M. H. Freed­man, Z.-X. He, and Z. Wang: “Möbi­us en­ergy of knots and un­knots,” Ann. of Math. (2) 139 : 1 (1994), pp. 1–​50. MR 1259363 Zbl 0817.​57011

[14] article M. H. Freed­man and F. Luo: “Equivari­ant iso­topy of un­knots to round circles,” To­po­logy Ap­pl. 64 : 1 (1995), pp. 59–​74. MR 1339758 Zbl 0830.​53002

[15] article M. H. Freed­man and D. Gabai: “Cov­er­ing a nontam­ing knot by the un­link,” Al­gebr. Geom. To­pol. 7 (2007), pp. 1561–​1578. MR 2366171 Zbl 1158.​57024