Celebratio Mathematica

Michael H. Freedman

Complete Bibliography

Works connected to Kevin Walker

Filter the Bibliography List

clear

article M. H. Freed­man, K. Walk­er, and Z. Wang: “Quantum SU(2) faith­fully de­tects map­ping class groups mod­ulo cen­ter,” Geom. To­pol. 6 (2002), pp. 523–​539. MR 1943758 Zbl 1037.​57024 ArXiv math.​GT/​0209150

article M. Freed­man, C. Nayak, K. Shten­gel, K. Walk­er, and Z. Wang: “A class of P,T-in­vari­ant to­po­lo­gic­al phases of in­ter­act­ing elec­trons,” Ann. Phys­ics 310 : 2 (2004), pp. 428–​492. MR 2044743 Zbl 1057.​81053

article M. H. Freed­man, A. Kit­aev, C. Nayak, J. K. Slinger­land, K. Walk­er, and Z. Wang: “Uni­ver­sal man­i­fold pair­ings and pos­it­iv­ity,” Geom. To­pol. 9 (2005), pp. 2303–​2317. MR 2209373 Zbl 1129.​57035 ArXiv math/​0503054

techreport M. Freed­man, C. Nayak, and K. Walk­er: Tilted in­ter­fer­o­metry real­izes uni­ver­sal quantum com­pu­ta­tion in the Ising TQFT without over­passes. Pre­print, December 2005. ArXiv cond-​mat/​0512072

M. Freed­man, C. Nayak, and K. Walk­er: “To­wards uni­ver­sal to­po­lo­gic­al quantum com­pu­ta­tion in the ν=5/2 frac­tion­al quantum Hall state,” Phys. Rev. B 73 : 24 (2006), pp. 245307.

incollection M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang: “On pic­ture (2+1)-TQFTs,” pp. 19–​106 in To­po­logy and phys­ics (Tianjin, China, 27–31 Ju­ly 2007). Edi­ted by K. Lin, Z. Weng, and W. Zhang. Nankai Tracts in Math­em­at­ics 12. World Sci­entif­ic (Hack­en­sack, NJ), 2008. MR 2503392 Zbl 1168.​81024 ArXiv 0806.​1926

article L. Fidkowski, M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang: “From string nets to nona­beli­ons,” Comm. Math. Phys. 287 : 3 (2009), pp. 805–​827. MR 2486662 Zbl 1196.​82072 ArXiv cond-​mat/​0610583

article D. Calegari, M. H. Freed­man, and K. Walk­er: “Pos­it­iv­ity of the uni­ver­sal pair­ing in 3 di­men­sions,” J. Amer. Math. Soc. 23 : 1 (2010), pp. 107–​188. MR 2552250 Zbl 1201.​57024 ArXiv 0802.​3208

article M. Freed­man, R. Gom­pf, S. Mor­ris­on, and K. Walk­er: “Man and ma­chine think­ing about the smooth 4-di­men­sion­al Poin­caré con­jec­ture,” Quantum To­pol. 1 : 2 (2010), pp. 171–​208. MR 2657647 Zbl 1236.​57043

article M. Freed­man, M. B. Hast­ings, C. Nayak, X.-L. Qi, K. Walk­er, and Z. Wang: “Pro­ject­ive rib­bon per­muta­tion stat­ist­ics: A rem­nant of non-Abeli­an braid­ing in high­er di­men­sions,” Phys. Rev. B 83 : 11 (2011), pp. 115132. ArXiv 1005.​0583