Celebratio Mathematica

Michael H. Freedman

Quantum computing

Works connected to Chetan Nayak

Filter the Bibliography List

clear

techreport M. H. Freed­man, C. Nayak, and K. Shten­gel: Non-Abeli­an to­po­lo­gic­al phases in an ex­ten­ded Hub­bard mod­el. Pre­print, September 2003. ArXiv cond-​mat/​0309120

article M. Freed­man, C. Nayak, K. Shten­gel, K. Walk­er, and Z. Wang: “A class of \( P,T \)-in­vari­ant to­po­lo­gic­al phases of in­ter­act­ing elec­trons,” Ann. Phys­ics 310 : 2 (2004), pp. 428–​492. MR 2044743 Zbl 1057.​81053

M. H. Freed­man, C. Nayak, and K. Shten­gel: “Line of crit­ic­al points in \( 2+1 \) di­men­sions: Quantum crit­ic­al loop gases and non-abeli­an gauge the­ory,” Phys. Rev. Lett. 94 : 14 (2005), pp. 147205.

article D. Das Sarma, M. H. Freed­man, and C. Nayak: “To­po­lo­gic­ally-pro­tec­ted qubits from a pos­sible non-abeli­an frac­tion­al quantum Hall state,” Phys. Rev. Lett. 94 : 6 (2005), pp. 166802. ArXiv cond-​mat/​0412343

M. Freed­man, C. Nayak, and K. Shten­gel: “An ex­ten­ded Hub­bard mod­el with ring ex­change: A route to a non-abeli­an to­po­lo­gic­al phase,” Phys. Rev. Lett. 94 : 6 (2005), pp. 066401.

techreport M. Freed­man, C. Nayak, and K. Walk­er: Tilted in­ter­fer­o­metry real­izes uni­ver­sal quantum com­pu­ta­tion in the Ising TQFT without over­passes. Pre­print, December 2005. ArXiv cond-​mat/​0512072

M. Freed­man, C. Nayak, and K. Walk­er: “To­wards uni­ver­sal to­po­lo­gic­al quantum com­pu­ta­tion in the \( \nu=5/2 \) frac­tion­al quantum Hall state,” Phys. Rev. B 73 : 24 (2006), pp. 245307.

M. Freed­man, S. Das Sarma, and C. Nayak: “To­po­lo­gic­al quantum com­pu­ta­tion,” Phys­ics Today 59 : 7 (July 2006), pp. 32–​38.

article P. Bon­der­son, M. Freed­man, and C. Nayak: “Meas­ure­ment-only to­po­lo­gic­al quantum com­pu­ta­tion,” Phys. Rev. Lett. 101 : 1 (2008), pp. 010501. MR 2429542 Zbl 1228.​81121 ArXiv 0802.​0279

article C. Nayak, S. H. Si­mon, A. Stern, M. Freed­man, and S. Das Sarma: “Non-abeli­an any­ons and to­po­lo­gic­al quantum com­pu­ta­tion,” Rev. Mod­ern Phys. 80 : 3 (2008), pp. 1083–​1159. MR 2443722 Zbl 1205.​81062 ArXiv 0707.​1889

M. Freed­man, C. Nayak, and K. Shten­gel: “Lieb–Schultz–Mat­tis the­or­em for qua­s­ito­po­lo­gic­al sys­tems,” Phys. Rev. B 78 (2008), pp. 174411.

incollection M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang: “On pic­ture \( (2+1) \)-TQFTs,” pp. 19–​106 in To­po­logy and phys­ics (Tianjin, China, 27–31 Ju­ly 2007). Edi­ted by K. Lin, Z. Weng, and W. Zhang. Nankai Tracts in Math­em­at­ics 12. World Sci­entif­ic (Hack­en­sack, NJ), 2008. MR 2503392 Zbl 1168.​81024 ArXiv 0806.​1926

article P. Bon­der­son, M. Freed­man, and C. Nayak: “Meas­ure­ment-only to­po­lo­gic­al quantum com­pu­ta­tion via any­on­ic in­ter­fer­o­metry,” Ann. Phys­ics 324 : 4 (2009), pp. 787–​826. MR 2508474 Zbl 1171.​81004 ArXiv 0808.​1933

article L. Fidkowski, M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang: “From string nets to nona­beli­ons,” Comm. Math. Phys. 287 : 3 (2009), pp. 805–​827. MR 2486662 Zbl 1196.​82072 ArXiv cond-​mat/​0610583

techreport P. Bon­der­son, S. Das Sarma, M. Freed­man, and C. Nayak: A blue­print for a to­po­lo­gic­ally fault-tol­er­ant quantum com­puter. Pre­print, March 2010. ArXiv 1003.​2856

article M. Freed­man, M. B. Hast­ings, C. Nayak, X.-L. Qi, K. Walk­er, and Z. Wang: “Pro­ject­ive rib­bon per­muta­tion stat­ist­ics: A rem­nant of non-Abeli­an braid­ing in high­er di­men­sions,” Phys. Rev. B 83 : 11 (2011), pp. 115132. ArXiv 1005.​0583