Celebratio Mathematica

Walter D. Neumann

A celebration of Walter Neumann

Filter the Bibliography List

clear

D. Eis­en­bud, U. Hirsch, and W. Neu­mann: “Trans­verse fo­li­ations of Seifert bundles and self-homeo­morph­ism of the circle,” Com­ment. Math. Helv. 56 : 4 (1981), pp. 638–​660. MR 656217 Zbl 0516.​57015 article

M. Jankins and W. D. Neu­mann: Lec­tures on Seifert man­i­folds. Bran­de­is Lec­ture Notes 2. Bran­de­is Uni­versity (Waltham, MA), 1983. MR 741334 book

W. D. Neu­mann and D. Za­gi­er: “Volumes of hy­per­bol­ic three-man­i­folds,” To­po­logy 24 : 3 (1985), pp. 307–​332. MR 815482 Zbl 0589.​57015 article

R. Bieri, W. D. Neu­mann, and R. Strebel: “A geo­met­ric in­vari­ant of dis­crete groups,” In­vent. Math. 90 : 3 (1987), pp. 451–​477. MR 914846 Zbl 0642.​57002 article

W. D. Neu­mann and A. W. Re­id: “Am­al­gam­a­tion and the in­vari­ant trace field of a Klein­i­an group,” Math. Proc. Cam­bridge Philos. Soc. 109 : 3 (1991), pp. 509–​515. MR 1094749 Zbl 0728.​57009 article

To­po­logy ’90: Pa­pers from the re­search semester in low-di­men­sion­al to­po­logy held at Ohio State Uni­versity (Colum­bus, OH, Feb­ru­ary–June 1990). Edi­ted by B. Apanasov, W. D. Neu­mann, A. W. Re­id, and L. Sieben­mann. Ohio State Uni­versity Math­em­at­ic­al Re­search In­sti­tute Pub­lic­a­tions 1. de Gruyter (Ber­lin), 1992. MR 1184397 Zbl 0747.​00024 book

W. D. Neu­mann and A. W. Re­id: “Arith­met­ic of hy­per­bol­ic man­i­folds,” pp. 273–​310 in To­po­logy ’90: Pa­pers from the re­search semester in low-di­men­sion­al to­po­logy held at Ohio State Uni­versity (Colum­bus, OH, Feb­ru­ary–June 1990). Edi­ted by B. Apanasov, W. D. Neu­mann, A. W. Re­id, and L. Sieben­mann. Ohio State Uni­versity Math­em­at­ics Re­search In­sti­tute Pub­lic­a­tions 1. de Gruyter (Ber­lin), 1992. MR 1184416 Zbl 0777.​57007 incollection

W. D. Neu­mann and A. W. Re­id: “Notes on Adams’ small volume or­bi­folds,” pp. 311–​314 in To­po­logy ’90: Pa­pers from the re­search semester in low-di­men­sion­al to­po­logy held at Ohio State Uni­versity (Colum­bus, OH, Feb­ru­ary–June 1990). Edi­ted by B. Apanasov, W. D. Neu­mann, A. W. Re­id, and L. Sieben­mann. Ohio State Uni­versity Math­em­at­ics Re­search In­sti­tute Pub­lic­a­tions 1. de Gruyter (Ber­lin), 1992. MR 1184417 Zbl 0773.​57009 incollection

W. D. Neu­mann: “Com­bin­at­or­ics of tri­an­gu­la­tions and the Chern–Si­mons in­vari­ant for hy­per­bol­ic 3-man­i­folds,” pp. 243–​271 in To­po­logy ’90: Pa­pers from the re­search semester in low-di­men­sion­al to­po­logy held at Ohio State Uni­versity (Colum­bus, OH, Feb­ru­ary–June 1990). Edi­ted by B. Apanasov, W. D. Neu­mann, A. W. Re­id, and L. Sieben­mann. Ohio State Uni­versity Math­em­at­ics Re­search In­sti­tute Pub­lic­a­tions 1. de Gruyter (Ber­lin), 1992. MR 1184415 Zbl 0768.​57006 incollection

W. D. Neu­mann and A. W. Re­id: “Ri­gid­ity of cusps in de­form­a­tions of hy­per­bol­ic 3-or­bi­folds,” Math. Ann. 295 : 2 (1993), pp. 223–​237. MR 1202390 Zbl 0813.​57013 article

W. D. Neu­mann and J. Yang: “Ra­tion­al­ity prob­lems for \( K \)-the­ory and Chern–Si­mons in­vari­ants of hy­per­bol­ic 3-man­i­folds,” En­sei­gn. Math. (2) 41 : 3–​4 (1995), pp. 281–​296. MR 1365848 Zbl 0861.​57022 article

W. D. Neu­mann: “Com­men­sur­ab­il­ity and vir­tu­al fibra­tion for graph man­i­folds,” To­po­logy 36 : 2 (1997), pp. 355–​378. MR 1415593 Zbl 0872.​57021 article

W. D. Neu­mann: “Hil­bert’s 3rd prob­lem and in­vari­ants of 3-man­i­folds,” pp. 383–​411 in The Ep­stein birth­day schrift. Edi­ted by I. Riv­in, C. Rourke, and C. Series. Geo­metry and To­po­logy Mono­graphs 1. Geo­metry and To­po­logy Pub­lish­ers (Cov­entry, UK), 1998. Ded­ic­ated to Dav­id Ep­stein on the oc­ca­sion of his 60th birth­day. MR 1668316 Zbl 0902.​57013 ArXiv math/​9712226 incollection

W. D. Neu­mann and J. Yang: “Bloch in­vari­ants of hy­per­bol­ic 3-man­i­folds,” Duke Math. J. 96 : 1 (1999), pp. 29–​59. MR 1663915 Zbl 0943.​57008 ArXiv math/​9712224 article

D. Coulson, O. A. Good­man, C. D. Hodg­son, and W. D. Neu­mann: “Com­put­ing arith­met­ic in­vari­ants of 3-man­i­folds,” Ex­per­i­ment. Math. 9 : 1 (2000), pp. 127–​152. MR 1758805 Zbl 1002.​57044 article

W. D. Neu­mann: “Ex­ten­ded Bloch group and the Chee­ger–Chern–Si­mons class,” Geom. To­pol. 8 : 1 (2004), pp. 413–​474. MR 2033484 Zbl 1053.​57010 ArXiv math/​0307092 article

C. J. Lein­inger, D. B. McReyn­olds, W. D. Neu­mann, and A. W. Re­id: “Length and ei­gen­value equi­val­ence,” Int. Math. Res. Not. 2007 : 24 (2007). Art­icle no. rn­m135, 24 pp. MR 2377017 Zbl 1158.​53032 ArXiv math/​0606343 article

J. A. Behr­stock and W. D. Neu­mann: “Quasi-iso­met­ric clas­si­fic­a­tion of graph man­i­fold groups,” Duke Math. J. 141 : 2 (February 2008), pp. 217–​240. MR 2376814 Zbl 1194.​20045 ArXiv math/​0604042 article

J. A. Behr­stock, T. Januszkiewicz, and W. D. Neu­mann: “Com­men­sur­ab­il­ity and QI clas­si­fic­a­tion of free products of fi­nitely gen­er­ated abeli­an groups,” Proc. Am. Math. Soc. 137 : 3 (2009), pp. 811–​813. MR 2457418 Zbl 1183.​20025 ArXiv 0712.​0569 article

W. D. Neu­mann: “On Leighton’s graph cov­er­ing the­or­em,” Groups Geom. Dyn. 4 : 4 (2010), pp. 863–​872. MR 2727669 Zbl 1210.​05113 ArXiv 0906.​2496 article