Celebratio Mathematica

Walter D. Neumann

Contributions on Lipschitz geometry of complex singularities

Filter the Bibliography List

clear

W. D. Neu­mann: “A cal­cu­lus for plumb­ing ap­plied to the to­po­logy of com­plex sur­face sin­gu­lar­it­ies and de­gen­er­at­ing com­plex curves,” Trans. Am. Math. Soc. 268 : 2 (1981), pp. 299–​344. MR 632532 Zbl 0546.​57002 article

L. Birbrair, A. Fernandes, and W. D. Neu­mann: “Bi-Lipschitz geo­metry of weighted ho­mo­gen­eous sur­face sin­gu­lar­it­ies,” Math. Ann. 342 : 1 (2008), pp. 139–​144. MR 2415318 Zbl 1153.​14003 ArXiv 0704.​2041 article

L. Birbrair, A. Fernandes, and W. D. Neu­mann: “Bi-Lipschitz geo­metry of com­plex sur­face sin­gu­lar­it­ies,” Geom. Ded­icata 139 (2009), pp. 259–​267. MR 2481850 Zbl 1164.​32005 ArXiv 0804.​0194 article

L. Birbrair, A. Fernandes, and W. D. Neu­mann: “Sep­ar­at­ing sets, met­ric tan­gent cone and ap­plic­a­tions for com­plex al­geb­ra­ic germs,” Se­lecta Math. (N.S.) 16 : 3 (2010), pp. 377–​391. MR 2734336 Zbl 1200.​14010 ArXiv 0905.​4312 article

L. Birbrair, A. Fernandes, and W. D. Neu­mann: “On nor­mal em­bed­ding of com­plex al­geb­ra­ic sur­faces,” pp. 17–​22 in Real and com­plex sin­gu­lar­it­ies (São Car­los, Brazil, 27 Ju­ly–2 Au­gust 2008). Edi­ted by M. Manoel, M. C. Romero Fuster, and C. T. C. Wall. Lon­don Math­em­at­ic­al So­ci­ety Lec­ture Note Series 380. Cam­bridge Uni­versity Press, 2010. Ded­ic­ated to our friends Maria (Cid­inha) Ru­as and Terry Gaffney in con­nec­tion to their 60th birth­days. MR 2759086 Zbl 1215.​14057 ArXiv 0901.​0030 incollection

W. D. Neu­mann and A. Pichon: Lipschitz geo­metry of com­plex sur­faces: Ana­lyt­ic in­vari­ants and equisin­gu­lar­ity. Technical report, November 2012. ArXiv 1211.​4897 techreport

L. Birbrair, W. D. Neu­mann, and A. Pichon: “The thick-thin de­com­pos­i­tion and the bilipschitz clas­si­fic­a­tion of nor­mal sur­face sin­gu­lar­it­ies,” Acta Math. 212 : 2 (2014), pp. 199–​256. MR 3207758 Zbl 1303.​14016 ArXiv 1105.​3327 article

W. D. Neu­mann and A. Pichon: “Lipschitz geo­metry of com­plex curves,” J. Sin­gul. 10 (2014), pp. 225–​234. MR 3300297 Zbl 1323.​14003 ArXiv 1302.​1138 article

W. D. Neu­mann, H. M. Ped­er­sen, and A. Pichon: “A char­ac­ter­iz­a­tion of Lipschitz nor­mally em­bed­ded sur­face sin­gu­lar­it­ies,” J. Lond. Math. Soc. (2) 101 : 2 (2020), pp. 612–​640. MR 4093968 Zbl 1441.​14015 ArXiv 1806.​11240 article

W. D. Neu­mann, H. M. Ped­er­sen, and A. Pichon: “Min­im­al sur­face sin­gu­lar­it­ies are Lipschitz nor­mally em­bed­ded,” J. Lond. Math. Soc. (2) 101 : 2 (2020), pp. 641–​658. MR 4093969 Zbl 1441.​14016 ArXiv 1503.​03301 article

In­tro­duc­tion to Lipschitz geo­metry of sin­gu­lar­it­ies (Cuerna­vaca, Mex­ico, 11–22 June 2018). Edi­ted by W. Neu­mann and A. Pichon. Lec­ture Notes in Math­em­at­ics 2280. Spring­er (Cham, Switzer­land), 2020. MR 4200092 Zbl 1456.​58002 book