Celebratio Mathematica

Walter D. Neumann

Hyperbolic 3-manifolds, the Bloch group,
and the work of Walter Neumann

Filter the Bibliography List

clear

W. D. Neu­mann and D. Za­gi­er: “Volumes of hy­per­bol­ic three-man­i­folds,” To­po­logy 24 : 3 (1985), pp. 307–​332. MR 815482 Zbl 0589.​57015 article

W. D. Neu­mann: “Com­bin­at­or­ics of tri­an­gu­la­tions and the Chern–Si­mons in­vari­ant for hy­per­bol­ic 3-man­i­folds,” pp. 243–​271 in To­po­logy ’90: Pa­pers from the re­search semester in low-di­men­sion­al to­po­logy held at Ohio State Uni­versity (Colum­bus, OH, Feb­ru­ary–June 1990). Edi­ted by B. Apanasov, W. D. Neu­mann, A. W. Re­id, and L. Sieben­mann. Ohio State Uni­versity Math­em­at­ics Re­search In­sti­tute Pub­lic­a­tions 1. de Gruyter (Ber­lin), 1992. MR 1184415 Zbl 0768.​57006 incollection

W. D. Neu­mann: “Hil­bert’s 3rd prob­lem and in­vari­ants of 3-man­i­folds,” pp. 383–​411 in The Ep­stein birth­day schrift. Edi­ted by I. Riv­in, C. Rourke, and C. Series. Geo­metry and To­po­logy Mono­graphs 1. Geo­metry and To­po­logy Pub­lish­ers (Cov­entry, UK), 1998. Ded­ic­ated to Dav­id Ep­stein on the oc­ca­sion of his 60th birth­day. MR 1668316 Zbl 0902.​57013 ArXiv math/​9712226 incollection

W. D. Neu­mann: “Ex­ten­ded Bloch group and the Chee­ger–Chern–Si­mons class,” Geom. To­pol. 8 : 1 (2004), pp. 413–​474. MR 2033484 Zbl 1053.​57010 ArXiv math/​0307092 article