return

Celebratio Mathematica

Abigail A. Thompson

Complete Bibliography

[1] A. A. Thompson: Prop­erty \( \mathrm{P} \) for cer­tain classes of knots (genus one, band-con­nect sum). Ph.D. thesis, Rut­gers Uni­versity, 1986. Ad­vised by M. G. Schar­le­mann and J. L. Shaneson. An art­icle based on this dis­ser­ta­tion was pub­lished in To­po­logy 26:2 (1987). MR 2634826 phdthesis

[2] A. Thompson: “Prop­erty \( \mathrm{P} \) for the band-con­nect sum of two knots,” To­po­logy 26 : 2 (1987), pp. 205–​207. Based on the au­thor’s 1986 PhD dis­ser­ta­tion. MR 895572 Zbl 0628.​57005 article

[3] M. Schar­le­mann and A. Thompson: “Find­ing dis­joint Seifert sur­faces,” Bull. Lon­don Math. Soc. 20 : 1 (January 1988), pp. 61–​64. MR 916076 Zbl 0654.​57005 article

[4] M. Schar­le­mann and A. Thompson: “Un­knot­ting num­ber, genus, and com­pan­ion tori,” Math. Ann. 280 : 2 (March 1988), pp. 191–​205. MR 929535 Zbl 0616.​57003 article

[5] M. Schar­le­mann and A. Thompson: “Link genus and the Con­way moves,” Com­ment. Math. Helv. 64 : 4 (1989), pp. 527–​535. MR 1022995 Zbl 0693.​57004 article

[6] J. Hass and A. Thompson: “A ne­ces­sary and suf­fi­cient con­di­tion for a 3-man­i­fold to have Hee­gaard genus one,” Proc. Am. Math. Soc. 107 : 4 (December 1989), pp. 1107–​1110. MR 984792 Zbl 0694.​57006 article

[7] A. Thompson: “Knots with un­knot­ting num­ber one are de­term­ined by their com­ple­ments,” To­po­logy 28 : 2 (1989), pp. 225–​230. MR 1003584 Zbl 0677.​57006 article

[8] W. Menasco and A. Thompson: “Com­press­ing handle­bod­ies with holes,” To­po­logy 28 : 4 (1989), pp. 485–​494. MR 1030989 Zbl 0683.​57004 article

[9] A. Thompson: “Thur­ston norm min­im­iz­ing sur­faces and skein trees for links in \( S^3 \),” Proc. Am. Math. Soc. 106 : 4 (August 1989), pp. 1085–​1090. MR 969321 Zbl 0686.​57004 article

[10] M. Schar­le­mann and A. Thompson: “De­tect­ing un­knot­ted graphs in 3-space,” J. Diff. Geom. 34 : 2 (1991), pp. 539–​560. MR 1131443 Zbl 0751.​05033 article

[11] A. Thompson: “A poly­no­mi­al in­vari­ant of graphs in 3-man­i­folds,” To­po­logy 31 : 3 (July 1992), pp. 657–​665. MR 1174264 Zbl 0773.​57002 article

[12] M. Schar­le­mann and A. Thompson: “Hee­gaard split­tings of \( (\textrm{surface})\times I \) are stand­ard,” Math. Ann. 295 : 3 (1993), pp. 549–​564. MR 1204837 Zbl 0814.​57010 article

[13] M. Schar­le­mann and A. Thompson: “Thin po­s­i­tion and Hee­gaard split­tings of the 3-sphere,” J. Diff. Geom. 39 : 2 (1994), pp. 343–​357. MR 1267894 Zbl 0820.​57005 article

[14] M. Schar­le­mann and A. Thompson: “Thin po­s­i­tion for 3-man­i­folds,” pp. 231–​238 in Geo­met­ric to­po­logy (Haifa, Is­rael, 10–16 June 1992). Edi­ted by C. Gor­don, Y. Mori­ah, and B. Wa­jnryb. Con­tem­por­ary Math­em­at­ics 164. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1994. MR 1282766 Zbl 0818.​57013 incollection

[15] M. Schar­le­mann and A. Thompson: “Push­ing arcs and graphs around in handle­bod­ies,” pp. 163–​171 in Low-di­men­sion­al to­po­logy. Edi­ted by K. Jo­hann­son. Con­fer­ence Pro­ceed­ings and Lec­ture Notes in Geo­metry and To­po­logy 3. In­ter­na­tion­al Press (Cam­bridge, MA), 1994. MR 1316180 Zbl 0868.​57024 incollection

[16] A. Thompson: “Thin po­s­i­tion and the re­cog­ni­tion prob­lem for \( S^3 \),” Math. Res. Lett. 1 : 5 (1994), pp. 613–​630. MR 1295555 Zbl 0849.​57009 article

[17] A. Thompson: “A note on Mur­as­ugi sums,” Pac. J. Math. 163 : 2 (April 1994), pp. 393–​395. MR 1262303 Zbl 0809.​57003 article

[18] A. Thompson: “Book Re­view: G. He­mi­on, ‘The clas­si­fic­a­tion of knots and 3-di­men­sion­al spaces’,” Bull. Am. Math. Soc. 31 : 2 (October 1994), pp. 252–​254. Book by Geof­frey He­mi­on (Ox­ford Univ. Press, 1992). MR 1568144 article

[19] J. Hass and A. Thompson: “Neon bulbs and the un­knot­ting of arcs in man­i­folds,” J. Knot The­or. Ramif. 6 : 2 (April 1997), pp. 235–​242. MR 1452439 Zbl 0886.​57003 article

[20] A. Thompson: “Thin po­s­i­tion and bridge num­ber for knots in the 3-sphere,” To­po­logy 36 : 2 (March 1997), pp. 505–​507. MR 1415602 Zbl 0867.​57009 article

[21] C. Adams, J. Hass, and A. Thompson: How to ace cal­cu­lus: The street­wise guide. W. H. Free­man (New York), 1998. book

[22] A. Thompson: “Al­gorithmic re­cog­ni­tion of 3-man­i­folds,” Bull. Am. Math. Soc. (N.S.) 35 : 1 (1998), pp. 57–​66. MR 1487190 Zbl 0890.​57027 article

[23] A. Thompson: “The dis­joint curve prop­erty and genus 2 man­i­folds,” To­po­logy Ap­pl. 97 : 3 (November 1999), pp. 273–​279. MR 1711418 Zbl 0935.​57022 article

[24] H. Goda, M. Schar­le­mann, and A. Thompson: “Lev­el­ling an un­knot­ting tun­nel,” Geom. To­pol. 4 (2000), pp. 243–​275. MR 1778174 Zbl 0958.​57007 ArXiv math/​9910099 article

[25] C. Adams, J. Hass, and A. Thompson: How to ace the rest of cal­cu­lus: The street­wise guide. W. H. Free­man (New York), 2001. book

[26] M. Schar­le­mann and A. Thompson: “Un­knot­ting tun­nels and Seifert sur­faces,” Proc. Lon­don Math. Soc. (3) 87 : 2 (2003), pp. 523–​544. MR 1990938 Zbl 1047.​57008 ArXiv math/​0010212 article

[27] M. Schar­le­mann and A. Thompson: “Thin­ning genus two Hee­gaard spines in \( S^3 \),” J. Knot The­or. Ramif. 12 : 5 (2003), pp. 683–​708. MR 1999638 Zbl 1048.​57002 article

[28]2003 Sat­ter Prize,” No­tices Am. Math. Soc. 50 : 4 (April 2003), pp. 474–​475. article

[29] M. Schar­le­mann and A. Thompson: “On the ad­dit­iv­ity of knot width,” pp. 135–​144 in Pro­ceed­ings of the Cas­son Fest (Fay­etteville, AR, 10–12 April 2003 and Aus­tin, TX, 19–21 May 2003). Edi­ted by C. Gor­don and Y. Rieck. Geo­metry & To­po­logy Mono­graphs 7. Geo­metry & To­po­logy Pub­lic­a­tions (Cov­entry, UK), 2004. Based on the 28th Uni­versity of Arkan­sas spring lec­ture series in the math­em­at­ic­al sci­ences and a con­fer­ence on the to­po­logy of man­i­folds of di­men­sions 3 and 4. This pa­per was “Ded­ic­ated to An­drew Cas­son, a math­em­atician’s math­em­atician.”. MR 2172481 Zbl 1207.​57016 ArXiv math/​0403326 incollection

[30] M. Schar­le­mann and A. Thompson: “Sur­faces, sub­man­i­folds, and aligned Fox re­imbed­ding in non-Haken 3-man­i­folds,” Proc. Am. Math. Soc. 133 : 6 (2005), pp. 1573–​1580. MR 2120271 Zbl 1071.​57015 ArXiv math/​0308011 article

[31] A. Thompson: “In­vari­ants of curves in \( \mathbb{R}P^2 \) and \( \mathbb{R}^2 \),” Geom. To­pol. 6 (2006), pp. 2175–​2186. MR 2263063 Zbl 1128.​53010 ArXiv math/​0602003 article

[32] J. Hass, J. H. Ru­bin­stein, and A. Thompson: “Knots and \( k \)-width,” Geom. Ded­icata 143 : 7 (December 2009), pp. 7–​18. MR 2576289 Zbl 1189.​57005 ArXiv math/​0604256 article

[33] M. Schar­le­mann and A. A. Thompson: “Sur­gery on a knot in (sur­face \( \times I \)),” Al­gebr. Geom. To­pol. 9 : 3 (2009), pp. 1825–​1835. MR 2550096 Zbl 1197.​57011 ArXiv 0807.​0405 article

[34] J. Hass, A. Thompson, and W. Thur­ston: “Sta­bil­iz­a­tion of Hee­gaard split­tings,” Geom. To­pol. 13 : 4 (2009), pp. 2029–​2050. MR 2507114 Zbl 1177.​57018 ArXiv 0802.​2145 article

[35] M. Schar­le­mann and A. Thompson: Fibered knots and Prop­erty 2R. Pre­print, 2009. ArXiv 0901.​2319 techreport

[36] R. E. Gom­pf, M. Schar­le­mann, and A. Thompson: “Fibered knots and po­ten­tial counter­examples to the prop­erty \( 2{R} \) and slice-rib­bon con­jec­tures,” Geom. To­pol. 14 : 4 (2010), pp. 2305–​2347. MR 2740649 Zbl 1214.​57008 ArXiv 1103.​1601 article

[37] J. Hass and A. Thompson: “Is it knot­ted?,” pp. 129–​135 in Ex­ped­i­tions in math­em­at­ics. Edi­ted by T. Shubin, D. F. Hayes, and G. L. Al­ex­an­der­son. MAA Spec­trum 68. Math­em­at­ic­al As­so­ci­ation of Amer­ica (Wash­ing­ton, DC), 2011. incollection

[38] J. John­son and A. Thompson: “On tun­nel num­ber one knots that are not \( (1,n) \),” J. Knot The­or. Ramif. 20 : 4 (2011), pp. 609–​615. MR 2796230 Zbl 1218.​57008 ArXiv math/​0606226 article

[39] J. H. Ru­bin­stein and A. Thompson: “3-man­i­folds with Hee­gaard split­tings of dis­tance two,” pp. 341–​346 in Geo­metry and to­po­logy down un­der. Edi­ted by C. D. Hodg­son, W. H. Jaco, M. G. Schar­le­mann, and S. Till­man. Con­tem­por­ary Math­em­at­ics 597. Amer­ic­an Math­ema­tial So­ci­ety (Provid­ence, RI), 2013. MR 3186682 incollection

[40] A. Thompson: “Does di­versity trump abil­ity? An ex­ample of the mis­use of math­em­at­ics in the so­cial sci­ences,” No­tices Am. Math. Soc. 61 : 9 (2014), pp. 1024–​1030. MR 3241558 Zbl 1338.​91122 article

[41] A. Thompson: Find­ing geodesics in a tri­an­gu­lated 2-sphere. Pre­print, August 2014. ArXiv 1408.​5949 techreport

[42] A. Thompson: “Tori and Hee­gaard split­tings,” Ill. J. Math. 60 : 1 (2016), pp. 141–​148. MR 3665175 Zbl 1367.​57009 ArXiv 1603.​08154 article

[43] A. Thompson: Dehn sur­gery on com­plic­ated fibered knots in the 3-sphere. Pre­print, 2016. ArXiv 1604.​04902 techreport

[44] J. Hass, A. Thompson, and A. Ts­vi­etkova: “The num­ber of sur­faces of fixed genus in an al­tern­at­ing link com­ple­ment,” Int. Math. Res. Not. 2017 : 6 (March 2017), pp. 1611–​1622. MR 3658176 ArXiv 1508.​03680 article

[45] R. Kirby and A. Thompson: “A new in­vari­ant of 4-man­i­folds,” Proc. Natl. Acad. Sci. USA 115 : 43 (2018), pp. 10857–​10860. MR 3871787 article

[46] R. Kirby and A. Thompson: “Tri­sec­tions and link sur­ger­ies,” New Zea­l­and J. Math. 52 (2021 [2021–2022]), pp. 145–​152. MR 4374440 article

[47] J. Hass, A. Thompson, and A. Ts­vi­etkova: “Al­tern­at­ing links have at most poly­no­mi­ally many Seifert sur­faces of fixed genus,” In­di­ana Univ. Math. J. 70 : 2 (2021), pp. 525–​534. MR 4257618 article

[48] J. Hass, A. Thompson, and A. Ts­vi­etkova: “Tangle de­com­pos­i­tions of al­tern­at­ing link com­ple­ments,” Illinois J. Math. 65 : 3 (2021), pp. 533–​545. MR 4312193 article

[49] J. Hass, A. Thompson, and W. Thur­ston: “Sta­bil­iz­a­tion of Hee­gaard split­tings,” pp. 375–​396 in Col­lec­ted works of Wil­li­am P. Thur­ston with com­ment­ary, II: 3-man­i­folds, com­plex­ity and geo­met­ric group the­ory. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2022. MR 4556478 incollection

[50] J. Mei­er, A. Thompson, and A. Zupan: “Cu­bic graphs in­duced by bridge tri­sec­tions,” Math. Res. Lett. 30 : 4 (2023), pp. 1207–​1231. MR 4728442 article