Celebratio Mathematica

Marc Yor

Complete Bibliography

Works connected to Bernard Roynette

Filter the Bibliography List

clear

M. Grad­inaru, B. Roynette, P. Val­lois, and M. Yor: “Abel trans­form and in­teg­rals of Bessel loc­al times,” Ann. Inst. Henri Poin­caré, Probab. Stat. 35 : 4 (July 1999), pp. 531–​572. MR 1702241 Zbl 0937.​60080 article

M. Grad­inaru, B. Roynette, P. Val­lois, and M. Yor: “The laws of Browni­an loc­al time in­teg­rals,” Com­put. Ap­pl. Math. 18 : 3 (1999), pp. 259–​331. MR 1993869 Zbl 1123.​60065 article

B. De Mey­er, B. Roynette, P. Val­lois, and M. Yor: “Sur l’indépendance d’un temps d’arrêt \( T \) et de la po­s­i­tion \( B_T \) d’un mouvement browni­en \( (B_u \), \( u\geqq 0) \)” [On the in­de­pend­ence of a stop­ping time \( T \) and the po­s­i­tion \( B_T \) of a Browni­an mo­tion \( (B_u \), \( u\geqq 0) \)], C. R. Acad. Sci., Par­is, Sér. I 333 : 11 (December 2001), pp. 1017–​1022. MR 1872465 Zbl 0995.​60077 article

B. Roynette, P. Val­lois, and M. Yor: “A solu­tion to Skorok­hod’s em­bed­ding for lin­ear Browni­an mo­tion and its loc­al time,” Stu­dia Sci. Math. Hung. 39 : 1–​2 (May 2002), pp. 97–​127. MR 1909150 Zbl 1026.​60047 article

B. De Mey­er, B. Roynette, P. Val­lois, and M. Yor: “On in­de­pend­ent times and po­s­i­tions for Browni­an mo­tions,” Rev. Mat. Iberoamer­ic­ana 18 : 3 (2002), pp. 541–​586. MR 1954864 Zbl 1055.​60078 article

B. Roynette, P. Val­lois, and M. Yor: “Lim­it­ing laws as­so­ci­ated with Browni­an mo­tion per­turb­ated by nor­mal­ized ex­po­nen­tial weights,” C. R., Math., Acad. Sci. Par­is 337 : 10 (November 2003), pp. 667–​673. With French sum­mary. MR 2030109 Zbl 1031.​60021 ArXiv math/​0510550 article

J. Ber­toin, B. Roynette, and M. Yor: Some con­nec­tions between (sub)crit­ic­al branch­ing mech­an­isms and Bern­stein func­tions. Pre­print, December 2004. ArXiv math/​0412322 techreport

B. Roynette, P. Val­lois, and M. Yor: Feyn­man–Kac asymp­tot­ics and the cor­res­pond­ing renor­mal­iz­a­tions of the Wien­er meas­ure, February 2004. Sub­mit­ted to Stu­dia Sci. Math. Hun­gar­ica. unpublished

B. Roynette, P. Val­lois, and M. Yor: Ex­amples of \( BM-BES(3) \) con­cat­en­a­tions re­lated to renor­mal­iz­a­tion of Browni­an mo­tion in­duced by its max­im­um and loc­al time pro­cesses, May 2004. unpublished

B. Roynette and M. Yor: “Couples de Wald indéfini­ment di­vis­ibles: Ex­emples liés à la fonc­tion gamma d’Euler et à la fonc­tion zeta de Riemann” [In­fin­itely di­vis­ible Wald couples: Ex­amples linked with the Euler gamma func­tion and the Riemann zeta func­tion], Ann. Inst. Four­i­er (Gren­oble) 55 : 4 (2005), pp. 1219–​1283. MR 2157168 Zbl 1083.​60012 article

B. Roynette, P. Val­lois, and M. Yor: “Lim­it­ing laws for long Browni­an bridges per­turbed by their one-sided max­im­um, III,” Peri­od. Math. Hung. 50 : 1–​2 (August 2005), pp. 247–​280. In homage to Pro­fess­ors E. Csáki and P. Révész. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); II in Stu­dia Sci. Math. Hung. 43:3 (2006); IV in Stu­dia Sci. Math. Hung. 44:4 (2007); V in Stu­dia Sci. Math. Hung. 45:1 (2008); VI in ESAIM Probab. Stat. 13 (2009); VII in Ann. Inst. Henri Poin­caré, Probab. Stat. 45:2 (2009); VIII in J. Funct. Anal. 255:9 (2008); IX in ESAIM Probab. Stat. 14 (2010); X in The­ory Stoch. Pro­cess. 14:2 (2008). MR 2162812 Zbl 1150.​60308 ArXiv math/​0511102 article

B. Roynette, P. Val­lois, and M. Yor: “Asymp­tot­ics for the dis­tri­bu­tion of lengths of ex­cur­sions of a \( d \)-di­men­sion­al Bessel pro­cess \( (0\lt d\lt 2) \),” C. R., Math., Acad. Sci. Par­is 343 : 3 (August 2006), pp. 201–​208. MR 2246339 Zbl 1155.​60329 article

B. Roynette, P. Val­lois, and M. Yor: “Lim­it­ing laws as­so­ci­ated with Browni­an mo­tion per­turbed by its max­im­um, min­im­um and loc­al time, II,” Stu­dia Sci. Math. Hung. 43 : 3 (2006), pp. 295–​360. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); III in Peri­od. Math. Hung. 50:1–2 (2005); IV in Stu­dia Sci. Math. Hung. 44:4 (2007); V in Stu­dia Sci. Math. Hung. 45:1 (2008); VI in ESAIM Probab. Stat. 13 (2009); VII in Ann. Inst. Henri Poin­caré Probab. Stat. 45:2 (2009); VIII in J. Funct. Anal. 255:9 (2008); IX in ESAIM Probab. Stat. 14 (2010); X in The­ory Stoch. Pro­cess. 14:2 (2008). MR 2253307 Zbl 1121.​60004 ArXiv math/​0510575 article

B. Roynette, P. Val­lois, and M. Yor: “Some pen­al­isa­tions of the Wien­er meas­ure,” Jpn. J. Math. (3) 1 : 1 (April 2006), pp. 263–​290. MR 2261065 Zbl 1160.​60315 article

B. Roynette, P. Val­lois, and M. Yor: “Pénal­isa­tions et quelques ex­ten­sions du théorème de Pit­man, re­l­at­ives au mouvement Browni­en et à son max­im­um unilatère” [Pen­al­iz­a­tions and some ex­ten­sions of Pit­man’s the­or­em re­l­at­ive to Browni­an mo­tion and its one-sided max­im­um], pp. 305–​336 in In me­mori­am Paul-An­dré Mey­er: Sémin­aire de prob­ab­ilités XXXIX [In me­mori­am Paul-An­dré Mey­er: Thirty-ninth prob­ab­il­ity sem­in­ar]. Edi­ted by M. Émery and M. Yor. Lec­ture Notes in Math­em­at­ics 1874. Spring­er (Ber­lin), 2006. MR 2276902 Zbl 1124.​60034 incollection

J. Ber­toin, T. Fujita, B. Roynette, and M. Yor: “On a par­tic­u­lar class of self-de­com­pos­able ran­dom vari­ables: The dur­a­tions of Bessel ex­cur­sions strad­dling in­de­pend­ent ex­po­nen­tial times,” Probab. Math. Stat. 26 : 2 (2006), pp. 315–​366. MR 2325310 Zbl 1123.​60063 article

B. Roynette, P. Val­lois, and M. Yor: “Some ex­ten­sions of Pit­man and Ray–Knight the­or­ems for pen­al­ized Browni­an mo­tions and their loc­al times, IV,” Stu­dia Sci. Math. Hung. 44 : 4 (2007), pp. 469–​516. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); II in Stu­dia Sci. Math. Hung. 43:3 (2006); III in Peri­od. Math. Hung. 50:1–2 (2005); V in Stu­dia Sci. Math. Hung. 45:1 (2008); VI in ESAIM Probab. Stat. 13 (2009); VII in Ann. Inst. Henri Poin­caré, Probab. Stat. 45:2 (2009); VIII in J. Funct. Anal. 255:9 (2008); IX in ESAIM Probab. Stat. 14 (2010); X in The­ory Stoch. Pro­cess. 14:2 (2008). MR 2361439 Zbl 1164.​60355 article

J. Na­j­nudel, B. Roynette, and M. Yor: “A re­mark­able \( \sigma \)-fi­nite meas­ure on \( \mathcal{C}(\mathbf{R}_+,\mathbf{R}) \) re­lated to many Browni­an pen­al­isa­tions,” C. R. Math. Acad. Sci. Par­is 345 : 8 (2007), pp. 459–​466. MR 2367926 Zbl 1221.​60003 article

B. Roynette, P. Val­lois, and M. Yor: “Pen­al­iz­ing a \( \mathrm{BES}(d) \) pro­cess \( (0\lt d\lt 2) \) with a func­tion of its loc­al time, V,” Stu­dia Sci. Math. Hung. 45 : 1 (2008), pp. 67–​124. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); II in Stu­dia Sci. Math. Hung. 43:3 (2006); III in Peri­od. Math. Hung. 50:1–2 (2005); IV in Stu­dia Sci. Math. Hung. 44:4(2007); VI in ESAIM Probab. Stat. 13 (2009); VII in Ann. Inst. Henri Poin­caré, Probab. Stat. 45:2 (2009); VIII in J. Funct. Anal. 255:9 (2008); IX in ESAIM Probab. Stat. 14 (2010); X in The­ory Stoch. Pro­cess. 14:2 (2008). MR 2401169 Zbl 1164.​60307 article

C. Donati-Mar­tin, B. Roynette, P. Val­lois, and M. Yor: “On con­stants re­lated to the choice of the loc­al time at 0, and the cor­res­pond­ing Itô meas­ure for Bessel pro­cesses with di­men­sion \( d = 2(1-\alpha) \), \( 0 \lt \alpha \lt 1 \),” Stu­dia Sci. Math. Hung. 45 : 2 (2008), pp. 207–​221. MR 2417969 Zbl 1212.​60070 article

B. Roynette and M. Yor: “Ten pen­al­isa­tion res­ults of Browni­an mo­tion in­volving its one-sided su­prem­um un­til first and last pas­sage times, VIII,” J. Funct. Anal. 255 : 9 (November 2008), pp. 2606–​2640. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); II in Stu­dia Sci. Math. Hung. 43:3 (2006); III in Peri­od. Math. Hung. 50:1–2 (2005); IV in Stu­dia Sci. Math. Hung. 44:4 (2007); V in Stu­dia Sci. Math. Hung. 45:1 (2008); VI in ESAIM Probab. Stat. 13 (2009); VII in Ann. Inst. Henri Poin­caré, Probab. Stat. 45:2 (2009); IX in ESAIM Probab. Stat. 14 (2010); X in The­ory Stoch. Pro­cess. 14:2 (2008). MR 2473270 Zbl 1180.​60070 article

L. F. James, B. Roynette, and M. Yor: “Gen­er­al­ized gamma con­vo­lu­tions, Di­rich­let means, Thor­in meas­ures, with ex­pli­cit ex­amples,” Probab. Surv. 5 (2008), pp. 346–​415. MR 2476736 Zbl 1189.​60035 ArXiv 0708.​3932 article

B. Roynette, P. Val­lois, and M. Yor: “Pen­al­isa­tions of Browni­an mo­tion with its max­im­um and min­im­um pro­cesses as weak forms of Skorok­hod em­bed­ding, X,” The­ory Stoch. Pro­cess. 14 : 2 (2008), pp. 116–​138. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); II in Stu­dia Sci. Math. Hung. 43:3 (2006); III in Peri­od. Math. Hung. 50:1–2 (2005); IV in Stu­dia Sci. Math. Hung. 44:4 (2007); V in Stu­dia Sci. Math. Hung. 45:1 (2008); VI in ESAIM Probab. Stat. 13 (2009); VII in Ann. Inst. Henri Poin­caré, Probab. Stat. 45:2 (2009); VIII in J. Funct. Anal. 255:9 (2008); IX in ESAIM Probab. Stat. 14 (2010). MR 2479739 Zbl 1224.​60076 article

D. Madan, B. Roynette, and M. Yor: “Op­tion prices as prob­ab­il­it­ies,” Fin­anc. Res. Lett. 5 : 2 (June 2008), pp. 79–​87. article

B. Roynette and M. Yor: Ex­ist­ence and prop­er­ties of pseudo-in­verses for Bessel and re­lated pro­cesses. Pre­print, December 2008. techreport

D. Madan, B. Roynette, and M. Yor: “Uni­fy­ing Black–Scholes type for­mu­lae which in­volve Browni­an last pas­sage times up to a fi­nite ho­ri­zon,” Asia-Pac. Fin­anc. Mark. 15 : 2 (June 2008), pp. 97–​115. Zbl 1163.​91414 article

B. Roynette and M. Yor: Pen­al­ising Browni­an paths. Lec­ture Notes in Math­em­at­ics 1969. Spring­er (Ber­lin), 2009. Ded­ic­ated to Frank Knight (1933–2007). MR 2504013 Zbl 1190.​60002 book

B. Roynette, P. Val­lois, and M. Yor: “Pen­al­isa­tions of mul­ti­di­men­sion­al Browni­an mo­tion, VI,” ESAIM Probab. Stat. 13 (January 2009), pp. 152–​180. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); II in Stu­dia Sci. Math. Hung. 43:3 (2006); III in Peri­od. Math. Hung. 50:1–2 (2005); IV in Stu­dia Sci. Math. Hung. 44:4 (2007); V in Stu­dia Sci. Math. Hung. 45:1 (2008); VII in Ann. Inst. Henri Poin­caré, Probab. Stat. 45:2 (2009); VIII in J. Funct. Anal. 255:9 (2008); IX in ESAIM Probab. Stat. 14 (2010); X in The­ory Stoch. Pro­cess. 14:2 (2008). MR 2518544 Zbl 1189.​60069 article

B. Roynette, P. Val­lois, and M. Yor: “Browni­an pen­al­isa­tions re­lated to ex­cur­sion lengths, VII,” Ann. Inst. Henri Poin­caré, Probab. Stat. 45 : 2 (2009), pp. 421–​452. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); II in Stu­dia Sci. Math. Hung. 43:3 (2006); III in Peri­od. Math. Hung. 50:1–2 (2005); IV in Stu­dia Sci. Math. Hung. 44:4 (2007); V in Stu­dia Sci. Math. Hung. 45:1 (2008); VI in ESAIM Probab. Stat. 13 (2009); VIII in J. Funct. Anal. 255:9 (2008); IX in ESAIM Probab. Stat. 14 (2010); X in The­ory Stoch. Pro­cess. 14:2 (2008). MR 2521408 Zbl 1181.​60046 article

J. Na­j­nudel, B. Roynette, and M. Yor: A glob­al view of Browni­an pen­al­isa­tions. MSJ Mem­oirs 19. Math­em­at­ic­al So­ci­ety of Ja­pan (Tokyo), 2009. MR 2528440 Zbl 1180.​60004 ArXiv 0905.​2220 book

D. Madan, B. Roynette, and M. Yor: “Put op­tion prices as joint dis­tri­bu­tion func­tions in strike and ma­tur­ity: The Black–Scholes case,” Int. J. The­or. Ap­pl. Fin­ance 12 : 8 (2009), pp. 1075–​1090. MR 2598932 Zbl 1183.​91179 article

B. Roynette, P. Val­lois, and M. Yor: “A fam­ily of gen­er­al­ized gamma con­vo­luted vari­ables,” Probab. Math. Stat­ist. 29 : 2 (2009), pp. 181–​204. MR 2792539 Zbl 1197.​60012 article

C. Pro­feta, B. Roynette, and M. Yor: Op­tion prices as prob­ab­il­it­ies: A new look at gen­er­al­ized Black–Scholes for­mu­lae. Spring­er Fin­ance. Spring­er (Ber­lin), 2010. MR 2582990 Zbl 1188.​91004 book

B. Roynette and M. Yor: “Loc­al lim­it the­or­ems for Browni­an ad­dit­ive func­tion­als and pen­al­isa­tion of Browni­an paths, IX,” ESAIM Probab. Stat. 14 (March 2010), pp. 65–​92. Parts I–X have very dif­fer­ent titles. I was pub­lished in Stu­dia Sci. Math. Hung. 46:2 (2003); II in Stu­dia Sci. Math. Hung. 43:3 (2006); III in Peri­od. Math. Hung. 50:1–2 (2005); IV in Stu­dia Sci. Math. Hung. 44:4 (2007); V in Stu­dia Sci. Math. Hung. 45:1 (2008); VI in ESAIM Probab. Stat. 13 (2009); VII in Ann. Inst. Henri Poin­caré, Probab. Stat. 45:2 (2009); VIII in J. Funct. Anal. 255:9 (2008); X in The­ory Stoch. Pro­cess. 14:2 (2008). MR 2654548 Zbl 1219.​60036 article

F. Hirsch, B. Roynette, and M. Yor: “Ap­ply­ing Itô’s motto: ‘Look at the in­fin­ite di­men­sion­al pic­ture’ by con­struct­ing sheets to ob­tain pro­cesses in­creas­ing in the con­vex or­der,” Peri­od. Math. Hung. 61 : 1–​2 (2010), pp. 195–​211. MR 2728438 Zbl 1274.​60052 article

F. Hirsch, B. Roynette, and M. Yor: “Uni­fy­ing con­struc­tions of mar­tin­gales as­so­ci­ated with pro­cesses in­creas­ing in the con­vex or­der, via Lévy and Sato sheets,” Expo. Math. 28 : 4 (2010), pp. 299–​324. MR 2734446 Zbl 1223.​60027 article

F. Hirsch, C. Pro­feta, B. Roynette, and M. Yor: “Con­struct­ing self-sim­il­ar mar­tin­gales via two Skorok­hod em­bed­dings,” pp. 451–​503 in Sémin­aire de prob­ab­ilités XLIII [Forty-third prob­ab­il­ity sem­in­ar]. Edi­ted by C. Donati-Mar­tin, A. Le­jay, and A. Rou­ault. Lec­ture Notes in Math­em­at­ics 2006. Spring­er (Ber­lin), 2011. MR 2790387 Zbl 1234.​60047 incollection

F. Hirsch, C. Pro­feta, B. Roynette, and M. Yor: Pea­cocks and as­so­ci­ated mar­tin­gales, with ex­pli­cit con­struc­tions. Boc­coni & Spring­er Series 3. Spring­er (New York), 2011. MR 2808243 Zbl 1227.​60001 book

F. Hirsch, B. Roynette, and M. Yor: “From an Itô type cal­cu­lus for Gaus­si­an pro­cesses to in­teg­rals of log-nor­mal pro­cesses in­creas­ing in the con­vex or­der,” J. Math. Soc. Ja­pan 63 : 3 (2011), pp. 887–​917. MR 2836749 Zbl 1233.​60008 article

M. Jean­blanc and F. Hirsch: “Marc Yor 1949–2014,” Mata­p­li 103 (2014), pp. 51–​55. With re­mem­brances of Yor by Bern­ard Roynette. MR 3235376 Zbl 1365.​01056 article

F. Hirsch and B. Roynette: “Marc Yor et les pea­cocks” [Marc Yor and pea­cocks], pp. 111–​120 in Marc Yor: La pas­sion du mouvement browni­en [Marc Yor: The pas­sion of Browni­an mo­tion]. Edi­ted by J. Ber­toin, M. Jean­blanc, J.-F. Le Gall, and Z. Shi. Société Mathématique de France (Par­is), 2015. Gaz­ette des Mathématiciens and Mata­p­li spe­cial is­sue. incollection

F. Hirsch, B. Roynette, and M. Yor: “Keller­er’s the­or­em re­vis­ited,” pp. 347–​363 in Asymp­tot­ic laws and meth­ods in stochastics: A volume in hon­our of Miklós Csörgő on the oc­ca­sion of his 80th birth­day (Ot­t­awa, 3–6 Ju­ly 2012). Edi­ted by D. Dawson, R. Ku­lik, M. Ould Haye, B. Szyszkow­icz, and Y. Zhao. Fields In­sti­tute Com­mu­nic­a­tions 76. Fields In­sti­tute (Toronto), 2015. MR 3409839 Zbl 1368.​60045 incollection

B. Roynette: “Le trav­ail de Marc sur les pénal­isa­tions” [Marc’s work on pen­al­iz­a­tions], pp. 103–​110 in Marc Yor: La pas­sion du mouvement browni­en [Marc Yor: The pas­sion of Browni­an mo­tion]. Edi­ted by J. Ber­toin, M. Jean­blanc, J.-F. Le Gall, and Z. Shi. Société Mathématique de France (Par­is), 2015. Gaz­ette des Mathématiciens and Mata­p­li spe­cial is­sue. incollection