return

Celebratio Mathematica

Morton Brown

Complete Bibliography

[1]M. Brown: “A count­able con­nec­ted Haus­dorff space,” Bull. Amer. Math. Soc. 59 (1953), pp. 367. Ab­stract only (in­side The April meet­ing in New York); un­pub­lished. article

[2]M. Brown: Con­tinu­ous col­lec­tions of high­er di­men­sion­al hered­it­ar­ily in­decom­pos­able con­tinua. Ph.D. thesis, The Uni­versity of Wis­con­sin, Madis­on, 1958. Ad­vised by R. H. Bing. MR 2612711

[3]M. Brown: “Weak \( n \)-ho­mo­gen­eity im­plies weak \( (n-1) \)-ho­mo­gen­eity,” Proc. Amer. Math. Soc. 10 (1959), pp. 644–​647. MR 0107857 Zbl 0093.​36604

[4]M. Brown: “Some ap­plic­a­tions of an ap­prox­im­a­tion the­or­em for in­verse lim­its,” Proc. Amer. Math. Soc. 11 (1960), pp. 478–​483. MR 0115157 Zbl 0113.​37705

[5]M. Brown: “On the in­verse lim­it of Eu­c­lidean \( N \)-spheres,” Trans. Amer. Math. Soc. 96 (1960), pp. 129–​134. MR 0119182 Zbl 0136.​19805

[6]M. Brown: “A proof of the gen­er­al­ized Schoen­flies the­or­em,” Bull. Amer. Math. Soc. 66 (1960), pp. 74–​76. MR 0117695 Zbl 0132.​20002

[7]M. Brown: “The mono­tone uni­on of open \( n \)-cells is an open \( n \)-cell,” Proc. Amer. Math. Soc. 12 (1961), pp. 812–​814. MR 0126835 Zbl 0103.​39305

[8]M. Brown: “Loc­ally flat em­bed­dings of to­po­lo­gic­al man­i­folds,” pp. 83–​91 in To­po­logy of 3-man­i­folds and re­lated top­ics (Univ. of Geor­gia In­sti­tute, 1961). Pren­tice-Hall (Engle­wood Cliffs, NJ), 1962. MR 0158373 Zbl 1246.​57059

[9]M. Brown: “A map­ping the­or­em for un­tri­an­gu­lated man­i­folds,” pp. 92–​94 in To­po­logy of 3-man­i­folds and re­lated top­ics (Univ. of Geor­gia In­sti­tute, 1961). Pren­tice-Hall (Engle­wood Cliffs, NJ), 1962. MR 0158374 Zbl 1246.​57052

[10]M. Brown: “Loc­ally flat im­bed­dings of to­po­lo­gic­al man­i­folds,” Ann. of Math. (2) 75 (1962), pp. 331–​341. MR 0133812 Zbl 0201.​56202

[11]M. Brown: “On a the­or­em of Fish­er con­cern­ing the homeo­morph­ism group of a man­i­fold,” Michigan Math. J. 9 (1962), pp. 403–​405. MR 0150747 Zbl 0204.​23901

[12]M. Brown and H. Gluck: “Stable struc­tures on man­i­folds,” Bull. Amer. Math. Soc. 69 (1963), pp. 51–​58. MR 0145497 Zbl 0118.​39104

[13]M. Brown and H. Gluck: “Stable struc­tures on man­i­folds, III: Ap­plic­a­tions,” Ann. of Math. (2) 79 (1964), pp. 45–​58. MR 0158385

[14]M. Brown and H. Gluck: “Stable struc­tures on man­i­folds, I: Homeo­morph­isms of \( S^{n} \),” Ann. of Math. (2) 79 (1964), pp. 1–​17. MR 0158383

[15]M. Brown and H. Gluck: “Stable struc­tures on man­i­folds, II: Stable man­i­folds,” Ann. of Math. (2) 79 (1964), pp. 18–​44. MR 0158384

[16]M. Brown: “Wild cells and spheres in high­er di­men­sions,” Michigan Math. J. 14 (1967), pp. 219–​224. MR 0221481 Zbl 0147.​23902

[17]M. Brown: “A note on Kister’s iso­topy,” Michigan Math. J. 14 (1967), pp. 95–​96. MR 0214077 Zbl 0185.​51503

[18]M. Brown: “Push­ing graphs around,” pp. 19–​22 in Con­fer­ence on the to­po­logy of man­i­folds (Michigan State Univ., E. Lans­ing, MI, 1967). Prindle, Weber & Schmidt (Bo­ston), 1968. MR 0234468 Zbl 0185.​50601

[19]M. Brown: “A note on Cartesian products,” Amer. J. Math. 91 (1969), pp. 32–​36. MR 0239555 Zbl 0179.​51405

[20]M. Brown: “Sets of con­stant dis­tance from a planar set,” Michigan Math. J. 19 (1972), pp. 321–​323. MR 0315714 Zbl 0244.​54019

[21]M. Brown: “An ap­plic­a­tion of ho­mo­logy the­ory to 4-col­or­ing prob­lems,” Nederl. Akad. Wetensch. Proc. Ser. A 75 (1972), pp. 353–​354. Also pub­lished in In­d­ag. Math. 34. MR 0317312

[22]M. Brown and R. Con­nelly: “On graphs with a con­stant link,” pp. 19–​51 in New dir­ec­tions in the the­ory of graphs (Univ. Michigan, Ann Ar­bor, MI, 1971). Aca­dem­ic Press (New York), 1973. MR 0347685 Zbl 0258.​05104

[23]M. Brown and R. Con­nelly: “On graphs with a con­stant link, II,” Dis­crete Math. 11 (1975), pp. 199–​232. MR 0364016 Zbl 0304.​05102

[24] M. Brown and W. D. Neu­mann: “Proof of the Poin­caré–Birk­hoff fixed point the­or­em,” Mich. Math. J. 24 : 1 (1977), pp. 21–​31. MR 448339 Zbl 0402.​55001 article

[25]M. Brown: “A short short proof of the Cartwright–Lit­tle­wood the­or­em,” Proc. Amer. Math. Soc. 65 : 2 (1977), pp. 372. MR 0461491 Zbl 0369.​57001

[26]M. Brown and A. G. Wasser­man: “Arith­met­ic in­vari­ants of sim­pli­cial com­plexes,” Canad. J. Math. 32 : 6 (1980), pp. 1306–​1310. MR 604685 Zbl 0413.​57013

[27]B. Brech­ner and M. Brown: “Map­ping cyl­in­der neigh­bor­hoods in the plane,” Proc. Amer. Math. Soc. 84 : 3 (1982), pp. 433–​436. MR 640248 Zbl 0478.​54030

[28]M. Brown: “A new proof of Brouwer’s lemma on trans­la­tion arcs,” Hou­s­ton J. Math. 10 : 1 (1984), pp. 35–​41. MR 736573 Zbl 0551.​57005

[29]M. Brown and J. M. Kister: “In­vari­ance of com­ple­ment­ary do­mains of a fixed point set,” Proc. Amer. Math. Soc. 91 : 3 (1984), pp. 503–​504. MR 744656 Zbl 0547.​57010

[30]M. Brown: “Homeo­morph­isms of two-di­men­sion­al man­i­folds,” Hou­s­ton J. Math. 11 : 4 (1985), pp. 455–​469. MR 837985 Zbl 0605.​57005

[31]M. Brown: “The math­em­at­ic­al work of R. H. Bing,” pp. 1–​25 in Pro­ceed­ings of the 1987 to­po­logy con­fer­ence (Birm­ing­ham, AL, 1987), published as To­po­logy Proc. 12 : 1. Issue edi­ted by G. Gru­en­hage, D. Ben­nett, and L. Mohler. Au­burn Uni­versity (Birm­ing­ham, AL), 1987. MR 951703 Zbl 0661.​01017 incollection

[32]M. Brown, E. E. Slaminka, and W. Tran­sue: “An ori­ent­a­tion pre­serving fixed point free homeo­morph­ism of the plane which ad­mits no closed in­vari­ant line,” To­po­logy Ap­pl. 29 : 3 (1988), pp. 213–​217. MR 953953 Zbl 0668.​54024

[33]M. Brown: “Fixed points for ori­ent­a­tion pre­serving homeo­morph­isms of the plane which in­ter­change two points,” Pa­cific J. Math. 143 : 1 (1990), pp. 37–​41. MR 1047399 Zbl 0728.​55001

[34]M. Brown: “On the fixed point in­dex of it­er­ates of planar homeo­morph­isms,” Proc. Amer. Math. Soc. 108 : 4 (1990), pp. 1109–​1114. MR 994772 Zbl 0686.​58028

[35]M. Barge and M. Brown: “Prob­lems in dy­nam­ics on con­tinua,” pp. 177–​182 in Con­tinuum the­ory and dy­nam­ic­al sys­tems (Ar­cata, CA, 1989). Con­temp. Math. 117. Amer. Math. Soc. (Provid­ence, RI), 1991. MR 1112814 Zbl 0726.​54026

[36]M. Brown: “Fun­da­ment­al re­gions of planar homeo­morph­isms,” pp. 49–​56 in Con­tinuum the­ory and dy­nam­ic­al sys­tems (Ar­cata, CA, 1989). Con­temp. Math. 117. Amer. Math. Soc. (Provid­ence, RI), 1991. MR 1112802 Zbl 0732.​54029

[37]M. Brown: “A peri­od­ic homeo­morph­ism of the plane,” pp. 83–​87 in Con­tinuum the­ory and dy­nam­ic­al sys­tems. Lec­ture Notes in Pure and Ap­pl. Math. 149. Dek­ker (New York), 1993. MR 1235347 Zbl 0791.​58074

[38]K. Bouch­er, M. Brown, and E. E. Slaminka: “A Nielsen-type the­or­em for area-pre­serving homeo­morph­isms of the two disc,” pp. 43–​50 in Con­tinuum the­ory and dy­nam­ic­al sys­tems. Lec­ture Notes in Pure and Ap­pl. Math. 149. Dek­ker (New York), 1993. MR 1235344 Zbl 0807.​58027