Filter and Search through this List
[1]
Y. Fourès-Bruhat :
“Sur une expression intrinsèque du théorème de Gauss en
relativité générale ,”
C. R. Acad. Sci. Paris
226
(1948 ),
pp. 218–220 .
MR
23640
Zbl
0030.38402
article
Abstract
BibTeX
In his relativistic generalisation of Gauss’s theorem, Lichnerowicz showed that the component \( R_0^0 \) of the Ricci tensor is the divergence of a space-vector \( h^{\lambda} \) . The author uses a moving rectangular frame of reference (repère mobile) in order to find an expression for the vector \( h \) , concluding with the remark that her equations show the existence of singularities in an exterior static “meublable” field and the locally Euclidean character of an external everywhere-regular field.
@article {key23640m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Sur une expression intrins\`eque du
th\'{e}or\`eme de {G}auss en relativit\'{e}
g\'{e}n\'{e}rale},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {226},
YEAR = {1948},
PAGES = {218--220},
NOTE = {MR:23640. Zbl:0030.38402.},
ISSN = {0001-4036},
}
[2]
Y. Fourès-Bruhat and A. Lichnerowicz :
“Sur un théorème global de réduction des \( ds^2 \) statiques généraux d’Einstein ,”
C. R. Acad. Sci. Paris
226
(1948 ),
pp. 775–777 .
MR
24704
Zbl
0031.23902
article
Abstract
People
BibTeX
Racine a donné pour les équations du champ gravitationnel stationnaire une forme simple en introduisant le repère orthogonal mobile tel que la métrique prenne la forme
\[
ds^2 = V^2 (dx^0)^2-\sum (\omega_i)^2
\]
(\( i=1,2,3 \) )
où \( \omega_i = \bar{\omega}+ \lambda_i dx^0 \) , les \( \bar{\omega}_i \) étant des formes purement spatiales. L’auteur utilise ces équations pour obtenir une expression simple du vecteur \( h \) qui intervient dans le théorème de Gauss donné par le rapporteur et dont la divergence est égale à \( R^0_0 \) .
\[ Vh_i=\partial_2 V-\sum_j\lambda_j P_{ji} \]
(\( i,j=1,2,3 \) ), les \( P_{ji} \) étant coefficients de la seconde forme quadratique fondamentale des sections d’espace.
@article {key24704m,
AUTHOR = {Four\`es-Bruhat, Yvonne and Lichnerowicz,
Andr\'{e}},
TITLE = {Sur un th\'{e}or\`eme global de r\'{e}duction
des \$ds^2\$ statiques g\'{e}n\'{e}raux
d'{E}instein},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {226},
YEAR = {1948},
PAGES = {775--777},
NOTE = {MR:24704. Zbl:0031.23902.},
ISSN = {0001-4036},
}
[3]
Y. Fourès-Bruhat :
“Sur l’intégration du problème des conditions initiales en
mécanique relativiste ,”
C. R. Acad. Sci. Paris
226
(1948 ),
pp. 1071–1073 .
MR
25310
Zbl
0030.38401
article
Abstract
BibTeX
@article {key25310m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Sur l'int\'{e}gration du probl\`eme
des conditions initiales en m\'{e}canique
relativiste},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {226},
YEAR = {1948},
PAGES = {1071--1073},
NOTE = {MR:25310. Zbl:0030.38401.},
ISSN = {0001-4036},
}
[4]
A. Lichnerowicz and Y. Fourès-Bruhat :
“Théorème global sur les \( ds^2 \) extérieurs généraux d’Einstein ,”
C. R. Acad. Sci. Paris
226
(1948 ),
pp. 2119–2120 .
MR
26456
Zbl
0031.23903
article
Abstract
People
BibTeX
Nous nous proposons de démontrer ici un théorème analogue à ceux démonstrés précédemment par l’un de nous, dans le cas statique et des cas voisins, par une méthode qui nécessite très peu d’hypothèses sur les lignes de temps.
@article {key26456m,
AUTHOR = {Lichnerowicz, Andr\'{e} and Four\`es-Bruhat,
Yvonne},
TITLE = {Th\'{e}or\`eme global sur les \$ds^2\$
ext\'{e}rieurs g\'{e}n\'{e}raux d'{E}instein},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {226},
YEAR = {1948},
PAGES = {2119--2120},
NOTE = {MR:26456. Zbl:0031.23903.},
ISSN = {0001-4036},
}
[5]
Y. Fourès-Bruhat :
“Théorème d’existence pour les équations de la gravitation einsteinienne dans le cas non analytique ,”
C. R. Acad. Sci. Paris
230
(1950 ),
pp. 618–620 .
MR
34135
Zbl
0041.56303
article
Abstract
BibTeX
Je me propose de résoudre le problème de Cauchy pour le système \( R_{\alpha\beta} = 0 \) dans le cas non analytique : on sait qu’un théorème d’unicité valable dans le même cas a été donné par Stellmacher. La surface \( (S) \) portant les données de Cauchy sera supposée orientée dans l’espace. Si \( (S) \) est représentée par \( x^4=0 \) , je suppose de plus que les données de Cauchy satisfont sur \( (S) \) aux conditions d’isothermie:
\begin{align*}
& \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\lambda}}(\sqrt{-g}\, g^{\lambda\mu}) = 0,
\\
& \frac{\partial}{\partial x^4} \biggl[\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\lambda}} (\sqrt{-g}\, g^{\lambda\mu})\biggr] = 0 \quad \text{pour } x^4=0
\end{align*}
et je recherche les solutions du système d’Einstein écrit en coordonnées isothermes: le théorème d’unicité permet de montrer que de telles solutions satisfont effectivement aux conditions d’isothermie, donc au système \( R_{\alpha\beta} = 0 \) .
@article {key34135m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Th\'{e}or\`eme d'existence pour les
\'{e}quations de la gravitation einsteinienne
dans le cas non analytique},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {230},
YEAR = {1950},
PAGES = {618--620},
NOTE = {MR:34135. Zbl:0041.56303.},
ISSN = {0001-4036},
}
[6]
Y. Fourès-Bruhat :
“Un théorème d’existence sur les systèmes d’équations aux dérivées partielles quasi linéaires ,”
C. R. Acad. Sci. Paris
231
(1950 ),
pp. 318–320 .
MR
36927
Zbl
0038.25503
article
Abstract
BibTeX
Je me propose de résoudre le problème de Cauchy, dans le cas on analytique, pour un système d’équations aux dérivées partielles du second ordre non linéaires, en utilisant les équations intégrales vérifées par les solutions.
@article {key36927m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Un th\'{e}or\`eme d'existence sur les
syst\`emes d'\'{e}quations aux d\'{e}riv\'{e}es
partielles quasi lin\'{e}aires},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {231},
YEAR = {1950},
PAGES = {318--320},
NOTE = {MR:36927. Zbl:0038.25503.},
ISSN = {0001-4036},
}
[7]
Y. Fourès-Bruhat :
“Théorèmes d’existence et d’unicité pour les équations de la
théorie unitaire de Jordan–Thiry ,”
C. R. Acad. Sci. Paris
232
(1951 ),
pp. 1800–1802 .
MR
42224
Zbl
0044.31702
article
Abstract
BibTeX
L’auteur a développé récemment des méthodes donnant des théorèmes d’existence et d’unicité, dans le cas non analytique, pour les septimes d’équations aux dérivées partielles régissant les phénomènes physiques se propageant par ondes (de type totalement hyperbolique). Les preuves détaillées seront publiées prochainement dans les Acta Math. . L’auteur applique ici ses méthodes aux équations relativistes de la gravitation et de l’électromagnétisme; elle envisage deux cas, celui des équations de la théorie de Jordan–Thiry à quinze variables de champ et celui des équations “primitives” d’Einstein–Maxwell. Dans les deux cas, des théorèmes d’existence et d’unicité sont obtenues pour le problème de Cauchy, en supposant les données de Cauchy sur \( x^4=0 \) quatre ou cinq fois différentiables et en introduisant des coordonnées isothermes. La comparaison des résultats concernant les deux théories est intéressante; la théorie “primitive” doit être une première approximation de la théorie “unitaire” et cela se doit constater sur les solutions correspondant à une même valuer intiale du facteur de gravitation \( V \) . L’auteur établit qu’il en est bien ainsi et même que \( V \) reste constant s’il est stationnaire, c’est-à-dire si \( V = \text{const.} \) et \( \partial_4 V=0 \) pour \( x^4=0 \) .
@article {key42224m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Th\'{e}or\`emes d'existence et d'unicit\'{e}
pour les \'{e}quations de la th\'{e}orie
unitaire de {J}ordan--{T}hiry},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {232},
YEAR = {1951},
PAGES = {1800--1802},
NOTE = {MR:42224. Zbl:0044.31702.},
ISSN = {0001-4036},
}
[8]
Y. Fourès-Bruhat :
“Théorème d’existence pour des systèmes d’équations aux
dérivées partielles à quatre variables ,”
C. R. Acad. Sci. Paris
234
(1952 ),
pp. 500–502 .
MR
45287
Zbl
0046.09903
article
Abstract
BibTeX
L’autore schizza brevemente l’idea di un metodo di approssimazioni successive, per risolvere il problema di Cauchy relativo a un sistema di equazioni alle derivate parziali del tipo
\[ A^{\lambda\mu} \frac{\partial^2 W_s}{\partial x_{\lambda}\partial x_{\mu}} + f_s = 0 \]
nelle \( n \) funzioni incognite \( W_s \) delle quattro variabili \( x_{\alpha} \) , dove \( A^{\lambda\mu} X_{\lambda} X_{\mu} \) è una forma quadratica di tipo iperbolico normale e le \( A^{\lambda\mu},f_s \) sono date funzioni delle \( x_{\alpha} \) , delle \( W_t \) e delle derivate parziali prime di queste.
@article {key45287m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Th\'{e}or\`eme d'existence pour des
syst\`emes d'\'{e}quations aux d\'{e}riv\'{e}es
partielles \`a quatre variables},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {234},
YEAR = {1952},
PAGES = {500--502},
NOTE = {MR:45287. Zbl:0046.09903.},
ISSN = {0001-4036},
}
[9]
Y. Fourès-Bruhat :
“Solution du problème de Cauchy pour des systèmes d’équations
hyperboliques du second ordre non linéaires ,”
C. R. Acad. Sci. Paris
234
(1952 ),
pp. 585–587 .
MR
45288
Zbl
0046.10001
article
Abstract
BibTeX
L’auteur considère d’abord un système d’équations aux dérivées partielles du second ordre linéaires à \( n \) variables \( x^{\alpha} \) et \( N \) fonctions inconnues \( u_s \) du type
\[
A^{\lambda\mu} \frac{\partial^2 u_s}{\partial x^{\lambda} \partial x^u} + B^{t \lambda}_s \frac{\partial u_t}{\partial x^{\lambda}} + f_s = 0,
\]
(\( \lambda,\mu=1,2,\dots,n \) ; \( s=1,2,\dots,N \) )
où \( A^{\lambda\mu}_1 B^{t\lambda}_s, f_s \) sont des fonctions des \( x^x \) possédant des dérivées partielle continues et bornées jusqu’aux ordres \( n,n-2, n/2-1 \) . On suppose que \( A^{nn} \) est positif et que pour \( x_n=0 \) , la forme quadratique \( A^{\lambda\mu} x_{\lambda} x_{\mu} \) se réduit à une forme définie négative.
En utilisant une méthode voisine de celle qu’elle a employée pour \( n=4 \) , l’auteur ramène le problème de Cauchy à l’étude d’un système d’équations integrales.
L’auteur considère ensuite le système non linéaire à \( n \) variables et à \( N \) fonctions inconnues \( W_s \)
\begin{equation}
A^{\lambda\mu} (W_T,W_T^x, x^x) \frac{\partial^2 W_s}{\partial x^{\lambda} \partial x^{\mu}} + F_s (W_T, W_{Tx}, x^x)=0.\tag{1}
\end{equation}
Sous des conditions convenables de réguarité imposées à \( A^{\lambda\mu}, f_s \) et aux données de Cauchy sur \( x^n=0 \) , le problème de Cauchy pour (1) admet une solution \( n+1 \) fois différentiable. Les résultats précédents généralisent à un nombre quelcoque de variables les formules de résolution et les théorèmes d’existence donnés précédemment par l’auteur pour \( n=4 \) .
@article {key45288m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Solution du probl\`eme de {C}auchy pour
des syst\`emes d'\'{e}quations hyperboliques
du second ordre non lin\'{e}aires},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {234},
YEAR = {1952},
PAGES = {585--587},
NOTE = {MR:45288. Zbl:0046.10001.},
ISSN = {0001-4036},
}
[10]
Y. Fourès-Bruhat :
“Théorème d’existence pour certains systèmes d’équations aux
dérivées partielles non linéaires ,”
Acta Math.
88
(1952 ),
pp. 141–225 .
MR
53338
Zbl
0049.19201
article
Abstract
BibTeX
Je me suis posé le problème de Cauchy pour les équations aux dérivées partielles hyperboliques non linéaires à propos des équations de la gravitation d’Einstein. Ces équations se présentent en effet eomme un système de dix équations du second ordre, linéaires, à quatre variables (espace et temps) et dix fonctions inconnues, les potentiels de gravitation. Ces équations sont du types hyperbolique normal dans un système de coordonnées spatio-temporelles régulier. Le problème du déterminisme se pose, dans la théorie d’Einstein, sous forme du problème de Cauchy, les données étant portées par une variété orientée dans l’espace, relativement à ce système d’équations.
@article {key53338m,
AUTHOR = {Four\`es-Bruhat, Y.},
TITLE = {Th\'{e}or\`eme d'existence pour certains
syst\`emes d'\'{e}quations aux d\'{e}riv\'{e}es
partielles non lin\'{e}aires},
JOURNAL = {Acta Math.},
FJOURNAL = {Acta Mathematica},
VOLUME = {88},
YEAR = {1952},
PAGES = {141--225},
DOI = {10.1007/BF02392131},
NOTE = {MR:53338. Zbl:0049.19201.},
ISSN = {0001-5962},
}
[11]
Y. Fourès-Bruhat :
“Les distributions sur les multiplicités ,”
C. R. Acad. Sci. Paris
236
(1953 ),
pp. 2201–2202 .
MR
56168
Zbl
0050.33902
article
Abstract
BibTeX
L’étude des équations hyperboliques exige la définition sur une multiplicité de distributions ayant les propriétés suivantes: les fonctions sont des distributions, une mesure est le produit d’une distribution par un élément de volume, les lois de dérivation pour les fonctions et les distributions sont les mêmes. Nous donnons ici une telle définition et une application.
@article {key56168m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Les distributions sur les multiplicit\'{e}s},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {236},
YEAR = {1953},
PAGES = {2201--2202},
NOTE = {MR:56168. Zbl:0050.33902.},
ISSN = {0001-4036},
}
[12]
Y. Fourès-Bruhat :
“Résolution du problème de Cauchy pour des équations
hyperboliques du second ordre non linéaires ,”
Bull. Soc. Math. France
81
(1953 ),
pp. 225–288 .
MR
62929
Zbl
0053.25101
article
Abstract
BibTeX
Le but de ce Mémoire est la résolution du problème de Cauchy pour les équations hyperboliques du second ordre à un nombre quelconque de variables, non linéaires, du type suivant:
\[
A^{\lambda \mu}\frac{\partial^2u}{\partial x^l \partial x^{\mu}}+f = 0
\]
(\( \lambda,\mu=1,2,\dots,n \) ).
Les coefficients \( A^{\lambda\mu} \) et \( f \) sont des fonctions des inconnues \( \mu \) , de leurs dérivées partielles premières et des variables \( x^x \) .
Les résultats s’appliquent aux systèmes d’équations de la forme
\[
A^{\lambda\mu} \frac{\partial^2 u_s}{\partial x^{\lambda} \partial x^{\mu}}+ f_s=0
\]
(\( s=1,2,\dots, N \) ), où les coefficients \( A^{\lambda\mu} \) et \( f_s \) sont les fonctions des \( N \) inconnues \( u_t \) , de leurs dérivées partielles premières et des variables \( x^x \) , les coefficients \( A^{\lambda\mu} \) étant les mêmes pour les \( N \) équations.
@article {key62929m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {R\'{e}solution du probl\`eme de {C}auchy
pour des \'{e}quations hyperboliques
du second ordre non lin\'{e}aires},
JOURNAL = {Bull. Soc. Math. France},
FJOURNAL = {Bulletin de la Soci\'{e}t\'{e} Math\'{e}matique
de France},
VOLUME = {81},
YEAR = {1953},
PAGES = {225--288},
URL = {http://www.numdam.org/item?id=BSMF_1953__81__225_0},
NOTE = {MR:62929. Zbl:0053.25101.},
ISSN = {0037-9484},
}
[13]
Y. Fourès :
“Résolution du problème de Cauchy pour des équations hyperboliques du second ordre non linéaires ,”
pp. 25–33
in
Premier colloque sur les équations aux dérivées partielles
(Louvain, 1953 ).
Georges Thone; Masson & Cie (Liège; Paris ),
1954 .
An earlier version of this paper was published in Bull. Soc. Math. France 81 , 225–288 (1953) .
MR
62930
incollection
BibTeX
@incollection {key62930m,
AUTHOR = {Four\`es, Y.},
TITLE = {R\'{e}solution du probl\`eme de {C}auchy
pour des \'{e}quations hyperboliques
du second ordre non lin\'{e}aires},
BOOKTITLE = {Premier colloque sur les \'{e}quations
aux d\'{e}riv\'{e}es partielles},
PUBLISHER = {Georges Thone; Masson \& Cie},
ADDRESS = {Li\`ege; Paris},
YEAR = {1954},
PAGES = {25--33},
NOTE = {({L}ouvain, 1953). An earlier version
of this paper was published in \textit{Bull.
Soc. Math. France} \textbf{81}, 225--288
(1953). MR:62930.},
}
[14]
Y. Fourès and I. E. Segal :
“Causality and analyticity ,”
Trans. Amer. Math. Soc.
78
(1955 ),
pp. 385–405 .
MR
69401
Zbl
0064.36805
article
Abstract
People
BibTeX
We treat an abstract version of a linear mechanical system, demonstrating a connection between causality in the system and analyticity of its gain function. This function is in general merely Lebesgue measurable; it is suitably analytic if and only if the system is causal in the sense that the future cannot influence the past. This result is for the “continuous” case in which the output is globally a continuous function of the input. Systems described by partial differential equations with constant coefficients will not in general be of this type, and we are led thereby to an examination of the influence of causality in the “discontinuous” case.
@article {key69401m,
AUTHOR = {Four\`es, Y. and Segal, I. E.},
TITLE = {Causality and analyticity},
JOURNAL = {Trans. Amer. Math. Soc.},
FJOURNAL = {Transactions of the American Mathematical
Society},
VOLUME = {78},
YEAR = {1955},
PAGES = {385--405},
DOI = {10.2307/1993070},
NOTE = {MR:69401. Zbl:0064.36805.},
ISSN = {0002-9947},
}
[15]
Y. Fourès-Bruhat :
“Solution élémentaire d’équations ultrahyperboliques ,”
C. R. Acad. Sci. Paris
240
(1955 ),
pp. 395–396 .
MR
70840
Zbl
0064.09406
article
Abstract
BibTeX
In this paper a fundamental solution of the ultrahyperbolic equation
\[
\sum^{n_1}_{\alpha=1} \frac{\partial^2 u}{(\partial x^{\alpha})^2} - \sum^{n_2}_{i=1} \frac{\partial^2u}{(\partial y^i)^2} = 0
\]
is constructed by means previously applied by the author [Fourès-Bruhat 1933] to the wave equation in an even number of variables; these means are a development of a method originally due to S. Sobolev [Dokl. Akad. Nauk SSSR (N.S.) 1933 , 258–262].
@article {key70840m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Solution \'{e}l\'{e}mentaire d'\'{e}quations
ultrahyperboliques},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {240},
YEAR = {1955},
PAGES = {395--396},
NOTE = {MR:70840. Zbl:0064.09406.},
ISSN = {0001-4036},
}
[16]
Y. Fourès-Bruhat :
“Solution élémentaire d’équations ultrahyperboliques à coefficients variables ,”
C. R. Acad. Sci. Paris
242
(1956 ),
pp. 1566–1568 .
MR
77774
Zbl
0075.10003
article
BibTeX
@article {key77774m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Solution \'{e}l\'{e}mentaire d'\'{e}quations
ultrahyperboliques \`a coefficients
variables},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {242},
YEAR = {1956},
PAGES = {1566--1568},
NOTE = {MR:77774. Zbl:0075.10003.},
ISSN = {0001-4036},
}
[17]
Y. Fourès-Bruhat :
“Solution élémentaire d’équations ultrahyperboliques ,”
J. Math. Pures Appl. (9)
35
(1956 ),
pp. 277–288 .
An earlier version of this paper was published as “Solutions élémentaire d’équations ultrahyperboliques,” C.R. Acad. Sci. Paris 240 , 395–396 (1955) .
MR
83667
article
Abstract
BibTeX
Construction d’une solution élémentaire de l’opérateur ultra-hyperbolique
\[\square = \sum^{n_1}_{i=1} \frac{\partial^2}{(\partial x^i)^2} - \sum^{n_2}_{j=1} \frac{\partial^2}{(\partial x^j)^2}.
\]
Si \( n_1 \) et \( n_2 \) sont impairs, l’auteur détermine cette solution élémentaire sous la forme d’une distribution \( E \) satisfaisant à l’équation \( \square E = \delta \) dans \( R^{n_1+n_2} \) (\( \delta \) : function de Dirac) et consituée par une somme finie de dérivées transversales de distributions portées par le cône caractéristique \( \sum \) de l’operateur \( \square \) , d’équation
\[
\sum^{n_1}_{i=1} (x^i)^2 - \sum^{n_2}_{i=1} (x^j)^2 = 0.
\]
Ces distributions sont en fait de simples puissances d’un paramètre variant sur une génératrice de \( \sum \) et sont obtenues comme solutions d’un système d’équations différentielles ordinaires. L’auteur passe aux autres valeurs de \( n_1 \) et \( n_2 \) par la méthode de descente.
@article {key83667m,
AUTHOR = {Four\`es-Bruhat, Y.},
TITLE = {Solution \'{e}l\'{e}mentaire d'\'{e}quations
ultrahyperboliques},
JOURNAL = {J. Math. Pures Appl. (9)},
FJOURNAL = {Journal de Math\'{e}matiques Pures et
Appliqu\'{e}es. Neuvi\`eme S\'{e}rie},
VOLUME = {35},
YEAR = {1956},
PAGES = {277--288},
NOTE = {An earlier version of this paper was
published as ``Solutions \'{e}l\'{e}mentaire
d'\'{e}quations ultrahyperboliques,''
\textit{C.R. Acad. Sci. Paris} \textbf{240},
395--396 (1955). MR:83667.},
ISSN = {0021-7824},
}
[18]
Y. Fourès-Bruhat :
“Sur l’intégration des équations de la relativité générale ,”
J. Rational Mech. Anal.
5
(1956 ),
pp. 951–966 .
MR
85123
Zbl
0075.21602
article
Abstract
BibTeX
It is well-known from the investigations of Cartan, Darmois, and Lichnerowicz that the integration of the field equations of the general relativity theory consists firstly in finding the initial conditions on a certain space-like hypersurface, say \( x^4=0 \) , and then in solving the corresponding Cauchy problem. The author develops here a method for integrating the system of four initial conditions \( S^4_{\alpha} =0 \) , \( S_{\alpha\beta} \) being the energy-momentum tensor. For this purpose she transcribes the field equations of Einstein into a suitable system of coordinates. Thereafter she reduces one elliptic equation with the help of the Green’s function and three hyperbolic equations into a system of integral equations. If the domain of integration is sufficiently small, this system can be integrated by means of successive approximations. In certain special cases there exist solutions which hold without any restriction of the size of the domain of integration. The developed method can be applied for the equations describing the gravitational field in the empty space (i.e., \( S_{\alpha\beta} = 0 \) ) as well as for the case when the space is filled with matter (\( S^{\alpha\beta}_{\alpha\beta} \neq 0 \) ).
@article {key85123m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Sur l'int\'{e}gration des \'{e}quations
de la relativit\'{e} g\'{e}n\'{e}rale},
JOURNAL = {J. Rational Mech. Anal.},
FJOURNAL = {Journal of Rational Mechanics and Analysis},
VOLUME = {5},
YEAR = {1956},
PAGES = {951--966},
DOI = {10.1512/iumj.1956.5.55036},
NOTE = {MR:85123. Zbl:0075.21602.},
ISSN = {1943-5282},
}
[19]
Y. Fourès-Bruhat :
“Problème des conditions initiales ,”
C. R. Acad. Sci. Paris
245
(1957 ),
pp. 1384–1386 .
MR
90448
Zbl
0089.44403
article
Abstract
BibTeX
Die Anfangsbedingungen der allgenmeinen Relativitätstheorie werden durch Einführung von isothermen Koordinaten formuliert und die Einsteinschen Gleichungen
\[ S^{\alpha\beta} \equiv R^{\alpha\beta}-\frac{1}{2}g^{\alpha\beta} R=0 \]
werden in der Form
\[ S^{\alpha\beta}_{[i]} \equiv [2\sqrt{-g}]^{-1}\cdot\{\square G^{\alpha\beta} + H^{\alpha\beta}\} = 0 \]
geschrieben, wo \( H^{\alpha\beta} \) die Ableitungen der Unbekannten von höchstens erster Ordnung enthält. Dadurch wird die Lösung der Einsteinschen Gleichungen auf ein System von quasi-linearen elliptischen Differentialgleichungen zurückgeführt.
@article {key90448m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Probl\`eme des conditions initiales},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {245},
YEAR = {1957},
PAGES = {1384--1386},
NOTE = {MR:90448. Zbl:0089.44403.},
ISSN = {0001-4036},
}
[20]
Y. Fourès-Bruhat :
“Le problème de l’évolution dans le cas matière pure ,”
C. R. Acad. Sci. Paris
246
(1958 ),
pp. 1809–1812 .
MR
105292
Zbl
0091.21206
article
BibTeX
@article {key105292m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Le probl\`eme de l'\'{e}volution dans
le cas mati\`ere pure},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {246},
YEAR = {1958},
PAGES = {1809--1812},
NOTE = {MR:105292. Zbl:0091.21206.},
ISSN = {0001-4036},
}
[21]
Y. Fourès-Bruhat :
“Équations d’Helmholtz: Détermination des vitesses à partir des tourbillons. Problème d’évolution ,”
C. R. Acad. Sci. Paris
246
(1958 ),
pp. 3319–3322 .
MR
105293
Zbl
0092.42603
article
Abstract
BibTeX
Es werden die relativistischen Helmhotzschen Gleichungen für ideale Flüssigkeiten für den Fall abgeleitet, daß sich der den Erhaltungsgesetzen
\[ \nabla_{\alpha}T^{\alpha\beta} = 0 \]
genügende Energieimpulstensor in der Form
\[ T_{\alpha\beta} = (\rho + p)u_{\alpha} u_{\beta} - pg_{\alpha\beta} \]
schreiben läßt, wo \( \rho = \varphi(p) \) die Flüssigkeitsdichte, \( p \) den Druck und \( u_{\alpha} \) den Geschwindigkeitsvektor bedeuten. Dann werden einige Relationen zwischen den Wirbeln und den Geschwindigkeiten angegeben, weiter wird die Fortplflanzung der hydrodynamischen Wellen untersucht. Endlich wird darauf hingewiesen, daß die Fl”ussigkeitsbewegung durch gewisse Anfangsbedingungen für die Geschwindigkeit und den Druck eindeutig bestimmt ist.
@article {key105293m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {\'{E}quations d'{H}elmholtz: {D}\'{e}termination
des vitesses \`a partir des tourbillons.
{P}robl\`eme d'\'{e}volution},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {246},
YEAR = {1958},
PAGES = {3319--3322},
NOTE = {MR:105293. Zbl:0092.42603.},
ISSN = {0001-4036},
}
[22]
Y. Fourès-Bruhat :
“Théorèmes d’existence en mécanique des fluides relativistes ,”
Bull. Soc. Math. France
86
(1958 ),
pp. 155–175 .
MR
105294
Zbl
0092.20804
article
Abstract
BibTeX
This paper contains a collection of existence and uniqueness theorems in general relativity. First the author shows that it is sufficient to use isothermal coordinates in space-time; next she discusses four cases for which the resulting equation-systems are hyperbolic in the sense of Leray, and for which Cauchy’s problem is well posed. Then the solutions exist, and are unique up to an arbitrary coordinate transformation, provided the initial data are correctly selected, are sufficiently differentiable, and are given on a hypersurface with a time-like normal.
@article {key105294m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Th\'{e}or\`emes d'existence en m\'{e}canique
des fluides relativistes},
JOURNAL = {Bull. Soc. Math. France},
FJOURNAL = {Bulletin de la Soci\'{e}t\'{e} Math\'{e}matique
de France},
VOLUME = {86},
YEAR = {1958},
PAGES = {155--175},
URL = {http://www.numdam.org/item?id=BSMF_1958__86__155_0},
NOTE = {MR:105294. Zbl:0092.20804.},
ISSN = {0037-9484},
}
[23]
Y. Fourès-Bruhat :
“Fluides chargés de conductivité infinie ,”
C. R. Acad. Sci. Paris
248
(1959 ),
pp. 2558–2560 .
MR
103026
Zbl
0085.21203
article
Abstract
BibTeX
L’auteur établit les équations des chocs pour un fluide relativiste doué de conductivité électrique infinie. Elle en déduit par considération des chocs infiniment faibles, l’équation qui détermine les hypersurfaces constituant les fronts d’ondes du premier ordre, et calcule la vitesse de propagation de ces ondes par rapport au repére propre.
@article {key103026m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Fluides charg\'{e}s de conductivit\'{e}
infinie},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {248},
YEAR = {1959},
PAGES = {2558--2560},
NOTE = {MR:103026. Zbl:0085.21203.},
ISSN = {0001-4036},
}
[24]
Y. Fourès-Bruhat :
“Conditions de continuité et équations de choc ,”
C. R. Acad. Sci. Paris
248
(1959 ),
pp. 1782–1784 .
MR
104497
Zbl
0085.42605
article
Abstract
BibTeX
The author states that if the metric tensor of a space time is such that its components are continuous functions of the local coordinates, if their derivatives are continuous except possibly across a surface of discontinuity, and if the field equations obtain in the sense of the theory of distributions, then the conditions that must be satisfied by the derivatives of the \( g_{\mu\nu} \) , obtained by the reviewer [Taub 1957], must hold. The generalisation of the Rankine–Hugoniot equations also given by the reviewer are obtained from the Bianchi identities. The latter equations are examined in some detail for the case of a perfect charged fluid.
@article {key104497m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Conditions de continuit\'{e} et \'{e}quations
de choc},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {248},
YEAR = {1959},
PAGES = {1782--1784},
NOTE = {MR:104497. Zbl:0085.42605.},
ISSN = {0001-4036},
}
[25]
Y. Fourès-Bruhat :
“Mécanique des fluides relativistes ,”
Cahiers de Phys.
13
(1959 ),
pp. 463–468 .
MR
109720
article
Abstract
BibTeX
In an earlier paper [Fourès-Bruhat 1958] the author has discussed the existence of well posed initial value problems in general relativity. In this note the author gives a survey of her work. A new result is also quoted according to which the equation system describing a gravitational field, an electromagnetic field and a charged fluid in motion does not lead to a well posed initial value problem if the fluid has a finite electric conductivity.
@article {key109720m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {M\'{e}canique des fluides relativistes},
JOURNAL = {Cahiers de Phys.},
FJOURNAL = {Cahiers de Physique},
VOLUME = {13},
YEAR = {1959},
PAGES = {463--468},
NOTE = {MR:109720.},
ISSN = {0366-5291},
}
[26]
Y. Fourès-Bruhat :
“Propagateurs et solutions d’équations homogènes hyperboliques ,”
C. R. Acad. Sci. Paris
251
(1960 ),
pp. 29–31 .
MR
113042
Zbl
0147.08501
article
Abstract
BibTeX
@article {key113042m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Propagateurs et solutions d'\'equations
homog\`enes hyperboliques},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {251},
YEAR = {1960},
PAGES = {29--31},
NOTE = {MR:113042. Zbl:0147.08501.},
ISSN = {0001-4036},
}
[27]
Y. Bruhat :
“Système elliptique pour le problème des conditions initiales ,”
C. R. Acad. Sci. Paris
252
(1961 ),
pp. 3411–3413 .
MR
129941
Zbl
0100.40502
article
Abstract
BibTeX
@article {key129941m,
AUTHOR = {Bruhat, Yvonne},
TITLE = {Syst\`eme elliptique pour le probl\`eme
des conditions initiales},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {252},
YEAR = {1961},
PAGES = {3411--3413},
NOTE = {MR:129941. Zbl:0100.40502.},
ISSN = {0001-4036},
}
[28]
Y. Bruhat :
“The Cauchy problem ,”
pp. 130–168
in
Gravitation: An introduction to current research .
Wiley (New York ),
1962 .
MR
143626
incollection
BibTeX
@incollection {key143626m,
AUTHOR = {Bruhat, Yvonne},
TITLE = {The {C}auchy problem},
BOOKTITLE = {Gravitation: {A}n introduction to current
research},
PUBLISHER = {Wiley},
ADDRESS = {New York},
YEAR = {1962},
PAGES = {130--168},
NOTE = {MR:143626.},
}
[29]
Y. Fourès-Bruhat :
“Les fluides chargés en relativité générale ,”
pp. 157–163
in
Les théories relativistes de la gravitation
(Royaumont, 1959 ).
Éditions du Centre National de la Recherche Scientifique (CNRS) (Paris ),
1962 .
MR
164729
incollection
BibTeX
@incollection {key164729m,
AUTHOR = {Four\`es-Bruhat, Y.},
TITLE = {Les fluides charg\'{e}s en relativit\'{e}
g\'{e}n\'{e}rale},
BOOKTITLE = {Les th\'{e}ories relativistes de la
gravitation},
PUBLISHER = {\'{E}ditions du Centre National de la
Recherche Scientifique (CNRS)},
ADDRESS = {Paris},
YEAR = {1962},
PAGES = {157--163},
NOTE = {({R}oyaumont, 1959). MR:164729.},
}
[30]
A. Lichnerowicz and Y. Fourès-Bruhat :
“Problèmes mathématiques en relativité ,”
pp. 73–87
in
Recent developments in general relativity .
Pergamon; PWN (Polish Scientific Publishers) (Oxford; Warsaw ),
1962 .
MR
164751
incollection
People
BibTeX
@incollection {key164751m,
AUTHOR = {Lichnerowicz, A. and Four\`es-Bruhat,
Y.},
TITLE = {Probl\`emes math\'{e}matiques en relativit\'{e}},
BOOKTITLE = {Recent developments in general relativity},
PUBLISHER = {Pergamon; PWN (Polish Scientific Publishers)},
ADDRESS = {Oxford; Warsaw},
YEAR = {1962},
PAGES = {73--87},
NOTE = {MR:164751.},
}
[31]
Y. Choquet-Bruhat :
Recueil de problèmes de mathématiques à l’usage des physiciens .
Masson & Cie (Paris ),
1963 .
MR
157517
Zbl
0114.05901
book
BibTeX
@book {key157517m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Recueil de probl\`emes de math\'{e}matiques
\`a l'usage des physiciens},
PUBLISHER = {Masson \& Cie},
ADDRESS = {Paris},
YEAR = {1963},
PAGES = {vi+318},
NOTE = {MR:157517. Zbl:0114.05901.},
}
[32]
Y. Bruhat :
“Un théorème d’unicité de solutions faibles d’équations
hyperboliques ,”
C. R. Acad. Sci. Paris
258
(1964 ),
pp. 3949–3951 .
MR
168927
Zbl
0178.45404
article
Abstract
BibTeX
@article {key168927m,
AUTHOR = {Bruhat, Yvonne},
TITLE = {Un th\'{e}or\`eme d'unicit\'{e} de solutions
faibles d'\'{e}quations hyperboliques},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {258},
YEAR = {1964},
PAGES = {3949--3951},
NOTE = {MR:168927. Zbl:0178.45404.},
ISSN = {0001-4036},
}
[33]
Y. Bruhat :
“Sur la théorie des propagateurs ,”
Ann. Mat. Pura Appl. (4)
64
(1964 ),
pp. 191–228 .
MR
169659
Zbl
0173.36501
article
Abstract
BibTeX
@article {key169659m,
AUTHOR = {Bruhat, Y.},
TITLE = {Sur la th\'{e}orie des propagateurs},
JOURNAL = {Ann. Mat. Pura Appl. (4)},
FJOURNAL = {Annali di Matematica Pura ed Applicata.
Serie Quarta},
VOLUME = {64},
YEAR = {1964},
PAGES = {191--228},
DOI = {10.1007/BF02410053},
NOTE = {MR:169659. Zbl:0173.36501.},
ISSN = {0003-4622},
}
[34]
Y. Bruhat :
“Ondes asymptotiques pour certaines équations aux dérivées partielles nonlinéaires ,”
C. R. Acad. Sci. Paris
258
(1964 ),
pp. 3809–3812 .
MR
201788
Zbl
0124.30704
article
Abstract
BibTeX
@article {key201788m,
AUTHOR = {Bruhat, Yvonne},
TITLE = {Ondes asymptotiques pour certaines \'{e}quations
aux d\'{e}riv\'{e}es partielles nonlin\'{e}aires},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {258},
YEAR = {1964},
PAGES = {3809--3812},
NOTE = {MR:201788. Zbl:0124.30704.},
ISSN = {0001-4036},
}
[35]
Y. Bruhat :
“Fluides chargés inductifs de conductivité finie ,”
C. R. Acad. Sci. Paris
261
(1965 ),
pp. 3545–3548 .
MR
187560
article
Abstract
BibTeX
On montre que les équations des fluides chargés inductifs relativistes, de conductivité finie, telles qu’elles ont été obtenues par G. Pichon à partir du tenseur d’impulsion-énergie non symétrisé, forment un système hyperbolique non strict au sense de J. Leray et Y. Ohya.
@article {key187560m,
AUTHOR = {Bruhat, Yvonne},
TITLE = {Fluides charg\'{e}s inductifs de conductivit\'{e}
finie},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {261},
YEAR = {1965},
PAGES = {3545--3548},
NOTE = {MR:187560.},
ISSN = {0001-4036},
}
[36]
Y. Bruhat and P. M. Quan :
“Thermodynamique des fluides chargés ,”
C. R. Acad. Sci. Paris
261
(1965 ),
pp. 3987–3990 .
MR
189406
article
Abstract
People
BibTeX
On étudie un modèle relativiste de fluide chargé en présence d’inductions électromagnétiques et d’échanges thermiques. Équation de la chaleur, équations du mouvement. Problème de Cauchy, variétés caractéristiques. Discussion.
@article {key189406m,
AUTHOR = {Bruhat, Yvonne and Pham Mau Quan},
TITLE = {Thermodynamique des fluides charg\'{e}s},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {261},
YEAR = {1965},
PAGES = {3987--3990},
NOTE = {MR:189406.},
ISSN = {0001-4036},
}
[37]
Y. Bruhat :
“Uniformisation de la solution d’un problème de Cauchy
analytique non linéaire ,”
C. R. Acad. Sci. Paris
261
(1965 ),
pp. 2056–2059 .
MR
190560
Zbl
0135.15003
article
Abstract
BibTeX
The author extends the results of [Gårding et al. 1964] on linear systems to non linear systems. Let \( X \) be a complex analytic manifold of complex dimension \( l \) and \( S \) be an analytic sub-manifold of \( X \) which is defined by \( S \) : \( \xi - s(x) = 0 \) (\( \operatorname{grad} s(x) \neq 0 \) , \( \xi \in C \) ). The author considers the Cauchy problem:
\begin{equation}
a_{j,k}(x,\xi,D^{m_k - n_j-1}, u^h, D^{m_k-n_j})u^k + b_j(x,\xi,d^{m_h- n_j-1}u^h = 0) \tag{1}
\end{equation}
(\( j,k=1,\dots,N \) ) with initial conditions
\[ \Bigl(\frac{\partial}{\partial x}\Bigr)^{\beta} (u^k(\xi,x)- w^k(\xi,x))= 0 \]
(\( |\beta|\leq m_k-1 \) ) on \( S \) , where \( a_{j,k} \) and \( w^k (x,\xi) \) are holomorphic functions and \( S \) admits characteristic points of the equation (1). He proves that there exists a uniformisation \( \xi(t,x) \) , \( \xi(0,x) = s(x) \) [depending on the Cauchy data \( w^k(x,\xi) \) ] for the solutions \( u^k(\xi,x) \) up to order \( m_k-1 \) , i.e.,
\[ \Bigl(\frac{\partial}{\partial x}\Bigr)^{\beta} u^k (\xi(t,x),x) \]
(\( |\beta| \leq m_k-1 \) ) are holomorphic for sufficiently small \( t \) .
@article {key190560m,
AUTHOR = {Bruhat, Yvonne},
TITLE = {Uniformisation de la solution d'un probl\`eme
de {C}auchy analytique non lin\'{e}aire},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {261},
YEAR = {1965},
PAGES = {2056--2059},
NOTE = {MR:190560. Zbl:0135.15003.},
ISSN = {0001-4036},
}
[38]
Y. Bruhat :
“Diagonalisation des systèmes quasi linéaires et hyperbolicité non stricte: Applications à la magnétohydrodynamique
relativiste ,”
C. R. Acad. Sci. Paris
261
(1965 ),
pp. 4315–4317 .
MR
203260
Zbl
0134.08302
article
Abstract
BibTeX
This note presents a sufficient condition for the non-strict hyperbolicity, in the sense of Leray–Ohya, of a non-diagonal system of quasi-linear partial differential equations. An application to the relativistic magnetohydrodynamics of a perfectly conducting gas is briefly discussed.
@article {key203260m,
AUTHOR = {Bruhat, Yvonne},
TITLE = {Diagonalisation des syst\`emes quasi
lin\'{e}aires et hyperbolicit\'{e} non
stricte: {A}pplications \`a la magn\'{e}tohydrodynamique
relativiste},
JOURNAL = {C. R. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences},
VOLUME = {261},
YEAR = {1965},
PAGES = {4315--4317},
NOTE = {MR:203260. Zbl:0134.08302.},
ISSN = {0001-4036},
}
[39]
Y. Bruhat :
“Etude des équations des fluides chargés relativistes inductifs et conducteurs ,”
Comm. Math. Phys.
3 : 5
(1966 ),
pp. 334–357 .
MR
1552502
Zbl
0171.46605
article
Abstract
BibTeX
In the first part a system of equations for an inductive charged relativistic fluid with finite conductivity is written in a space time with given metric, taking into account thermodynamic phenomena. Speeds of propagation of various types of waves are determined under a restrictive hypothesis concerning the heat current \( q \) : that \( q \) depends only on the thermodynamical quantities and the gradient of one function of these quantities.
In the second part it is shown, by a detailed study of the characteristic polynomial and of its irreducible factors, that, when \( q \) is negligible, the proposed system is non-strictly hyperbolic in the sense of J. Leray and Y. Ohya and existence and uniqueness theorems of a certain Gevrey class are verified the relativistic causality principle is satisfied under some physically reasonable assumptions on the thermodynamical quantities. The system becomes strictly hyperbolic (existence and uniqueness theorems obtain in classes of functions with a finite number of derivatives) when the fluid is both non inductive and of zero electrical conductivity.
In the third part we show briefly, by the methods of the second part, that the equations of relativistic fluids, with an infinite electrical conductivity is also non-strictly hyperbolic. The linearized equations (in the neighborhood of constant values) are strictly hyperbolic.
@article {key1552502m,
AUTHOR = {Bruhat, Yvonne},
TITLE = {Etude des \'equations des fluides charg\'{e}s
relativistes inductifs et conducteurs},
JOURNAL = {Comm. Math. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {3},
NUMBER = {5},
YEAR = {1966},
PAGES = {334--357},
DOI = {10.1007/BF01645087},
NOTE = {MR:1552502. Zbl:0171.46605.},
ISSN = {0010-3616},
}
[40]
Y. Choquet-Bruhat :
“Diagonalisation des systèmes quasi-linéaires et hyperbolicité non stricte ,”
J. Math. Pures Appl. (9)
45
(1966 ),
pp. 371–386 .
An earlier version of this paper appeared in C.R. Acad. Sci. 261 , 4315–4317 (1965) .
MR
216131
Zbl
0147.08505
article
BibTeX
@article {key216131m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Diagonalisation des syst\`emes quasi-lin\'{e}aires
et hyperbolicit\'{e} non stricte},
JOURNAL = {J. Math. Pures Appl. (9)},
FJOURNAL = {Journal de Math\'{e}matiques Pures et
Appliqu\'{e}es. Neuvi\`eme S\'{e}rie},
VOLUME = {45},
YEAR = {1966},
PAGES = {371--386},
NOTE = {An earlier version of this paper appeared
in \textit{C.R. Acad. Sci.} \textbf{261},
4315--4317 (1965). MR:216131. Zbl:0147.08505.},
ISSN = {0021-7824},
}
[41]
Y. Choquet-Bruhat :
“Uniformisation de la solution d’un problème de Cauchy non
linéaire à données holomorphes ,”
Bull. Soc. Math. France
94
(1966 ),
pp. 25–48 .
MR
217423
Zbl
0147.08201
article
Abstract
BibTeX
Nous nous proposons d’étendre certains résultats de Jean Leray [Leray 1957] et de L. Gårding, T. Kotaké et J. Leray [Gårding et al. 1964] sur la solution d’un problème de Cauchy linéaire à donnés holomorphes au cas d’un système d’équations aux dérivées partielles non linéaires. Nous montrons que pour un système d’équations aux dérivées partielles quasi-linéaire, à coefficients holomorphes, régulier au sens de Cauchy–Kovalevski, généralisé par Leray–Gårding, il existe une application holomorphe uniformisant la solution du problème de Cauchy donné sur une variété analytique \( S \) pouvant admettre des points caractéristiques. En général, \( u \) est algébroïde et le support \( K \) de ses singularités est un ensemble analytique de codimension 1.
@article {key217423m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Uniformisation de la solution d'un probl\`eme
de {C}auchy non lin\'{e}aire \`a donn\'{e}es
holomorphes},
JOURNAL = {Bull. Soc. Math. France},
FJOURNAL = {Bulletin de la Soci\'{e}t\'{e} Math\'{e}matique
de France},
VOLUME = {94},
YEAR = {1966},
PAGES = {25--48},
DOI = {10.24033/bsmf.1632},
URL = {http://www.numdam.org/item?id=BSMF_1966__94__25_0},
NOTE = {MR:217423. Zbl:0147.08201.},
ISSN = {0037-9484},
}
[42]
Y. Choquet-Bruhat :
Problems and solutions in mathematical physics .
Holden-Day (San Francisco, CA–London–Amsterdam ),
1967 .
Translation of Recueil de problèmes de mathématiques à l’usage des physiciens .
MR
213076
Zbl
0148.18303
book
BibTeX
@book {key213076m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Problems and solutions in mathematical
physics},
PUBLISHER = {Holden-Day},
ADDRESS = {San Francisco, CA--London--Amsterdam},
YEAR = {1967},
PAGES = {x+315},
NOTE = {Translation of \textit{Recueil de probl\`emes
de math\'ematiques \`a l'usage des physiciens}.
MR:213076. Zbl:0148.18303.},
}
[43]
Y. Choquet-Bruhat :
“Ondes asymptotiques pour un système d’équations aux dérivées
partielles non linéaires ,”
C. R. Acad. Sci. Paris Sér. A-B
264
(1967 ),
pp. A625–A628 .
MR
218720
Zbl
0146.33201
article
Abstract
BibTeX
Construction par quadratures d’ondes asyptotiques ou approchées, de grande fréquence, pour un système aux dérivées partielles du premier ordre, non linéaires, au voisinage d’une solution donnée de ce système.
@article {key218720m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Ondes asymptotiques pour un syst\`eme
d'\'{e}quations aux d\'{e}riv\'{e}es
partielles non lin\'{e}aires},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {264},
YEAR = {1967},
PAGES = {A625--A628},
NOTE = {MR:218720. Zbl:0146.33201.},
ISSN = {0151-0509},
}
[44]
Y. Choquet-Bruhat :
Géométrie différentielle et systèmes extérieurs .
Monographies Universitaires de Mathématiques 28 .
Dunod (Paris ),
1968 .
MR
236824
Zbl
0164.22001
book
BibTeX
@book {key236824m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {G\'{e}om\'{e}trie diff\'{e}rentielle
et syst\`emes ext\'{e}rieurs},
SERIES = {Monographies Universitaires de Math\'{e}matiques},
NUMBER = {28},
PUBLISHER = {Dunod},
ADDRESS = {Paris},
YEAR = {1968},
PAGES = {xvii+328},
NOTE = {MR:236824. Zbl:0164.22001.},
}
[45]
Y. Choquet-Bruhat :
“Hyperbolic partial differential equations on a manifold ,”
pp. 84–106
in
Battelle Rencontres: 1967 Lectures in Mathematics and Physics .
Edited by C. M. DeWitt and J. A. Wheeler .
Benjamin (New York ),
1968 .
MR
239299
incollection
BibTeX
@incollection {key239299m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Hyperbolic partial differential equations
on a manifold},
BOOKTITLE = {Battelle {R}encontres: 1967 {L}ectures
in {M}athematics and {P}hysics},
EDITOR = {Cecile M. DeWitt and J. A. Wheeler},
PUBLISHER = {Benjamin},
ADDRESS = {New York},
YEAR = {1968},
PAGES = {84--106},
NOTE = {MR:239299.},
}
[46]
Y. Choquet-Bruhat :
“Théorème global d’unicité pour les solutions des équations d’Einstein ,”
C. R. Acad. Sci. Paris Sér. A-B
266
(1968 ),
pp. A182–A184 .
MR
232588
Zbl
0162.29702
article
Abstract
BibTeX
Nous nous proposons, après avoir donné les définitions nécessaires, de démontrer le théorème suivant:
Théorème global d’unicité:
Hypothèses :
\( (V_4,g) \) et \( (V^{\prime}_4,g^{\prime}) \) sont desux espaces-temps einsteiniens, réguliers et globalement hyperboliques; \( (V^{\prime}_4,g^{\prime}) \) est complet vers le futur;
\( P \) (respectivement \( P^{\prime} \) ) étant un ensemble compact vers le passé de \( (V_4,g) \) (respectivement \( (V^{\prime}_4,g^{\prime}) \) ) tel que \( P=\mathcal{E}^+_P \) (respectivement \( P^{\prime}=\mathcal{E}^+_{P^{\prime}} \) ) il existe une isométrie \( f \) de \( \complement P \) sur \( \complement^{\prime} P^{\prime} \) .
Conclusion : Il existe une isométrie de \( (V_4,g) \) sur \( (D^{\prime},g^{\prime}) \) où \( D^{\prime} \) est un ouvert de \( V^{\prime}_4 \) .
@article {key232588m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Th\'{e}or\`eme global d'unicit\'{e}
pour les solutions des \'{e}quations
d'{E}instein},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {266},
YEAR = {1968},
PAGES = {A182--A184},
NOTE = {MR:232588. Zbl:0162.29702.},
ISSN = {0151-0509},
}
[47]
Y. Choquet-Bruhat :
“Espaces-temps einsteiniens généraux, chocs gravitationnels ,”
Ann. Inst. H. Poincaré Sect. A (N.S.)
8
(1968 ),
pp. 327–338 .
MR
233576
Zbl
0162.29703
article
Abstract
BibTeX
Nous donnons dans cet article une définition très large de ce qu’est un espace-temps, aussi large qu’il semble possible pour que les principes de base de la Relativité Générale soient respectés d’une part, pour que les équations d’Einstein aient un sens dans le cadre de la théorie des distributions d’autre part. Nous donnons des conditions dites “de régularité forte” pour que le problème de Cauchy (local) ait une solution et une seule.
Un cas particulier des espaces-temps ainsi définis est celui des espaces-temps présentant des chocs gravitationnels. Nous écrivons les équations de ces chocs sous forme intrinsèque, à la traversée d’une hypersurface S que nous supposons seulement lipshitzienne. Nous montrons que les quatre conditions vérifiées lors d’un tel choc à travers une variété caractéristique expriment la continuité des conditions d’harmonicité.
Ce dernier résultat nous permet de montrer l’unicité du prolongement d’un espace-temps à travers un conoïde caractéristique, même si ce dernier peut être surface d’onde de choc gravitationnel.
@article {key233576m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Espaces-temps einsteiniens g\'{e}n\'{e}raux,
chocs gravitationnels},
JOURNAL = {Ann. Inst. H. Poincar\'{e} Sect. A (N.S.)},
FJOURNAL = {Annales de l'Institut Henri Poincar\'{e}.
Section A. Physique Th\'{e}orique. Nouvelle
S\'{e}rie},
VOLUME = {8},
YEAR = {1968},
PAGES = {327--338},
URL = {http://www.numdam.org/item/AIHPA_1968__8_4_327_0.pdf},
NOTE = {MR:233576. Zbl:0162.29703.},
ISSN = {0246-0211},
}
[48]
Y. Choquet-Bruhat :
“Construction de solutions radiatives approchées des équations
d’Einstein ,”
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8)
44
(1968 ),
pp. 649–652 .
A paper of the same title appears in Comm. Math. Phys. , 12 , 16–35 (1969) .
MR
242456
article
BibTeX
@article {key242456m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Construction de solutions radiatives
approch\'{e}es des \'{e}quations d'{E}instein},
JOURNAL = {Atti Accad. Naz. Lincei Rend. Cl. Sci.
Fis. Mat. Nat. (8)},
FJOURNAL = {Atti della Accademia Nazionale dei Lincei.
Rendiconti. Classe di Scienze Fisiche,
Matematiche e Naturali. Serie VIII},
VOLUME = {44},
YEAR = {1968},
PAGES = {649--652},
NOTE = {A paper of the same title appears in
\textit{Comm. Math. Phys.}, \textbf{12},
16--35 (1969). MR:242456.},
ISSN = {0392-7881},
}
[49]
Y. Choquet-Bruhat :
“Ondes asymptotiques pour un système d’équations aux dérivées partielles à caractéristiques multiples ,”
C. R. Acad. Sci. Paris Sér. A-B
267
(1968 ),
pp. A596–A598 .
MR
252823
Zbl
0159.38602
article
Abstract
BibTeX
Nous avons construit, dans une Note précédente [Choquet-Bruhat 1967], des ondes asymptotiques et approchées pour un système d’équations aux derivées partielles non linéaires, en nous inspirant de la méthode donnée dans le cas linéaire par L. Gårding, T. Kotaké et J. Leray [Gårding et al. 1964] pour une phase correspondant à une caractéristique simple. Nous nous proposons d’étudier ici le cas de phases correspondant à des caractéristiques multiples du système d’équations aux dérivées partielles considéré.
Nous utiliserons la classification des systèmes à caractéristique multiples de J. Vaillant [Vaillant 1968].
@article {key252823m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Ondes asymptotiques pour un syst\`eme
d'\'{e}quations aux d\'{e}riv\'{e}es
partielles \`a caract\'{e}ristiques
multiples},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {267},
YEAR = {1968},
PAGES = {A596--A598},
NOTE = {MR:252823. Zbl:0159.38602.},
ISSN = {0151-0509},
}
[50]
Y. Choquet-Bruhat :
“Construction de solutions radiatives approchées des équations d’Einstein ,”
Comm. Math. Phys.
12
(1969 ),
pp. 16–35 .
This paper seems to be related to an earlier paper of the same title, published in 1968 in Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 44 .
MR
241087
article
Abstract
BibTeX
In this paper we construct rigorously, without any averaging scheme, an hyperbolic metric
\begin{equation}
g_{\alpha,\beta}(x, \omega\, \varphi) \,\overset{0}g_{\alpha,\beta}(x) + \frac{1}{\omega} \overset{1}{g}_{\alpha,\beta}(x, \omega\, \varphi) + \frac{1}{\omega^2} \overset{2}{g}_{\alpha,\beta} (x,\omega\,\varphi)
\tag{1}
\end{equation}
where \( x \) is a point of the space-time \( V_4 \) , \( \varphi \) a scalar function on \( V_4 \) (the “phase”) and \( \omega \) a great parameter (the “frequency”). This metric is an approximate solution of Einstein’s equations: it verifies
\begin{equation}
R_{\alpha,\beta} = O(\omega^{-1}), \tag{2}
\end{equation}
\( \overset{0}{g}_{\alpha,\beta_1} \) and its derivatives, \( \overset{1}{g}_{\alpha,\beta} \) and \( \overset{2}{g}_{\alpha,\beta} \) being bounded, the first and second derivatives of \( \overset{1}{g}_{\alpha,\beta} \) , \( \overset{2}{g}_{\alpha,\beta} \) or order respectively \( O(\omega) \) and \( O(\omega^2) \) .
We first show that the Ricci tensor of (1) stays bounded (when \( \omega \) increases), with a perturbation \( \overset{1}{g}_{\alpha,\beta} \) physically significant, if and only if \( \varphi \) verifies the characteristic equation of the back-ground metric and \( \overset{1}{g}_{\alpha,\beta} \) four algebraic, linear relations, (5.7) and (5.8) in radiative coordinates \( x^0 = \varphi \) .
We show afterwards that (1) satisfies (2) if \( \overset{1}{g}_{\alpha,\beta} \) satisfies ordinary differential first order equations (which take a very simple form in radiative coordinates) along the rays of the background, the preceding algebraic relations can be considered as “initial conditions” if the Ricci tensor of the background is of the radiative form
\[
R_{\alpha,\beta}(\overset{0}{g}_{\lambda,\mu}) = \tau \,\partial_\alpha \varphi \,\partial_\beta \varphi.
\]
It is possible to find \( \overset{1}{g}_{\alpha,\beta} \) and \( \overset{2}{g}_{\alpha,\beta} \) with the required conditions of boundedness only if \( \tau > 0 \) .
We apply the results to the Vaydya metric (13.1) and show that, by an oscillatory perturbation of this metric one can satisfy Einstein’s equations (to the order \( \omega^{-1} \) ) if the coefficient \( m \) usually interpreted as the mass is a decreasing function of \( \varphi = u \) , which gives, in this context, a proof of the loss of mass by gravitational radiation.
@article {key241087m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Construction de solutions radiatives
approch\'{e}es des \'{e}quations d'{E}instein},
JOURNAL = {Comm. Math. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {12},
YEAR = {1969},
PAGES = {16--35},
DOI = {10.1007/BF01646432},
URL = {http://projecteuclid.org/euclid.cmp/1103841306},
NOTE = {This paper seems to be related to an
earlier paper of the same title, published
in 1968 in \textit{Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Nat.}
\textbf{44}. MR:241087.},
ISSN = {0010-3616},
}
[51]
Y. Choquet-Bruhat :
“Problème de Cauchy oscillatoire pour un système de deux
équations quasi linéaires à deux inconnues ,”
C. R. Acad. Sci. Paris Sér. A-B
268
(1969 ),
pp. A1560–A1563 .
MR
244632
Zbl
0175.39501
article
Abstract
BibTeX
Nous avons donné dans [Choquet-Bruhat 1967] une méthode de construction d’ondes approchées pour un système d’équations aux dérivées partielles quasi linéaires, généralisant la méthode de [Leray 1961] et [Gårding et al. 1964] du cas linéaire. Nous appliquons ici la méthode à la résolution approchée d’un problème de Cauchy oscillatoire. L’absence du principe de superposition des solutions impose un raisonnement différent de celui du cas linéaire.
@article {key244632m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Probl\`eme de {C}auchy oscillatoire
pour un syst\`eme de deux \'{e}quations
quasi lin\'{e}aires \`a deux inconnues},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {268},
YEAR = {1969},
PAGES = {A1560--A1563},
NOTE = {MR:244632. Zbl:0175.39501.},
ISSN = {0151-0509},
}
[52]
Y. Choquet-Bruhat and R. Geroch :
“Global aspects of the Cauchy problem in general relativity ,”
Comm. Math. Phys.
14
(1969 ),
pp. 329–335 .
MR
250640
Zbl
0182.59901
article
Abstract
People
BibTeX
It is shown that, given any set of initial data for Einstein’s equations which satisfy the constraint conditions, there exists a development of that data which is maximal in the sense that it is an extension of every other development. These maximal developments form a well-defined class of solutions of Einstein’s equations. Any solution of Einstein’s equations which has a Cauchy surface may be embedded in exactly one such maximal development
@article {key250640m,
AUTHOR = {Choquet-Bruhat, Yvonne and Geroch, Robert},
TITLE = {Global aspects of the {C}auchy problem
in general relativity},
JOURNAL = {Comm. Math. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {14},
YEAR = {1969},
PAGES = {329--335},
DOI = {10.1007/BF01645389},
URL = {http://projecteuclid.org/euclid.cmp/1103841822},
NOTE = {MR:250640. Zbl:0182.59901.},
ISSN = {0010-3616},
}
[53]
Y. Choquet-Bruhat and R. Geroch :
“Problème de Cauchy intrinsèque en relativité générale ,”
C. R. Acad. Sci. Paris Sér. A-B
269
(1969 ),
pp. A746–A748 .
A version of this paper appeared as “Problème de Cauchy global en relativité générale,” Séminaire Jean Leray , no. 2, 1–7 (1969–1970) and a related paper was published in English as “Global aspects of the Cauchy problem in general reliativity,” Commun. Math. Phys. 14 , 329–335 (1969) .
MR
255214
article
Abstract
People
BibTeX
Nous donnons ici un énoncé du problème de Cauchy intrinsèque en Relativité générale et nous démontrons un théorème d’existence et d’unicité locale s’appuyant sur les résultats précédemment obtenus mais admettant une formulation purement géométrique en termes de variété initiale (de dimension 3) et de tenseurs sur cette variété. Cette formulation nous permet de démontrer, dans un autre travail, un tel théorème, global, pour les espaces temps globalement hyperboliques au sense de J. Leray.
@article {key255214m,
AUTHOR = {Choquet-Bruhat, Yvonne and Geroch, Robert},
TITLE = {Probl\`eme de {C}auchy intrins\`eque
en relativit\'{e} g\'{e}n\'{e}rale},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {269},
YEAR = {1969},
PAGES = {A746--A748},
NOTE = {A version of this paper appeared as
``Probl\`eme de Cauchy global en relativit\'e
g\'en\'erale,'' \textit{S\'eminaire
Jean Leray}, no. 2, 1--7 (1969--1970)
and a related paper was published in
English as ``Global aspects of the Cauchy
problem in general reliativity,'' \textit{Commun.
Math. Phys.} \textbf{14}, 329--335 (1969).
MR:255214.},
ISSN = {0151-0509},
}
[54]
Y. Choquet-Bruhat :
“Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires ,”
J. Math. Pures Appl. (9)
48
(1969 ),
pp. 117–158 .
This paper appears to be related to two other versions by the same or similar title, one earlier and one contemporaneous with the present entry. They are, respectively: (1) “Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires,” C.R. Aad. Sc. 264 , 625–638 (1967) ; and (2) “Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires,” Séminaire Jean Leray 3 , 1–10 (1969) .
MR
255964
Zbl
0177.36404
article
BibTeX
@article {key255964m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Ondes asymptotiques et approch\'{e}es
pour des syst\`emes d'\'{e}quations
aux d\'{e}riv\'{e}es partielles non
lin\'{e}aires},
JOURNAL = {J. Math. Pures Appl. (9)},
FJOURNAL = {Journal de Math\'{e}matiques Pures et
Appliqu\'{e}es. Neuvi\`eme S\'{e}rie},
VOLUME = {48},
YEAR = {1969},
PAGES = {117--158},
NOTE = {This paper appears to be related to
two other versions by the same or similar
title, one earlier and one contemporaneous
with the present entry. They are, respectively:
(1) ``Ondes asymptotiques et approch\'{e}es
pour un syst\`eme d'\'{e}quations aux
d\'{e}riv\'{e}es partielles non lin\'{e}aires,''
\textit{C.R. Aad. Sc.} \textbf{264},
625--638 (1967); and (2) ``Ondes asymptotiques
et approch\'{e}es pour un syst\`eme
d'\'{e}quations aux d\'{e}riv\'{e}es
partielles non lin\'{e}aires,'' \textit{S\'eminaire
Jean Leray} \textbf{3}, 1--10 (1969).
MR:255964. Zbl:0177.36404.},
ISSN = {0021-7824},
}
[55]
Y. Choquet-Bruhat :
“Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires ,”
Séminaire Jean Leray
3
(1969 ),
pp. 1–10 .
article
Abstract
BibTeX
Nous nous proposons de construire des ondes asymptotiques et des ondes approchées, pour un système d’équations aux dérivées partielles non linéaires sur une variété différentiable \( X \) en utilisant la méthode générale donnée par J. Leray [Leray 1961] et Gårding–Kotaké–Leray [Gårding et al. 1964] pour les systèmes linéaires à caractéristiques simples. Nous effectuons cette construction au voisinage d’une solution donnée du système et nous obtenons les termes successifs du développement par des quadratures sur des “rayons”, bicaractéristiques correspondant à la solution donnée, commes dans le cas linéaire. Nous voyons cependant apparaître ici un phénomène nouveau pour les ondes authentiquement non linéaires (ondes non exceptionelles au sens de Lax) qui est une déformation des signaux (“raidissement” conduisant aux phénomènes de choc). Les ondes asymptotiques obtenues ne sont, d’autre part, en général, dans le cas non linéaire, des ondes approchées qu’en se limitant aux deux premiers terms du dévloppement.
@article {key20941115,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Ondes asymptotiques et approch\'{e}es
pour un syst\`eme d'\'{e}quations aux
d\'{e}riv\'{e}es partielles non lin\'{e}aires},
JOURNAL = {S\'eminaire Jean Leray},
VOLUME = {3},
YEAR = {1969},
PAGES = {1--10},
URL = {http://www.numdam.org/item/SJL_1969___3_1_0.pdf},
}
[56]
Y. Choquet-Bruhat :
“Problème de Cauchy global en relativité générale ,”
Séminaire Jean Leray
2
(1969–1970 ),
pp. 1–7 .
A related paper was published in English as “Global aspects of the Cauchy problem in general reliativity,” Commun. Math. Phys. 14 , 329–335 (1969) .
article
Abstract
BibTeX
@article {key35329540,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Probl\`eme de Cauchy global en relativit\'e
g\'en\'erale},
JOURNAL = {S\'eminaire Jean Leray},
VOLUME = {2},
YEAR = {1969--1970},
PAGES = {1--7},
URL = {http://archive.numdam.org/article/SJL_1969-1970___2_1_0.pdf},
NOTE = {A related paper was published in English
as ``Global aspects of the Cauchy problem
in general reliativity,'' \textit{Commun.
Math. Phys.} \textbf{14}, 329--335 (1969).},
}
[57]
Y. Choquet-Bruhat :
“Solutions oscillatoires approchées des équations de la mécanique des fluides ,”
pp. 145–155
in
La magnétohydrodynamique classique et relativiste
(Lille, 1969 ).
Éditions du Centre National de la Recherche Scientifique (CNRS) (Paris ),
1970 .
MR
280163
Zbl
0267.76088
incollection
Abstract
BibTeX
Author studies the approximate solutions of the system of nonlinear partial differential equations of relativistic fluid mechanics. The method is shown to work for the equations describing perfect (non-viscous, non-heat-conducting) fluids. The method is a kind of generalized WKB procedure and permits to find approximations to the solution proceeding according to the inverse powers of a parameter the value of which is greater than unity. It can be applied to any system of quasilinear partial differential equations admitting real simple or multiple characteristics for which the dimension of the characteristic proper space is equal to the multiplicity of the characteristic, and gives approximate waves. If this condition does not apply the equations admit discontinuities.
@incollection {key280163m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solutions oscillatoires approch\'{e}es
des \'{e}quations de la m\'{e}canique
des fluides},
BOOKTITLE = {La {m}agn\'{e}tohydrodynamique {c}lassique
et {r}elativiste},
PUBLISHER = {\'{E}ditions du Centre National de la
Recherche Scientifique (CNRS)},
ADDRESS = {Paris},
YEAR = {1970},
PAGES = {145--155},
NOTE = {({L}ille, 1969). MR:280163. Zbl:0267.76088.},
}
[58]
Y. Choquet-Bruhat :
“Un théorème d’unicité pour les équations d’Einstein–Liouville ,”
C. R. Acad. Sci. Paris Sér. A-B
270
(1970 ),
pp. A728–A730 .
MR
258418
Zbl
0189.27601
article
Abstract
BibTeX
On démontre, en utilisant des inégalités énergétiques, un théorème d’unicité et de stabilité locales pour la solution de problème de Cauchy relatif au système intégro-différentiel non linéaire des équations d’Einstein–Liouville. Une méthode générale donnée précédemment [Choquet-Bruhat and Geroch 1969] permet d’en déduire un théorème global d’unicité géométrique. Nous démontrerons ailleurs un théorème d’existence.
@article {key258418m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Un th\'{e}or\`eme d'unicit\'{e} pour
les \'{e}quations d'{E}instein--{L}iouville},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {270},
YEAR = {1970},
PAGES = {A728--A730},
NOTE = {MR:258418. Zbl:0189.27601.},
ISSN = {0151-0509},
}
[59]
Y. Choquet-Bruhat :
“Theorem of uniqueness and local stability for Liouville–Einstein equations ,”
J. Mathematical Phys.
11
(1970 ),
pp. 3238–3243 .
MR
269263
article
Abstract
BibTeX
We prove, by use of energy inequalities, a theorem of uniqueness and local (i.e., for finite time) stability for the solution of Cauchy problem relative to the integro-differential system of Einstein and Liouville. A global theorem of geometrical uniqueness follows from a general method, previously given. We will prove elsewhere an existence theorem.
@article {key269263m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Theorem of uniqueness and local stability
for {L}iouville--{E}instein equations},
JOURNAL = {J. Mathematical Phys.},
FJOURNAL = {Journal of Mathematical Physics},
VOLUME = {11},
YEAR = {1970},
PAGES = {3238--3243},
DOI = {10.1063/1.1665120},
NOTE = {MR:269263.},
ISSN = {0022-2488},
}
[60]
Y. Choquet-Bruhat :
“Un théorème d’existence pour le système intégrodifférentiel
d’Einstein–Liouville ,”
C. R. Acad. Sci. Paris Sér. A-B
271
(1970 ),
pp. A625–A628 .
MR
270699
article
Abstract
BibTeX
On établit, à l’aide des inégalités énergétiques générales de Leray–Gårding–Dionne et d’un théorème de point fixe, l’existence d’une solution du problème de Cauchy pour le système couplé d’Einstein–Liouville dans des espaces de Sobolev. On traite d’abord le problème local en écrivant le système dans des coordonnées adéquates, on étend ensuite le résultat à un voisinage d’une variété initiale donnée.
@article {key270699m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Un th\'{e}or\`eme d'existence pour le
syst\`eme int\'{e}grodiff\'{e}rentiel
d'{E}instein--{L}iouville},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {271},
YEAR = {1970},
PAGES = {A625--A628},
NOTE = {MR:270699.},
ISSN = {0151-0509},
}
[61]
Y. Choquet-Bruhat :
“New elliptic system and global solutions for the constraints
equations in general relativity ,”
Comm. Mat. Phys.
21
(1971 ),
pp. 211–218 .
MR
295724
Zbl
0212.26802
article
Abstract
BibTeX
By a new choice of the arbitrarily given quantities on an initial 3-manifold we reduce the system of constraints, in General Relativity, to an elliptic system of four equations, the coefficients of which have a simple geometric interpretation on the 3-manifold. The system seems well suited for a global study and some results are given in this direction.
@article {key295724m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {New elliptic system and global solutions
for the constraints equations in general
relativity},
JOURNAL = {Comm. Mat. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {21},
YEAR = {1971},
PAGES = {211--218},
DOI = {10.1007/BF01647119},
NOTE = {MR:295724. Zbl:0212.26802.},
ISSN = {0010-3616},
}
[62]
Y. Choquet-Bruhat :
“Solutions \( C^{\infty } \) d’équations hyperboliques non
linéaires ,”
C. R. Acad. Sci. Paris Sér. A-B
272
(1971 ),
pp. A386–A388 .
MR
279444
Zbl
0216.12902
article
Abstract
BibTeX
La question a été soulevée de savoir si un système d’équations aux dérivées partielles hyperboliques quasi linéaires à \( n \) variables avait une solution \( C^{\infty} \) , pour des données de Cauchy \( C^{\infty} \) : les méthodes usuelles de démonstration de l’existence d’une solution du problème de Cauchy (cf. [Leray 1953], [Dionne 1962]) pour de telles équations utilisent des espaces de Sobolev \( H_{\mu} (\Omega) \) , où \( \Omega \) est un voisinage de la variété initiale portant les données de Cauchy, qui dépend de \( \mu \) et qui, d’après sa construction, tend vers zéro quand \( \mu \) augmente indéfiniment, de sorte que l’on est assuré, pour des données \( C^{\infty} \) , d’une-solution \( C^p \) , quel que soit \( p \) , mais dont le domaine d’existence dépend de \( p \) et peut tendre vers zéro quand \( p \) tend vers l’infini. Nous allons montrer par une méthode très simple, pour un système à coefficients \( C^{\infty} \) , et des données de Cauchy \( C^{\infty} \) , que la solution est \( C^{\infty} \) dans tout le domaine déterminé par la classe de Sobolev minimum nécessaire pour assurer son existence, si les coefficients des dérivées d’ordre le plus élevé, \( \nu,m \) , ne contiennent que les dérivées d’ordre au plus \( m- 2 \) des inconnues par la classe suivante dans les autres cas.
@article {key279444m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solutions \$C^{\infty }\$ d'\'{e}quations
hyperboliques non lin\'{e}aires},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {272},
YEAR = {1971},
PAGES = {A386--A388},
NOTE = {MR:279444. Zbl:0216.12902.},
ISSN = {0151-0509},
}
[63]
Y. Choquet-Bruhat :
“Quelques résultats récents sur les équations aux dérivées
partielles d’Einstein ,”
Math. Balkanica
1
(1971 ),
pp. 27–31 .
MR
288709
Zbl
0221.35066
article
Abstract
BibTeX
This paper contains two parts: (1) a short review of the recent results of the author about the evolution problem for the coupled Einstein–Liouville system. (2) A new result about the global solution of the constraints equations in empty space. This system has been changed into a simpler form than in a previous work of the author, and it is shown that the fundamental equation
\[ \Delta \varphi - R\varphi + M\varphi^{-7} = 0 \]
has for each \( R\geq0 \) , \( M\geq0 \) , one and only one solution \( \varphi = 0 \) , on a given Riemannian manifold with boundary, taking given positive values on the boundary: this result has since been extended, for \( R > 0 \) , \( M > 0 \) , to closed manifolds and the interior case has been studied.
@article {key288709m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Quelques r\'{e}sultats r\'{e}cents sur
les \'{e}quations aux d\'{e}riv\'{e}es
partielles d'{E}instein},
JOURNAL = {Math. Balkanica},
FJOURNAL = {Mathematica Balkanica},
VOLUME = {1},
YEAR = {1971},
PAGES = {27--31},
NOTE = {MR:288709. Zbl:0221.35066.},
ISSN = {0350-2007},
}
[64]
Y. Choquet-Bruhat :
“Problème de Cauchy pour le système intégro différentiel d’Einstein–Liouville ,”
Ann. Inst. Fourier (Grenoble)
21 : 3
(1971 ),
pp. 181–201 .
MR
337248
Zbl
0208.14303
article
Abstract
BibTeX
Proof of an existence theorem for the Cauchy problem relative to the integro differential equations of a relativistic gas, moving under its own gravitational field. Energy inequalities and a fixed point theorem are used. The results are obtained in Sobolev spaces \( H_{\mu} \) for the gravitational field and the product by \( (U\cdot p)^N \) of the distribution function (\( N\geq 6 \) , \( U \) timelike vector).
@article {key337248m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Probl\`eme de {C}auchy pour le syst\`eme
int\'{e}gro diff\'{e}rentiel d'{E}instein--{L}iouville},
JOURNAL = {Ann. Inst. Fourier (Grenoble)},
FJOURNAL = {Universit\'{e} de Grenoble. Annales
de l'Institut Fourier},
VOLUME = {21},
NUMBER = {3},
YEAR = {1971},
PAGES = {181--201},
URL = {http://www.numdam.org/item?id=AIF_1971__21_3_181_0},
NOTE = {MR:337248. Zbl:0208.14303.},
ISSN = {0373-0956},
}
[65]
Y. Choquet-Bruhat :
“\( C^{\infty } \) solutions of hyperbolic non linear equations applications in G.R.G ,”
Gen. Relativity Gravitation
2
(1971 ),
pp. 359–362 .
MR
395674
Zbl
0331.35041
article
Abstract
BibTeX
The question has been raised by S. Hawking (colloquium on “The
Bearings of Topology upon General Relativity” Bern, May 1970, cf. [Hawking 1971]) whether, for \( C^{\infty} \) Cauchy datas on an initial 3-manifold \( S \) , Einstein’s equations had a \( C^{\infty} \) solution: he had remarked that in the usual proofs of existence of a solution of the Cauchy problem, using for instance Sobolev spaces \( H_{\mu} \) , this existence is proved in a neighbourhood \( \Omega_{\mu} \) of \( S \) , which depends on \( \mu \) , and which appears to tend to zero as \( \mu \) increases towards infinity (cf. Fig. 3 in [Hawking 1971]): so we are assured, for \( C^{\infty} \) initial datas, of a solution \( C^p \) for every \( p \) , but its domain of existence might tend to zero as \( p \) tends to infinity.
We will in this paper prove that this does not happen.
@article {key395674m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {\$C^{\infty }\$solutions of hyperbolic
non linear equations applications in
{G}.{R}.{G}},
JOURNAL = {Gen. Relativity Gravitation},
FJOURNAL = {General Relativity and Gravitation},
VOLUME = {2},
YEAR = {1971},
PAGES = {359--362},
DOI = {10.1007/bf00758154},
NOTE = {MR:395674. Zbl:0331.35041.},
ISSN = {0001-7701},
}
[66]
Y. Choquet-Bruhat :
“The bearings of global hyperbolicity on existence and
uniqueness theorems in general relativity ,”
Gen. Relativity Gravitation
2
(1971 ),
pp. 1–6 .
MR
411553
Zbl
0336.53022
article
Abstract
BibTeX
The main result of this talk will be a global, geometric, uniqueness theorem for the solutions of Einstein equations, which has been proved jointly by Robert Geroch and myself. I had obtained previously a weaker result, on global uniqueness for space-times complete towards the future, but the theorem we have now is much more interesting since it expresses for the Einsteinian space-times a uniqueness analogous to the one obtained for the solutions of ordinary differential equations, i.e., the existence of a unique maximal extension.
I will first recall some definitions, with a few comments, then I will state the intrinsic Cauchy problem, and sketch the proof of the semi local, geometric, existence and uniqueness theorems of its solutions relative to Einstein equations using classical local theorems. I will then show the existence of a geometrically unique, maximal space-tie, solution of this Cauchy problem, in the class of globally hyperbolic space-times.
@article {key411553m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {The bearings of global hyperbolicity
on existence and uniqueness theorems
in general relativity},
JOURNAL = {Gen. Relativity Gravitation},
FJOURNAL = {General Relativity and Gravitation},
VOLUME = {2},
YEAR = {1971},
PAGES = {1--6},
DOI = {10.1007/bf02450511},
NOTE = {MR:411553. Zbl:0336.53022.},
ISSN = {0001-7701},
}
[67]
Y. Choquet-Bruhat :
“Existence and uniqueness for the Einstein–Maxwell–Liouville system ,”
pp. 23–39, 356
in
Gravitation: Problems, prospects (dedicated to the memory of A. Z. Petrov) .
Edited by V. P. Šelest, A. E. Levašov, M. F. Širokov, and K. A. Piragas .
Izdat. “Naukova Dumka” (Kiev ),
1972 .
MR
334801
Zbl
0271.35063
incollection
BibTeX
@incollection {key334801m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Existence and uniqueness for the {E}instein--{M}axwell--{L}iouville
system},
BOOKTITLE = {Gravitation: {P}roblems, prospects ({d}edicated
to the memory of {A}. {Z}. {P}etrov)},
EDITOR = {V. P. \v{S}elest and A. E. Leva\v{s}ov
and M. F. \v{S}irokov and K. A. Piragas},
PUBLISHER = {Izdat. ``Naukova Dumka''},
ADDRESS = {Kiev},
YEAR = {1972},
PAGES = {23--39, 356},
NOTE = {MR:334801. Zbl:0271.35063.},
}
[68]
Y. Choquet-Bruhat :
“Stabilité de solutions d’équations hyperboliques non linéaires: Application à l’espace-temps de Minkovski en relativité générale ,”
C. R. Acad. Sci. Paris Sér. A-B
274
(1972 ),
pp. A843–A845 .
MR
291607
Zbl
0227.35068
article
Abstract
BibTeX
Nous montrons que, pour une équation hyperbolique quasi-linéaire d’ordre \( m \) , sur \( \mathbf{R}^l \) , admettant une solution globale (régulière) \( u_0 \) correspondant à des données de Cauchy \( \varphi_0 \) sur \( \mathbf{R}^{l-1} \) (hypersurface spatiale de \( \mathbf{R}^l \) ), il existe, quel que soit \( T > 0 \) , un voisinage \( V_T(\varphi_0) \) de ces données de Cauchy tel que l’équation ait une solution (régulière) sur
\[ \mathbf{R}^{l-1} \times [-T,T] \]
pour toutes les données de Cauchy \( \varphi \in V_T (\varphi_0) \) . Ce théoème, joint à un théorème précédemment démontré pour les équations des contraintes en Relativité générale, démontre l’existence sur toute bande
\[ \mathbf{R}^3\times[-T,T] \]
de solutions voisines de la solution de Minkovski des équations d’Einstein. La démonstration utilise la théorie de Leray des équations hyperboliques dans les espaces de Sobolev \( H_\mu \) et le théorème des fonctions implicites.
@article {key291607m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Stabilit\'{e} de solutions d'\'{e}quations
hyperboliques non lin\'{e}aires: {A}pplication
\`a l'espace-temps de {M}inkovski en
relativit\'{e} g\'{e}n\'{e}rale},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {274},
YEAR = {1972},
PAGES = {A843--A845},
NOTE = {MR:291607. Zbl:0227.35068.},
ISSN = {0151-0509},
}
[69]
Y. Choquet-Bruhat and J. Leray :
“Sur le problème de Dirichlet, quasilinéaire, d’ordre 2 ,”
C. R. Acad. Sci. Paris Sér. A-B
274
(1972 ),
pp. A81–A85 .
MR
291623
Zbl
0227.35045
article
Abstract
People
BibTeX
Let \( V \) be a differentiable manifold of \( \mathbb{R}^n \) with or without boundary. Suppose that \( V \) and \( \partial V \) (when not empty) are smooth enough, \( \bar{V} = V\cup\partial V \) is compact, and \( \beta_0 \) , \( \gamma_0:\bar{V}\to \mathbb{R} \) , \( \varphi: \partial V\to \mathbb{R} \) are given functions such that
\begin{align*}
& -\infty\leq\beta_0(x) \lt \gamma_0(x) \leq +\infty
\quad\text{ for all } x\in \bar{V};\\
& \beta_0(x)\lt \varphi(x)\lt \gamma_0(x)
\quad\text{for all }x\in \varphi V.
\end{align*}
The authors consider the following Dirichlet problem (\( \pi_0 \) )
\begin{align*}
& \operatorname{div} A(x,\partial u, u) = a(x,\partial u, u)
\quad\text{in } V,\\
& u|_{\partial V} = \varphi, \, \beta_0(x)\lt u(x) \lt \gamma_0(x)
\quad\text{in } \bar{V},
\end{align*}
where \( A= (A^1,\dots,A^n) \) and \( a \) are vectorial respectively scalar real-valued functions,
\[
\partial u = \Bigr(\frac{\partial u}{\partial x_1},\dots,\frac{\partial u}{\partial x_n}\Bigr).
\]
Suppose that \( \operatorname{div} A \) defines an elliptical differential operator for \( x\in V \) , \( u(x)\in(\beta_0(x), \gamma_0(x)) \) . The authors introduce the notion “over (sub)solution” as a real-valued function for which \( \operatorname{div} A(x,\partial u, u)\lt a(x,\partial u, u) \) in \( V \) , \( u|_{\partial V}\lt \varphi \) (\( \operatorname{div} A > a \) , \( u|_{\partial V} > \varphi \) ), \( \beta_0(x)\lt u(x)\lt \gamma_0(x) \) in \( \bar{V} \) . The second problem which is studied in this paper is the following: \( (\pi) \) Being given an oversolution \( \gamma \) and a subsolution \( \beta \) , find a solution of \( \pi_0 \) for which \( \beta(x) \leq u(x) \leq\gamma(x) \) . The authors give sufficient conditions for the existence and uniqueness of the solution to the problem \( \pi \) and conditions for the non-existence of a solution to the problem \( \pi_0 \) . The conditions are given by some inequalities and the proofs use the maximum principle and Leray–Schauder’s fixed point theorem.
@article {key291623m,
AUTHOR = {Choquet-Bruhat, Yvonne and Leray, Jean},
TITLE = {Sur le probl\`eme de {D}irichlet, quasilin\'{e}aire,
d'ordre {2}},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {274},
YEAR = {1972},
PAGES = {A81--A85},
NOTE = {MR:291623. Zbl:0227.35045.},
ISSN = {0151-0509},
}
[70]
Y. Choquet-Bruhat :
“Problème des contraintes sur une variété compacte ,”
C. R. Acad. Sci. Paris Sér. A-B
274
(1972 ),
pp. A682–A684 .
MR
293959
Zbl
0228.53044
article
Abstract
BibTeX
It is known, if the initial 3-geometry is given up to a conformal factor \( \varphi \) , the system of constraints in general relativity in empty space can be split in two subsystems, a linear one of the type: \( \nabla_i A^i_j=0 \) , \( A^i_i = 0 \) an dear non linear second-order equation for the gauge factor \( \varphi \) :
\begin{equation}
8\Delta\phi - R\varphi +M\varphi^{-7}=0
\tag{1},
\end{equation}
\( M=A^i_j A^j_i\geq 0 \) . This paper proves the existence, and uniqueness of a \( \varphi > 0 \) on any closed manifold with \( R > 0 \) , if \( M > 0 \) . It also proves some theorems of existence, uniqueness and non existence, for the equation corresponding to (1) in the exterior case:
\[ 8\Delta \varphi - R\varphi + M\varphi^{-7} = 2T^0_0\varphi^5 ,\]
if \( R \) , \( M \) and \( T_0^0 \) satisfy some inequalities. Large classes of initial datas compatible with the constraints on closed manifolds are thus obtained.
@article {key293959m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Probl\`eme des contraintes sur une vari\'{e}t\'{e}
compacte},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {274},
YEAR = {1972},
PAGES = {A682--A684},
NOTE = {MR:293959. Zbl:0228.53044.},
ISSN = {0151-0509},
}
[71]
Y. Choquet-Bruhat and S. Deser :
“Stabilité initiale de l’espace temps de Minkowski ,”
C. R. Acad. Sci. Paris Sér. A-B
275
(1972 ),
pp. A1019–A1021 .
MR
327250
article
Abstract
People
BibTeX
On démontre l’existence de solutions des équations des contraintes voisines de la solution minkovskienne sur \( \mathbf{R}^3 \) , sous des hypothèses physique de comportement asymptotique. Les solutions obtenues sont essentiellement toutes les solutions satisfaisant à ces hypothèses. On démontre d’autre part la stabilité de l’espace plat: une perturbation quelconque, satisfaisant aux équations aux variations, est tangente à une famille de solutions exactes.
@article {key327250m,
AUTHOR = {Choquet-Bruhat, Yvonne and Deser, Stanley},
TITLE = {Stabilit\'{e} initiale de l'espace temps
de {M}inkowski},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {275},
YEAR = {1972},
PAGES = {A1019--A1021},
NOTE = {MR:327250.},
ISSN = {0151-0509},
}
[72]
Y. Choquet-Bruhat :
“Global solutions of the equations of constraints in general relativity on closed manifolds ,”
pp. 317–325
in
Symposia Mathematica, Vol. XII (Convegno di Relativita, INDAM)
(Rome, 1972 ).
Academic Press (London ),
1973 .
MR
353926
Zbl
0272.35013
incollection
Abstract
BibTeX
In this paper the author studies the problem of existence and uniqueness of a global solution of the Lichnerowicz equation
\[ 8\Delta\varphi - R\varphi + M\varphi^{-7} + Q\varphi^{5}=0 \]
on a closed manifold and this is done using the Leray-Schauder theory of topological degree. This fundamental equation appears in the problem of constraints in general relativity. It is shown that on a closed manifold the Lichnerowicz equation has, in the case \( Q=0 \) , one and only one solution \( \varphi > 0 \) for each \( M > 0 \) if the scalar curvature \( R \) of the manifold is also positive. There is no solution \( \varphi > 0 \) if \( M\geq 0 \) , \( R\leq 0 \) and not both identically zero; there is no positive solution either f \( M=0 \) and \( R \) , not identically zero, does not change sign. In the case of \( Q\not\equiv 0 \) (sources of energy are present) relations between \( R \) , \( M \) and \( Q \) are found. If these relations are verified, there exists a positive solution of the Lichnerowicz equation. Finally, conditions on \( R \) , \( M \) , \( Q \) are given under which the equation has no global positive solution on a closed manifold.
@incollection {key353926m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global solutions of the equations of
constraints in general relativity on
closed manifolds},
BOOKTITLE = {Symposia {M}athematica, {V}ol. {XII}
({C}onvegno di {R}elativita, {INDAM})},
PUBLISHER = {Academic Press},
ADDRESS = {London},
YEAR = {1973},
PAGES = {317--325},
NOTE = {({R}ome, 1972). MR:353926. Zbl:0272.35013.},
}
[73]
Y. Choquet-Bruhat :
Distributions: Théorie et problèmes .
Masson et Cie (Paris ),
1973 .
MR
482020
Zbl
0249.46018
book
BibTeX
@book {key482020m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Distributions: Th\'{e}orie et probl\`emes},
PUBLISHER = {Masson et Cie},
ADDRESS = {Paris},
YEAR = {1973},
PAGES = {x+232},
NOTE = {MR:482020. Zbl:0249.46018.},
ISBN = {2225358931},
}
[74]
Y. Choquet-Bruhat :
“Un théorème d’instabilité pour certaines équations
hyperboliques non linéaires ,”
C. R. Acad. Sci. Paris Sér. A-B
276
(1973 ),
pp. A281–A284 .
In French.
MR
315300
Zbl
0245.35058
article
BibTeX
@article {key315300m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Un th\'{e}or\`eme d'instabilit\'{e}
pour certaines \'{e}quations hyperboliques
non lin\'{e}aires},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {276},
YEAR = {1973},
PAGES = {A281--A284},
NOTE = {In French. MR:315300. Zbl:0245.35058.},
ISSN = {0151-0509},
}
[75]
Y. Choquet-Bruhat and L. Lamoureux-Brousse :
“Sur les équations de l’élasticité relativiste ,”
C. R. Acad. Sci. Paris Sér. A-B
276
(1973 ),
pp. A1317–A1320 .
MR
317624
Zbl
0286.73019
article
Abstract
People
BibTeX
A partir de définitions explicites d’un état de référence pour un solide élastique en relativité générale, d’un mouvement, de la métrique locale d’espace, des tenseurs déformation, taux de déformation et contrainte, on traite deux cas. D’abord on formule une définition d’un milieu hyperélastique qui conduit à une relation, directement postulée ou obtenue heuristiquement par d’autres auteurs, qui contient la loi de Hooke relativiste ou une loi de Hooke approchée pour petits mouvements. Ensuite on définit un matériau hyper-élastique par un système d’équations aux dérivées partielles qui est rapproché de celui de l’élasticité classique.
@article {key317624m,
AUTHOR = {Choquet-Bruhat, Yvonne and Lamoureux-Brousse,
Lise},
TITLE = {Sur les \'{e}quations de l'\'{e}lasticit\'{e}
relativiste},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {276},
YEAR = {1973},
PAGES = {A1317--A1320},
NOTE = {MR:317624. Zbl:0286.73019.},
ISSN = {0151-0509},
}
[76]
Y. Choquet-Bruhat and S. Deser :
“On the stability of flat space ,”
Ann. Physics
81
(1973 ),
pp. 165–178 .
MR
341358
Zbl
0265.35059
article
Abstract
People
BibTeX
It is shown that:
there exists, near flat space, a neighborhood of nonsingular asymptotically flat weak field solutions of the initial value equations of General Relativity; the solutions have physically appropriate generality; and
this neighborhood is complete and flat space is stable; every geometry representing a weak perturbation and satisfying the varied constraints is tangent to the space of solutions.
@article {key341358m,
AUTHOR = {Choquet-Bruhat, Y. and Deser, S.},
TITLE = {On the stability of flat space},
JOURNAL = {Ann. Physics},
FJOURNAL = {Annals of Physics},
VOLUME = {81},
YEAR = {1973},
PAGES = {165--178},
DOI = {10.1016/0003-4916(73)90484-3},
NOTE = {MR:341358. Zbl:0265.35059.},
ISSN = {0003-4916},
}
[77]
D. Bancel and Y. Choquet-Bruhat :
“Existence, uniqueness, and local stability for the
Einstein–Maxwell–Boltzman system ,”
Comm. Math. Phys.
33
(1973 ),
pp. 83–96 .
MR
356790
Zbl
0283.76080
article
Abstract
People
BibTeX
An existence and uniqueness theorem of the solution of the Cauchy problem for the coupled Einstein–Maxwell–Boltzman system is proven, in an appropriate Sobolev space for the potentials, and weighted Sobolev space for the distribution function. The proof relies on a priori estimates for the collision operator previously established by D.B., and for the solution of the Einstein–Maxwell–Liouville system by Y.C.B. It is also proved here that the solution depends continuously on the data
@article {key356790m,
AUTHOR = {Bancel, Daniel and Choquet-Bruhat, Yvonne},
TITLE = {Existence, uniqueness, and local stability
for the {E}instein--{M}axwell--{B}oltzman
system},
JOURNAL = {Comm. Math. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {33},
YEAR = {1973},
PAGES = {83--96},
DOI = {10.1007/BF01645621},
NOTE = {MR:356790. Zbl:0283.76080.},
ISSN = {0010-3616},
}
[78]
I. Šoke-Brjua :
“Stability of solutions of nonlinear hyperbolic equations on a manifold ,”
Uspehi Mat. Nauk
29 : 2 (176)
(1974 ),
pp. 314–322 .
In Russian. Dedicated to the memory of Ivan Georgievič Petrovskiĭ (1901–1973).
MR
407906
article
BibTeX
@article {key407906m,
AUTHOR = {\v{S}oke-Brjua, I.},
TITLE = {Stability of solutions of nonlinear
hyperbolic equations on a manifold},
JOURNAL = {Uspehi Mat. Nauk},
FJOURNAL = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe
Obshchestvo. Uspekhi Matematicheskikh
Nauk},
VOLUME = {29},
NUMBER = {2 (176)},
YEAR = {1974},
PAGES = {314--322},
NOTE = {In Russian. Dedicated to the memory
of Ivan Georgievi\v{c} Petrovski\u{\i}
(1901--1973). MR:407906.},
ISSN = {0042-1316},
}
[79]
Y. Choquet-Bruhat :
“Couplage d’ondes gravitationnelles et électromagnétiques à haute fréquence ,”
pp. 85–100
in
Ondes et radiations gravitationnelles
(Paris, 1973 ).
Colloq. Internat. CNRS 220 .
Centre Nat. Recherche Sci. (Paris ),
1974 .
MR
496351
incollection
BibTeX
@incollection {key496351m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Couplage d'ondes gravitationnelles et
\'{e}lectromagn\'{e}tiques \`a haute
fr\'{e}quence},
BOOKTITLE = {Ondes et radiations gravitationnelles},
SERIES = {{C}olloq. {I}nternat. {CNRS}},
NUMBER = {220},
PUBLISHER = {Centre Nat. Recherche Sci.},
ADDRESS = {Paris},
YEAR = {1974},
PAGES = {85--100},
NOTE = {({P}aris, 1973). MR:496351.},
ISBN = {9782222016205},
}
[80]
Y. Choquet-Bruhat :
“Global solutions of the constraints equations on open and
closed manifolds ,”
Gen. Relativity Gravitation
5 : 1
(1974 ),
pp. 49–60 .
MR
406309
Zbl
0332.35030
article
Abstract
BibTeX
The constraints equations of General Relativity are reduced on an initial maximal submanifold, by the use of conformai techniques, to a non-linear elliptic equation for the conformal factor \( \varphi \) . Some existence, uniqueness, and nonexistence theorems are proved for this equation, in the case of closed manifolds, and also for open manifolds (in particular for manifolds homeomorphic to \( \mathbb{R}^3 \) ).
@article {key406309m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global solutions of the constraints
equations on open and closed manifolds},
JOURNAL = {Gen. Relativity Gravitation},
FJOURNAL = {General Relativity and Gravitation},
VOLUME = {5},
NUMBER = {1},
YEAR = {1974},
PAGES = {49--60},
DOI = {10.1007/bf00758074},
NOTE = {MR:406309. Zbl:0332.35030.},
ISSN = {0001-7701},
}
[81]
Y. Choquet-Bruhat and C. Gilain :
“Difféomorphismes harmoniques et unicité ,”
C. R. Acad. Sci. Paris Sér. A
279
(1974 ),
pp. 827–830 .
MR
410791
Zbl
0292.53021
article
Abstract
People
BibTeX
@article {key410791m,
AUTHOR = {Choquet-Bruhat, Yvonne and Gilain, Christian},
TITLE = {Diff\'{e}omorphismes harmoniques et
unicit\'{e}},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}rie
A. Sciences Math\'{e}matiques},
VOLUME = {279},
YEAR = {1974},
PAGES = {827--830},
NOTE = {MR:410791. Zbl:0292.53021.},
ISSN = {0302-8429},
}
[82]
Y. Choquet-Bruhat :
“Sous-variétés maximales, ou à courbure constante, de variétés
lorentziennes ,”
C. R. Acad. Sci. Paris Sér. A-B
280
(1975 ),
pp. Aiv, A169–A171 .
In French.
MR
371346
Zbl
0296.53043
article
Abstract
BibTeX
@article {key371346m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Sous-vari\'{e}t\'{e}s maximales, ou
\`a courbure constante, de vari\'{e}t\'{e}s
lorentziennes},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {280},
YEAR = {1975},
PAGES = {Aiv, A169--A171},
NOTE = {In French. MR:371346. Zbl:0296.53043.},
ISSN = {0151-0509},
}
[83]
Y. Choquet-Bruhat :
“Quelques propriétés des sous-variétés maximales d’une variété lorentzienne ,”
C. R. Acad. Sci. Paris Sér. A-B
281 : 14
(1975 ),
pp. Aii, A577–A580 .
MR
643821
Zbl
0324.53046
article
Abstract
BibTeX
On démontre quelques propriétés (théorèmes d’unicité de non-existence, de maximisation de l’aire) des sous-variétés maximales, ou à courbure moyenne extrinsèque constante d’une variété différentiable munie d’une métrique reimannienne hyperbolique.
@article {key643821m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Quelques propri\'{e}t\'{e}s des sous-vari\'{e}t\'{e}s
maximales d'une vari\'{e}t\'{e} lorentzienne},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {281},
NUMBER = {14},
YEAR = {1975},
PAGES = {Aii, A577--A580},
NOTE = {MR:643821. Zbl:0324.53046.},
ISSN = {0151-0509},
}
[84]
Y. Choquet-Bruhat :
“The problem of constraints in general relativity: Solution of the Lichnerowicz equation ,”
pp. 225–235
in
Differential geometry and relativity .
Edited by M. Cahen and M. Flato .
Mathematical Phys. and Appl. Math. 3 .
Reidel (Dordrecht ),
1976 .
MR
462479
Zbl
0355.53013
incollection
Abstract
BibTeX
This paper is dedicated to André Lichnerowicz. The splitting property through conformal methods has been discovered by him, as well as the master equation whose solutions on a manifold give admissible initial data sets for Einstein’s equations. In his fundamental paper of 1944 (Journal de Mathématiques pures et appliquées ) he uses the master equation, which will now be called the Lichnerowicz equation, to construct the first rigorous general solutions of the \( n \) -body problem in general relativity.
@incollection {key462479m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {The problem of constraints in general
relativity: {S}olution of the {L}ichnerowicz
equation},
BOOKTITLE = {Differential geometry and relativity},
EDITOR = {M. Cahen and M. Flato},
SERIES = {Mathematical Phys. and Appl. Math.},
NUMBER = {3},
PUBLISHER = {Reidel},
ADDRESS = {Dordrecht},
YEAR = {1976},
PAGES = {225--235},
DOI = {10.1007/978-94-010-1508-0_20},
NOTE = {MR:462479. Zbl:0355.53013.},
}
[85]
Y. Choquet-Bruhat and J. E. Marsden :
“Sur la positivité de la masse ,”
C. R. Acad. Sci. Paris Sér. A-B
282 : 11
(1976 ),
pp. Aii, A609–A612 .
MR
397785
Zbl
0326.35055
article
Abstract
People
BibTeX
The authors provide a direct proof for the positivity of the mass for solutions of the source-free Einstein equations in an asymptotically flat space-time. The proof complements the one previously given by D. S. Brill and S. Dreser [“Variational methods and positive energy in general relativity,” Ann. Phys. 50 : 548–570 (1968)].
@article {key397785m,
AUTHOR = {Choquet-Bruhat, Yvonne and Marsden,
Jerrold E.},
TITLE = {Sur la positivit\'{e} de la masse},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {282},
NUMBER = {11},
YEAR = {1976},
PAGES = {Aii, A609--A612},
NOTE = {MR:397785. Zbl:0326.35055.},
ISSN = {0151-0509},
}
[86]
Y. Choquet-Bruhat :
“Maximal submanifolds and submanifolds with constant mean
extrinsic curvature of a Lorentzian manifold ,”
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
3 : 3
(1976 ),
pp. 361–376 .
MR
423405
Zbl
0332.53035
article
BibTeX
@article {key423405m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Maximal submanifolds and submanifolds
with constant mean extrinsic curvature
of a {L}orentzian manifold},
JOURNAL = {Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4)},
FJOURNAL = {Annali della Scuola Normale Superiore
di Pisa. Classe di Scienze. Serie IV},
VOLUME = {3},
NUMBER = {3},
YEAR = {1976},
PAGES = {361--376},
URL = {http://www.numdam.org/item?id=ASNSP_1976_4_3_3_361_0},
NOTE = {MR:423405. Zbl:0332.53035.},
ISSN = {0391-173X},
}
[87]
Y. Choquet-Bruhat and J. E. Marsden :
“Solution of the local mass problem in general relativity ,”
Comm. Math. Phys.
51 : 3
(1976 ),
pp. 283–296 .
MR
478215
Zbl
0364.58013
article
Abstract
People
BibTeX
The local mass problem is solved. That is, in suitable function
spaces, it is shown that for any vacuum space-time near flat space, its mass \( m \) is strictly positive. The relationship to other work in the field and some discussion of the global problem is given. Our proof is, in effect, a version of critical point analysis in infinite dimensions, but detailed Lp and Sobolev-type estimates are needed for the precise proof, as well as careful attention to the coordinate invariance group. For the latter, we prove a suitable slice theorem based on the use of harmonic coordinates.
@article {key478215m,
AUTHOR = {Choquet-Bruhat, Yvonne and Marsden,
Jerrold E.},
TITLE = {Solution of the local mass problem in
general relativity},
JOURNAL = {Comm. Math. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {51},
NUMBER = {3},
YEAR = {1976},
PAGES = {283--296},
URL = {http://projecteuclid.org/euclid.cmp/1103900391},
NOTE = {MR:478215. Zbl:0364.58013.},
ISSN = {0010-3616},
}
[88]
Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick :
Analysis, manifolds and physics .
North-Holland (Amsterdam ),
1977 .
MR
467779
Zbl
0385.58001
book
People
BibTeX
@book {key467779m,
AUTHOR = {Choquet-Bruhat, Yvonne and DeWitt-Morette,
Cecile and Dillard-Bleick, Margaret},
TITLE = {Analysis, manifolds and physics},
PUBLISHER = {North-Holland},
ADDRESS = {Amsterdam},
YEAR = {1977},
PAGES = {xvii+544},
URL = {https://archive.org/details/analysismanifold0000choqi},
NOTE = {MR:467779. Zbl:0385.58001.},
ISBN = {0-7204-0494-0},
}
[89]
Y. Choquet-Bruhat, A. Fisher, and J. Marsden :
“Équations des contraintes sur une variété non compacte ,”
C. R. Acad. Sci. Paris Sér. A-B
284 : 16
(1977 ),
pp. A975–A978 .
MR
433498
Zbl
0364.58010
article
Abstract
People
BibTeX
The basic data one needs for the “initial-value problem” in general relativity are: a three-dimensional manifold \( S \) with a Riemannian metric \( g \) and a symmetric rank two tensor field \( k \) which satisfy certain constraint equations. Theorems from p.d.e. state that \( g \) and \( k \) will generate a four-dimensional space-time which satisfies Einstein field equations and contains \( S \) as a spacelike hypersurface with second fundamental form \( k \) . The constraint equations are said to be linearization stable at a given solution if every nonzero solution of the linearized constraint equations is tangent to a curve of solutions of the nonlinear constraint equations. This article gives a new simple method for proving linearization stability of the constraint equations in the case where \( S \) is not necessarily compact, but trace \( (k) \) is constant.
@article {key433498m,
AUTHOR = {Choquet-Bruhat, Yvonne and Fisher, Arthur
and Marsden, Jerrold},
TITLE = {\'{E}quations des contraintes sur une
vari\'{e}t\'{e} non compacte},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {284},
NUMBER = {16},
YEAR = {1977},
PAGES = {A975--A978},
NOTE = {MR:433498. Zbl:0364.58010.},
ISSN = {0151-0509},
}
[90]
Y. Choquet-Bruhat :
“Properties of maximal submanifolds in space-times with compact
or open space-like sections ,”
Rep. Mathematical Phys.
12 : 1
(1977 ),
pp. 9–17 .
MR
461389
Zbl
0363.53029
article
Abstract
BibTeX
We prove for a pseudo Riemannian (Lorentzian) manifold some theorems concerning the existence, uniqueness, or nonexistence, of maximal submanifolds, and more generally of submanifolds with given mean extrinsic curvature.
@article {key461389m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Properties of maximal submanifolds in
space-times with compact or open space-like
sections},
JOURNAL = {Rep. Mathematical Phys.},
FJOURNAL = {Reports on Mathematical Physics},
VOLUME = {12},
NUMBER = {1},
YEAR = {1977},
PAGES = {9--17},
DOI = {10.1016/0034-4877(77)90041-6},
NOTE = {MR:461389. Zbl:0363.53029.},
ISSN = {0034-4877},
}
[91]
Y. Choquet-Bruhat and A. H. Taub :
“High-frequency, self-gravitating, charged scalar fields ,”
Gen. Relativity Gravitation
8 : 8
(1977 ),
pp. 561–571 .
MR
471867
article
Abstract
People
BibTeX
In this paper we shall apply the Wentzel–Kramers–Brillouin (WKB) method of expansion (the two-timing method) discussed in [Choquet-Bruhat 1969] to the equations governing the behavior of a charged scalar field \( \psi \) , the vector potential \( A_{\mu} \) of an electromagnetic field that satisfies the Maxwell equations with a current vector derived from \( \psi \) , and the metric tensor \( g_{\mu\nu} \) that satisfies the Einstein field equations with a stress energy tensor \( T_{\mu\nu} \) due to the electromagnetic and scalar fields. This method, in contrast to the averaged Lagrangian method given in [MacCallum and Taub 1973], allows one to determine propagation equations for various functions as well as equations involving values of various variables averaged over a period of the perturbations that are introduced.
@article {key471867m,
AUTHOR = {Choquet-Bruhat, Y. and Taub, A. H.},
TITLE = {High-frequency, self-gravitating, charged
scalar fields},
JOURNAL = {Gen. Relativity Gravitation},
FJOURNAL = {General Relativity and Gravitation},
VOLUME = {8},
NUMBER = {8},
YEAR = {1977},
PAGES = {561--571},
DOI = {10.1007/bf00756307},
NOTE = {MR:471867.},
ISSN = {0001-7701},
}
[92]
Y. Choquet-Bruhat :
“Compactification de variétés asymptotiquement euclidiennes:
Applications ,”
C. R. Acad. Sci. Paris Sér. A-B
285 : 16
(1977 ),
pp. A1061–A1064 .
MR
517104
Zbl
0383.35016
article
Abstract
BibTeX
We associate with an asymptotically Euclidean Reimannian manifold \( (V_n,g) \) a compact (closed without boundary) Riemannian manifold \( (\tilde{V}_n,\gamma) \) with \( \gamma = \varphi^4g \) , \( \varphi \) a \( C^{\infty} \) positive function. We deduce theorems for second order elliptic differenetial equations on asymptotically Euclidean manifolds from theorems known in the compact case for elliptic equations with discontinuous coefficients.
@article {key517104m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Compactification de vari\'{e}t\'{e}s
asymptotiquement euclidiennes: {A}pplications},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {285},
NUMBER = {16},
YEAR = {1977},
PAGES = {A1061--A1064},
NOTE = {MR:517104. Zbl:0383.35016.},
ISSN = {0151-0509},
}
[93]
Y. Choquet-Bruhat :
“Maximal submanifolds and the positivity of the gravitational mass ,”
pp. 9–15
in
Proceedings of the International Symposium on Relativity and Unified Field Theory
(Calcutta, 1975–1976 ).
S. N. Bose Inst. Phys. Sci. (Calcutta ),
1978 .
MR
524255
inproceedings
BibTeX
@inproceedings {key524255m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Maximal submanifolds and the positivity
of the gravitational mass},
BOOKTITLE = {Proceedings of the {I}nternational {S}ymposium
on {R}elativity and {U}nified {F}ield
{T}heory},
PUBLISHER = {S. N. Bose Inst. Phys. Sci.},
ADDRESS = {Calcutta},
YEAR = {1978},
PAGES = {9--15},
NOTE = {({C}alcutta, 1975--1976). MR:524255.},
}
[94]
A. Chaljub-Simon and Y. Choquet-Bruhat :
“Solutions asymptotiquement euclidiennes de l’équation de
Lichnerowicz ,”
C. R. Acad. Sci. Paris Sér. A-B
286 : 20
(1978 ),
pp. A917–A920 .
This paper is related to a later paper published in English by the same authors: “Global solutions of the Lichnerowicz equation in {G}eneral {R}elativity on an asymptotically {E}uclidean complete manifold,” General Relativity and Gravity 12 (1980) .
MR
498871
Zbl
0388.35006
article
People
BibTeX
@article {key498871m,
AUTHOR = {Chaljub-Simon, Alice and Choquet-Bruhat,
Yvonne},
TITLE = {Solutions asymptotiquement euclidiennes
de l'\'{e}quation de {L}ichnerowicz},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {286},
NUMBER = {20},
YEAR = {1978},
PAGES = {A917--A920},
NOTE = {This paper is related to a later paper
published in English by the same authors:
``Global solutions of the Lichnerowicz
equation in {G}eneral {R}elativity on
an asymptotically {E}uclidean complete
manifold,'' \textit{General Relativity
and Gravity} \textbf{12} (1980). MR:498871.
Zbl:0388.35006.},
ISSN = {0151-0509},
}
[95]
G. Choquet and Y. Choquet-Bruhat :
“Sur un problème lié à la stabilité des données initiales en
relativité générale ,”
C. R. Acad. Sci. Paris Sér. A-B
287 : 15
(1978 ),
pp. A1047–A1049 .
MR
519238
article
Abstract
People
BibTeX
In view of the study of stability of initial data, we prove that on a riemaniann manifold of dimension 3, broad enough at infinity, any Killing vector converging to zero at infinity, is identically zero.
@article {key519238m,
AUTHOR = {Choquet, Gustave and Choquet-Bruhat,
Yvonne},
TITLE = {Sur un probl\`eme li\'{e} \`a la stabilit\'{e}
des donn\'{e}es initiales en relativit\'{e}
g\'{e}n\'{e}rale},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {287},
NUMBER = {15},
YEAR = {1978},
PAGES = {A1047--A1049},
NOTE = {MR:519238.},
ISSN = {0151-0509},
}
[96]
Y. Choquet-Bruhat, D. Christodoulou, and M. Francaviglia :
“Cauchy data on a manifold ,”
Ann. Inst. H. Poincaré Sect. A (N.S.)
29 : 3
(1978 ),
pp. 241–255 .
MR
519694
Zbl
0412.35018
article
People
BibTeX
@article {key519694m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios and Francaviglia, Mauro},
TITLE = {Cauchy data on a manifold},
JOURNAL = {Ann. Inst. H. Poincar\'{e} Sect. A (N.S.)},
FJOURNAL = {Annales de l'Institut Henri Poincar\'{e}.
Section A. Physique Th\'{e}orique. Nouvelle
S\'{e}rie},
VOLUME = {29},
NUMBER = {3},
YEAR = {1978},
PAGES = {241--255},
URL = {http://www.numdam.org/item/AIHPA_1978__29_3_241_0/},
NOTE = {MR:519694. Zbl:0412.35018.},
ISSN = {0246-0211},
}
[97]
Y. Choquet-Bruhat, D. Christodoulou, and M. Francaviglia :
“Problème de Cauchy sur une variété ,”
C. R. Acad. Sci. Paris Sér. A-B
287 : 5
(1978 ),
pp. A373–A375 .
MR
524042
Zbl
0412.35017
article
Abstract
People
BibTeX
@article {key524042m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios and Francaviglia, Mauro},
TITLE = {Probl\`eme de {C}auchy sur une vari\'{e}t\'{e}},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {287},
NUMBER = {5},
YEAR = {1978},
PAGES = {A373--A375},
NOTE = {MR:524042. Zbl:0412.35017.},
ISSN = {0151-0509},
}
[98]
A. Chaljub-Simon and Y. Choquet-Bruhat :
“Problèmes elliptiques du second ordre sur une variété euclidienne à l’infini ,”
Ann. Fac. Sci. Toulouse Math. (5)
1 : 1
(1979 ),
pp. 9–25 .
MR
533596
Zbl
0411.35044
article
Abstract
People
BibTeX
We prove some existence and some uniqueness theorems for the solutions of quasilinear second order elliptic partial differential equations on a complete riemaniann manifold euclidian at infinity. We use weighted Hölder spaces, a priori estimates, and the Leray–Schauder degree theory.
@article {key533596m,
AUTHOR = {Chaljub-Simon, Alice and Choquet-Bruhat,
Yvonne},
TITLE = {Probl\`emes elliptiques du second ordre
sur une vari\'{e}t\'{e} euclidienne
\`a l'infini},
JOURNAL = {Ann. Fac. Sci. Toulouse Math. (5)},
FJOURNAL = {Toulouse. Facult\'{e} des Sciences.
Annales. Math\'{e}matiques. S\'{e}rie
5},
VOLUME = {1},
NUMBER = {1},
YEAR = {1979},
PAGES = {9--25},
URL = {http://www.numdam.org/item?id=AFST_1979_5_1_1_9_0},
NOTE = {MR:533596. Zbl:0411.35044.},
ISSN = {0240-2955},
}
[99]
A. Chaljub-Simon and Y. Choquet-Bruhat :
“Solution de l’équation de Lichnerowicz sur une variété asymptotiquement euclidienne ,”
C. R. Acad. Sci. Paris Sér. A-B
288 : 16
(1979 ),
pp. A779–A784 .
MR
535811
Zbl
0407.58038
article
Abstract
People
BibTeX
We prove some existence and uniqueness theorems for the solution of the Lichnerowicz equation
\[ \Delta_g\varphi-r\varphi+a\varphi^{-7}+b\varphi^{-3}+c\varphi^{5}=0 \]
on an asymptotically euclidean manifold, with different hypotheses on the signs of coefficients compatible with their physical origin.
@article {key535811m,
AUTHOR = {Chaljub-Simon, Alice and Choquet-Bruhat,
Yvonne},
TITLE = {Solution de l'\'{e}quation de {L}ichnerowicz
sur une vari\'{e}t\'{e} asymptotiquement
euclidienne},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {288},
NUMBER = {16},
YEAR = {1979},
PAGES = {A779--A784},
NOTE = {MR:535811. Zbl:0407.58038.},
ISSN = {0151-0509},
}
[100]
Y. Choquet-Bruhat, D. Christodoulou, and M. Francaviglia :
“On the wave equation in curved spacetime ,”
Ann. Inst. H. Poincaré Sect. A (N.S.)
31 : 4
(1979 ),
pp. 399–414 .
MR
574143
Zbl
0454.58016
article
People
BibTeX
@article {key574143m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios and Francaviglia, Mauro},
TITLE = {On the wave equation in curved spacetime},
JOURNAL = {Ann. Inst. H. Poincar\'{e} Sect. A (N.S.)},
FJOURNAL = {Annales de l'Institut Henri Poincar\'{e}.
Section A. Physique Th\'{e}orique. Nouvelle
S\'{e}rie},
VOLUME = {31},
NUMBER = {4},
YEAR = {1979},
PAGES = {399--414},
URL = {http://www.numdam.org/item/AIHPA_1979__31_4_399_0.pdf},
NOTE = {MR:574143. Zbl:0454.58016.},
ISSN = {0246-0211},
}
[101]
A. Chaljub-Simon and Y. Choquet-Bruhat :
“Global solutions of the Lichnerowicz equation in general
relativity on an asymptotically Euclidean complete manifold ,”
Gen. Relativity Gravitation
12 : 2
(1980 ),
pp. 175–185 .
MR
575238
article
Abstract
People
BibTeX
We prove some existence and uniqueness theorems for the solution of the Liehnerowicz equation:
\[ 8\Delta_g \phi - R\phi + M\phi^{-7} + \mathcal{Q}\phi^{-3} + \tau \phi^{5} = 0 ,\]
on an asymptotically Euclidian manifold. This equation governs the conformal factor of a metric solution of the constraints in General Relativity. In the first part we prove existence and uniqueness under the simple assumption \( R\geq 0 \) , \( M\geq 0 \) , \( \mathcal{Q} \geq 0 \) , \( \tau \geq 0 \) , which insures the monotony of the non-differentiated part. In the second part we obtain an existence theorem under more general hypothesis on the co-efficients, by use of the Leray–Schauder degree theory. The results of this paper have been announced in [Chaljub-Simon and Choquet-Bruhat 1978].
@article {key575238m,
AUTHOR = {Chaljub-Simon, A. and Choquet-Bruhat,
Y.},
TITLE = {Global solutions of the {L}ichnerowicz
equation in general relativity on an
asymptotically {E}uclidean complete
manifold},
JOURNAL = {Gen. Relativity Gravitation},
FJOURNAL = {General Relativity and Gravitation},
VOLUME = {12},
NUMBER = {2},
YEAR = {1980},
PAGES = {175--185},
DOI = {10.1007/BF00756471},
NOTE = {MR:575238.},
ISSN = {0001-7701},
}
[102]
Y. Choquet-Bruhat and D. Christodoulou :
“Systèmes elliptiques sur une variété euclidienne à l’infini ,”
C. R. Acad. Sci. Paris Sér. A-B
290 : 17
(1980 ),
pp. A781–A785 .
MR
580565
Zbl
0453.58021
article
Abstract
People
BibTeX
We establish a priori estimates for elliptic systems of order \( m \) on manifolds whicih are euclidean at infinity, in weighted Sobolev spaces \( H_{s,\delta} \) . We use inclusion and multiplication properties stronger than those previously known. We obtain in particular an isomorphism theorem which generalizes the one proved by M. Cantor [Cantor 1970] in \( W^p_{s,\delta} (\mathbb{R}^n) \) with \( p > n/(n-m) \) .
@article {key580565m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios},
TITLE = {Syst\`emes elliptiques sur une vari\'{e}t\'{e}
euclidienne \`a l'infini},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {290},
NUMBER = {17},
YEAR = {1980},
PAGES = {A781--A785},
NOTE = {MR:580565. Zbl:0453.58021.},
ISSN = {0151-0509},
}
[103]
Y. Choquet-Bruhat and J. W. York, Jr. :
“The Cauchy problem ,”
pp. 99–172
in
General relativity and gravitation ,
vol. 1 .
Edited by A. Held .
Plenum (New York–London ),
1980 .
MR
583716
Zbl
Zbl 0537.00011
incollection
Abstract
People
BibTeX
@incollection {key583716m,
AUTHOR = {Choquet-Bruhat, Yvonne and York, Jr.,
James W.},
TITLE = {The {C}auchy problem},
BOOKTITLE = {General relativity and gravitation},
EDITOR = {Alan Held},
VOLUME = {1},
PUBLISHER = {Plenum},
ADDRESS = {New York--London},
YEAR = {1980},
PAGES = {99--172},
NOTE = {MR:583716. Zbl:Zbl 0537.00011.},
}
[104]
Y. Choquet-Bruhat and D. Christodoulou :
“Elliptic systems in \( H_{s,\delta } \) spaces on manifolds which are Euclidean at infinity ,”
Acta Math.
146 : 1–2
(1981 ),
pp. 129–150 .
MR
594629
article
Abstract
People
BibTeX
In this paper we study elliptic differential systems of order \( m \) on non-compact manifolds which are euclidean at infinity, in weighted Sobolev spaces \( H_{s,\delta} \) . Such a study has been done in weighted Hölder spaces \( C^{1,\alpha}_{\beta} \) , for equations of order 2 in [Chaljub-Simon and Choquet-Bruhat 1978]. On the other hand, M. Cantor has proved [Cantor 1979] closed range and isomorphism theorems for elliptic operators of order \( m \) in \( \mathbf{R}^n \) , in weighted Sobolev spaces \( W^{p}_{s,\delta} \) , where \( p > n/(n-m) \) . His paper is based on a work by L. Nirenberg and H. Walker [Nirenberg and Walker 1973] on the null spaces of such operators with continuous coefficients. In the present article we show that this restriction on \( p \) is unnecessary. Although we shall treat explicitly only the case \( p = 2 \) which is of special interest since \( W^2_{s,\delta}=H_{s,\delta} \) is a Hilbert space, the results extend trivially to any \( p > 1 \) . The hypotheses on the coefficients which we make, permit the study of nonlinear systems in the same framework.
@article {key594629m,
AUTHOR = {Choquet-Bruhat, Y. and Christodoulou,
D.},
TITLE = {Elliptic systems in \$H_{s,\delta }\$
spaces on manifolds which are {E}uclidean
at infinity},
JOURNAL = {Acta Math.},
FJOURNAL = {Acta Mathematica},
VOLUME = {146},
NUMBER = {1-2},
YEAR = {1981},
PAGES = {129--150},
DOI = {10.1007/BF02392460},
NOTE = {MR:594629.},
ISSN = {0001-5962},
}
[105]
Y. Choquet-Bruhat :
“Solutions globales des équations de Maxwell–Dirac–Klein–Gordon (masses nulles) ,”
C. R. Acad. Sci. Paris Sér. I Math.
292 : 2
(1981 ),
pp. 153–158 .
MR
610307
Zbl
0498.35053
article
Abstract
BibTeX
A system of field equations (the Maxwell, Dirac and Klein–Gordon ones) is considered, the Dirac field \( \psi \) and the complex scalar field \( U \) contributing to the current density on the right hand side of the Maxwell equations (a further extension of this analysis is proposed with the interaction terms \( U^{\ast}U \psi \) and \( U \bar{\psi}{\psi} \) also in the Dirac and the Klein–Gordon equations respectively). Starting with the local existence theorem for the Cauchy problem concerning this system, the author uses the conformal invariance of the system (when \( psi \) and \( U \) are massless fields, the Klein–Gordon equation being written with the term \( RU/6 \) ) which enables her to transfer the complete Minkowski space-time to an open bounded region of the Einstein universe (Penrose’s lemma), so that the global Cauchy problem for the system under consideration is reduced to a local one, though in a curved manifold. This helps the author also to overcome the difficulty caused by the nonpositive-definiteness of the Dirac field energy density which prevented direct a priori majorizations. As a result, the global existence of solutions of the Cauchy problem in the Minkowski space-time is proved for the Cauchy data with zero total charge.
@article {key610307m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solutions globales des \'{e}quations
de {M}axwell--{D}irac--{K}lein--{G}ordon
(masses nulles)},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {292},
NUMBER = {2},
YEAR = {1981},
PAGES = {153--158},
NOTE = {MR:610307. Zbl:0498.35053.},
ISSN = {0249-6291},
}
[106]
Y. Choquet-Bruhat and D. Christodoulou :
“Existence de solutions globales des équations classiques des théories de jauge ,”
C. R. Acad. Sci. Paris Sér. I Math.
293 : 3
(1981 ),
pp. 195–199 .
MR
635980
Zbl
0478.58027
article
Abstract
People
BibTeX
This paper proves the global existence of Minkowski space-time of solutions of the Cauchy problem for the coupled Yang–Mills, Higgs and spinor classical field equations in \( 3+1 \) dimensions for small Cauchy data. The proof relies on the transformation of the global Cauchy problem on Minkowski space time into a local Cauchy problem on the Einstein static universe by conformal transformation.
@article {key635980m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios},
TITLE = {Existence de solutions globales des
\'{e}quations classiques des th\'{e}ories
de jauge},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {293},
NUMBER = {3},
YEAR = {1981},
PAGES = {195--199},
NOTE = {MR:635980. Zbl:0478.58027.},
ISSN = {0249-6291},
}
[107]
Y. Choquet-Bruhat and D. Christodoulou :
“Existence of global solutions of the Yang–Mills, Higgs and spinor field equations in \( 3+1 \) dimensions ,”
Ann. Sci. École Norm. Sup. (4)
14 : 4
(1981 ),
pp. 481–506 .
MR
654209
Zbl
0499.35076
article
Abstract
People
BibTeX
@article {key654209m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios},
TITLE = {Existence of global solutions of the
{Y}ang--{M}ills, {H}iggs and spinor
field equations in \$3+1\$ dimensions},
JOURNAL = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
FJOURNAL = {Annales Scientifiques de l'\'{E}cole
Normale Sup\'{e}rieure. Quatri\`eme
S\'{e}rie},
VOLUME = {14},
NUMBER = {4},
YEAR = {1981},
PAGES = {481--506},
DOI = {10.24033/asens.1417},
URL = {http://www.numdam.org/item?id=ASENS_1981_4_14_4_481_0},
NOTE = {MR:654209. Zbl:0499.35076.},
ISSN = {0012-9593},
}
[108]
Y. Choquet-Bruhat and I. E. Segal :
“Solution globale des équations de Yang–Mills sur l’univers
d’Einstein ,”
C. R. Acad. Sci. Paris Sér. I Math.
294 : 6
(1982 ),
pp. 225–230 .
MR
654042
Zbl
0501.58023
article
Abstract
People
BibTeX
@article {key654042m,
AUTHOR = {Choquet-Bruhat, Yvonne and Segal, Irving
E.},
TITLE = {Solution globale des \'{e}quations de
{Y}ang--{M}ills sur l'univers d'{E}instein},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {294},
NUMBER = {6},
YEAR = {1982},
PAGES = {225--230},
NOTE = {MR:654042. Zbl:0501.58023.},
ISSN = {0249-6291},
}
[109]
Y. Choquet-Bruhat and T. Ruggeri :
“Hyperbolicité du système \( 3+1 \) des équations d’Einstein ,”
C. R. Acad. Sci. Paris Sér. I Math.
294 : 12
(1982 ),
pp. 425–429 .
An English version of the French original appeared in Comm. Math. Phys. 89 : 2 (1983) .
MR
659737
article
People
BibTeX
@article {key659737m,
AUTHOR = {Choquet-Bruhat, Yvonne and Ruggeri,
Tommaso},
TITLE = {Hyperbolicit\'{e} du syst\`eme \$3+1\$
des \'{e}quations d'{E}instein},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {294},
NUMBER = {12},
YEAR = {1982},
PAGES = {425--429},
NOTE = {An English version of the French original
appeared in \textit{Comm. Math. Phys.}
\textbf{89}: 2 (1983). MR:659737.},
ISSN = {0249-6291},
}
[110]
Y. Choquet-Bruhat :
“Solution globale des équations de Maxwell–Dirac–Klein–Gordon ,”
Rend. Circ. Mat. Palermo (2)
31 : 2
(1982 ),
pp. 267–288 .
MR
670401
Zbl
0497.35078
article
Abstract
BibTeX
We prove the global existence on Minkowski space time of a solution of the Cauchy problem for the non linear system of coupled Maxwell, Dirac and Klein–Gordon equations, for small data with appropriate decay at space-like infinity. The method uses the conformal mapping of Minkowski space time onto a bounded open set of the Einstein cylinder.
@article {key670401m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solution globale des \'{e}quations de
{M}axwell--{D}irac--{K}lein--{G}ordon},
JOURNAL = {Rend. Circ. Mat. Palermo (2)},
FJOURNAL = {Rendiconti del Circolo Matematico di
Palermo. Serie II},
VOLUME = {31},
NUMBER = {2},
YEAR = {1982},
PAGES = {267--288},
DOI = {10.1007/BF02844359},
NOTE = {MR:670401. Zbl:0497.35078.},
ISSN = {0009-725X},
}
[111]
Y. Choquet-Bruhat :
“Recent results on the Cauchy problem for gravitation and
Yang–Mills fields ,”
pp. 167–178
in
Proceedings of the Second Marcel Grossmann Meeting on
General Relativity: Part A, B
(Trieste, 1979 ).
Edited by R. Ruffini .
North-Holland (Amsterdam; New York ),
1982 .
MR
678940
inproceedings
Abstract
BibTeX
The author gives a brief account of some progresses which have been made recently on the Cauchy problem in General Relativity, for pure gravitation or gravitation coupled with other fields. The two aspects of this problem are examined: the evolution of initial data; the solution of the constraint equations for the initial data.
@inproceedings {key678940m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Recent results on the {C}auchy problem
for gravitation and {Y}ang--{M}ills
fields},
BOOKTITLE = {Proceedings of the {S}econd {M}arcel
{G}rossmann {M}eeting on {G}eneral {R}elativity:
{P}art {A}, {B}},
EDITOR = {Remo Ruffini},
PUBLISHER = {North-Holland},
ADDRESS = {Amsterdam; New York},
YEAR = {1982},
PAGES = {167--178},
NOTE = {({T}rieste, 1979). MR:678940.},
ISBN = {0-444-86357-5},
}
[112]
Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick :
Analysis, manifolds and physics ,
2nd edition.
North-Holland (Amsterdam–New York ),
1982 .
The first edition included the authorship of Margaret Dillard-Bleick and was published in 1977 under the same title . The second edition was revised and updated without Dillard-Bleick’s participation.
MR
685274
Zbl
Zbl 0492.58001
book
People
BibTeX
@book {key685274m,
AUTHOR = {Choquet-Bruhat, Yvonne and DeWitt-Morette,
C\'{e}cile and Dillard-Bleick, Margaret},
TITLE = {Analysis, manifolds and physics},
EDITION = {2nd},
PUBLISHER = {North-Holland},
ADDRESS = {Amsterdam--New York},
YEAR = {1982},
PAGES = {xx+630},
NOTE = {The first edition included the authorship
of Margaret Dillard-Bleick and was published
in 1977 under the same title. The second
edition was revised and updated without
Dillard-Bleick's participation. MR:685274.
Zbl:Zbl 0492.58001.},
ISBN = {0-444-86017-7},
}
[113]
Y. Choquet-Bruhat :
“Global solutions of Yang–Mills field equations ,”
Rend. Sem. Mat. Fis. Milano
52
(1982 ),
pp. 247–259 .
MR
802944
Zbl
0571.35087
article
Abstract
BibTeX
@article {key802944m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global solutions of {Y}ang--{M}ills
field equations},
JOURNAL = {Rend. Sem. Mat. Fis. Milano},
FJOURNAL = {Rendiconti del Seminario Matematico
e Fisico di Milano},
VOLUME = {52},
YEAR = {1982},
PAGES = {247--259},
DOI = {10.1007/BF02925011},
NOTE = {MR:802944. Zbl:0571.35087.},
ISSN = {0370-7377},
}
[114]
Y. Choquet-Bruhat :
Propos sur la cosmologie: Séance publique annuelle des cinq académies .
Eight-page booklet ,
Institut de France (Paris ),
1982 .
techreport
BibTeX
@techreport {key14323150,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Propos sur la cosmologie: S\'eance publique
annuelle des cinq acad\'emies},
TYPE = {eight-page booklet},
INSTITUTION = {Institut de France},
ADDRESS = {Paris},
YEAR = {1982},
PAGES = {8},
}
[115]
Y. Choquet-Bruhat and A. Greco :
“High frequency asymptotic solutions of Yang–Mills and associated fields ,”
J. Math. Phys.
24 : 2
(1983 ),
pp. 377–379 .
MR
692317
Zbl
0557.70020
article
Abstract
People
BibTeX
We establish the differential equations which rule the propagation of the high-frequency waves, disturbances of a given background, for the coupled Yang–Mills, scalar and spinor field equations. We discuss their interaction.
@article {key692317m,
AUTHOR = {Choquet-Bruhat, Yvonne and Greco, Antonio},
TITLE = {High frequency asymptotic solutions
of {Y}ang--{M}ills and associated fields},
JOURNAL = {J. Math. Phys.},
FJOURNAL = {Journal of Mathematical Physics},
VOLUME = {24},
NUMBER = {2},
YEAR = {1983},
PAGES = {377--379},
DOI = {10.1063/1.525691},
NOTE = {MR:692317. Zbl:0557.70020.},
ISSN = {0022-2488},
}
[116]
Y. Choquet-Bruhat and T. Ruggeri :
“Hyperbolicity of the \( 3+1 \) system of Einstein equations ,”
Comm. Math. Phys.
89 : 2
(1983 ),
pp. 269–275 .
This appears to be an English version of the French article of the same title published a year earlier in C. R. Acad. Sci. Paris Sér. I Math. 294 :12 (1982) .
MR
709467
Zbl
0521.53034
article
Abstract
People
BibTeX
By a suitable choice of the lapse, which in a natural way is connected to the space metric, we obtain a hyperbolic system from the \( 3+1 \) system of Einstein equations with zero shift; this is accomplished by combining the evolution equations with the constraints.
@article {key709467m,
AUTHOR = {Choquet-Bruhat, Yvonne and Ruggeri,
Tommaso},
TITLE = {Hyperbolicity of the \$3+1\$ system of
{E}instein equations},
JOURNAL = {Comm. Math. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {89},
NUMBER = {2},
YEAR = {1983},
PAGES = {269--275},
DOI = {10.1007/BF01211832},
URL = {http://projecteuclid.org/euclid.cmp/1103922685},
NOTE = {This appears to be an English version
of the French article of the same title
published a year earlier in \textit{C.
R. Acad. Sci. Paris S\'er. I Math.}
\textbf{294}:12 (1982). MR:709467. Zbl:0521.53034.},
ISSN = {0010-3616},
}
[117]
F. Cagnac and Y. Choquet-Bruhat :
“Solution globale d’une équation non linéaire sur une variété hyperbolique ,”
C. R. Acad. Sci. Paris Sér. I Math.
296 : 20
(1983 ),
pp. 845–849 .
A paper by the same title was subsequently published in J. Math. Pures Appl. 63 :4 377–390 (1984) .
MR
712755
Zbl
0529.58032
article
Abstract
People
BibTeX
The authors prove the existence of a global, unique solution for the equation
\[ \square_g u + au + bu^3=0 \]
on a globally hyperbolic 4-dimensional manifold \( (V,g) \) with given Cauchy data on a space-like section \( S \) .The case when \( a \) and \( b \) are given positive functions on \( V \) is considered. First, the definitions and the hypothesis used in the work are given. The space \( (V,g) \) is organized as a global hyperbolic manifold and some regularity hypotheses are introduced. Secondly, a local theorem regarding the existence of a solution for the linear equation
\[ \square_g u + au = f \]
is given. The existence of the solution is proved using the energy majoring inequalities. Then it is shown that the equation
\[ \square_g u + au + bu^3 = 0 \]
admits a unique solution with the Cauchy data and the hypotheses imposed. Finally, the existence of a global solution for the equation
\[ \square_g u + au + bu^3 = 0 \]
is proved. The existence theorem is proved using an a priori condition of majoring and also the lemmas and theorems proven previously in the work.
@article {key712755m,
AUTHOR = {Cagnac, Francis and Choquet-Bruhat,
Yvonne},
TITLE = {Solution globale d'une \'{e}quation
non lin\'{e}aire sur une vari\'{e}t\'{e}
hyperbolique},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {296},
NUMBER = {20},
YEAR = {1983},
PAGES = {845--849},
NOTE = {A paper by the same title was subsequently
published in \textit{J. Math. Pures
Appl.} \textbf{63}:4 377--390 (1984).
MR:712755. Zbl:0529.58032.},
ISSN = {0249-6291},
}
[118]
Y. Choquet-Bruhat :
“Supergravité classique: Le problème de Cauchy ,”
C. R. Acad. Sci. Paris Sér. I Math.
297 : 1
(1983 ),
pp. 71–76 .
MR
719951
Zbl
0535.53030
article
Abstract
BibTeX
The author gives a clear analysis of the mathematical structure of the equations of classical supergravity and establishes an existence theorem for the local \( C^{\infty} \) solution of these equations, when all the fields are assumed to take their values in a Grassmann algebra (even for the tetrads \( e^{\lambda}_a \) , the metric \( g_{\lambda\nu} \) and the metrical connection \( \hat{\omega} \) , odd for the spinor \( \Psi_{\rho} \) ). This latter assumption plays an important role in the derivation of the supersymmetry, along with the fact that \( \Psi_{\rho} \) should be taken as a Weyl spinor with fixed helicity.
@article {key719951m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Supergravit\'{e} classique: {L}e probl\`eme
de {C}auchy},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {297},
NUMBER = {1},
YEAR = {1983},
PAGES = {71--76},
NOTE = {MR:719951. Zbl:0535.53030.},
ISSN = {0249-6291},
}
[119]
Y. Choquet-Bruhat, S. M. Paneitz, and I. E. Segal :
“The Yang–Mills equations on the universal cosmos ,”
J. Funct. Anal.
53 : 2
(1983 ),
pp. 112–150 .
MR
722506
Zbl
0535.58022
article
Abstract
People
BibTeX
Global existence and regularity of solutions for the Yang–Mills equations on the universal cosmos \( \tilde{\mathbf{M}} \) , which has the form \( R^1 \times S^3 \) for each of an 8-parameter continuum of factorizations of \( \tilde{\mathbf{M}} \) as \( \textit{time}\times\textit{space} \) are treated by general methods. The Cauchy problem in the temporal gauge is globally soluble in its abstract evolutionary form with arbitrary data for the \( \textit{field}\oplus\textit{potential} \) in
\[ L_{2,r}(S^3)\oplus L_{2,r+1}(S^3) ,\]
where \( r \) is an integer \( > \) 1 and \( L_{2,r} \) denotes the class of sections whose first \( r \) derivatives are square-integrable; if \( r= 1 \) , the problem is soluble locally in time. When \( r \) is 3 or more the solution is identifiable with a classical one; if infinite, the solution is in \( C^{\infty}(\tilde{\mathbf{M}}) \) . These results extend earlier work and approaches. Solutions of the equations on Minkowski space-time \( M \) , extend canonically (modulo gauge transformations) to solutions on \( \tilde{\mathbf{M}} \) provided their Cauchy data are moderately smooth and small near spatial infinity. Precise asymptotic structures for solutions on \( \mathbf{M}_0 \) , follow, and in turn imply various decay estimates. Thus the energy in regions uniformly bounded in direction away from the light cone is \( O(|x_0|^{-5}) \) , where \( x_0 \) is the Minkowski time coordinate; analysis solely in \( \mathbf{M}_0 \) , earlier yielded the estimate \( O(|x_o|^{-2}) \) applicable to the region within the light cone. Similarly it follows that the action integral for a solution of the Yang–Mills equuions in \( \mathbf{M}_0 \) , is finite, in fact absolutely convergent.
@article {key722506m,
AUTHOR = {Choquet-Bruhat, Y. and Paneitz, S. M.
and Segal, I. E.},
TITLE = {The {Y}ang--{M}ills equations on the
universal cosmos},
JOURNAL = {J. Funct. Anal.},
FJOURNAL = {Journal of Functional Analysis},
VOLUME = {53},
NUMBER = {2},
YEAR = {1983},
PAGES = {112--150},
DOI = {10.1016/0022-1236(83)90049-6},
NOTE = {MR:722506. Zbl:0535.58022.},
ISSN = {0022-1236},
}
[120]
Y. Choquet-Bruhat :
“The Cauchy problem in classical supergravity ,”
Lett. Math. Phys.
7 : 6
(1983 ),
pp. 459–467 .
MR
728641
Zbl
0529.58039
article
Abstract
BibTeX
@article {key728641m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {The {C}auchy problem in classical supergravity},
JOURNAL = {Lett. Math. Phys.},
FJOURNAL = {Letters in Mathematical Physics. A Journal
for the Rapid Dissemination of Short
Contributions in the Field of Mathematical
Physics},
VOLUME = {7},
NUMBER = {6},
YEAR = {1983},
PAGES = {459--467},
DOI = {10.1007/BF00402245},
NOTE = {MR:728641. Zbl:0529.58039.},
ISSN = {0377-9017},
}
[121]
Y. Choquet-Bruhat :
“Classical supergravity with Weyl spinors ,”
Proc. Einstein Found. Internat.
1 : 1
(1983 ),
pp. 43–53 .
MR
731352
article
BibTeX
@article {key731352m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Classical supergravity with {W}eyl spinors},
JOURNAL = {Proc. Einstein Found. Internat.},
FJOURNAL = {Proceedings of Einstein Foundation International},
VOLUME = {1},
NUMBER = {1},
YEAR = {1983},
PAGES = {43--53},
NOTE = {MR:731352.},
}
[122]
Y. Choquet-Bruhat :
“Global solutions of hyperbolic equations of gauge theories ,”
pp. 108–134
in
Relativity, cosmology, topological mass and supergravity
(Caracas, 1982 ).
Edited by C. Aragone .
World Sci. Publ. (Singapore ),
1983 .
MR
743271
incollection
Abstract
BibTeX
@incollection {key743271m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global solutions of hyperbolic equations
of gauge theories},
BOOKTITLE = {Relativity, cosmology, topological mass
and supergravity},
EDITOR = {C. Aragone},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Singapore},
YEAR = {1983},
PAGES = {108--134},
NOTE = {({C}aracas, 1982). MR:743271.},
ISBN = {9971950952},
}
[123]
Y. Choquet-Bruhat and D. Christodoulou :
“Cauchy problem at past infinity for nonlinear equations in curved spacetime ,”
pp. 73–91
in
Studies in applied mathematics .
Edited by V. Guillemin .
Adv. Math. Suppl. Stud. 8 .
Academic Press (New York ),
1983 .
MR
759906
Zbl
0517.53028
incollection
Abstract
People
BibTeX
The authors consider the Cauchy problem at past infinity for both linear and non-linear wave equations on a globally hyperbolic curved spacetime whose metric tends to be stationary at past infinity. The first five sections consider the problem of a linear wave equation with a source term, and the final two sections consider weakly coupled systems of non-linear wave equations. The last section applies these results to a general Yang–Mills system in the Lorentz gauge with a source on a curved spacetime. Contents include sections on definitions and hypotheses, function spaces, energy estimates, weighted function spaces, existence theorems for linear equations, quasi-linear wave equations, existence theorems.
@incollection {key759906m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios},
TITLE = {Cauchy problem at past infinity for
nonlinear equations in curved spacetime},
BOOKTITLE = {Studies in applied mathematics},
EDITOR = {Victor Guillemin},
SERIES = {Adv. Math. Suppl. Stud.},
NUMBER = {8},
PUBLISHER = {Academic Press},
ADDRESS = {New York},
YEAR = {1983},
PAGES = {73--91},
NOTE = {MR:759906. Zbl:0517.53028.},
}
[124]
Y. Choquet-Bruhat :
“Causality of classical supergravity ,”
pp. 61–84
in
Asymptotic behavior of mass and spacetime geometry
(Corvallis, Ore., 1983 ).
Edited by F. J. Flaherty .
Lecture Notes in Phys. 202 .
Springer ,
1984 .
MR
771854
Zbl
0546.53047
incollection
Abstract
BibTeX
The author explains how the Rarita-Schwinger field equations fail to be causal in curved space-time. She then reviews the classical Grassmann valued supergravity (\( d=4 \) , \( N=1 \) ). She proves the supersymmetry identity for a Weyl spinor field and concludes that the gravitino, like the neutrino, is a parity violating particle. She shows that by an appropriate choice of gauges, a system of odd valued vector fields becomes well posed and causal.
@incollection {key771854m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Causality of classical supergravity},
BOOKTITLE = {Asymptotic behavior of mass and spacetime
geometry},
EDITOR = {Francis J. Flaherty},
SERIES = {Lecture Notes in Phys.},
NUMBER = {202},
PUBLISHER = {Springer},
YEAR = {1984},
PAGES = {61--84},
DOI = {10.1007/BFb0048069},
NOTE = {({C}orvallis, {O}re., 1983). MR:771854.
Zbl:0546.53047.},
}
[125]
Y. Choquet-Bruhat :
“Supergravities ,”
pp. 88–106
in
Gravitation, geometry and relativistic physics
(Aussois, 1984 ).
Lecture Notes in Phys. 212 .
Springer ,
1984 .
MR
780219
Zbl
0557.53050
incollection
Abstract
BibTeX
A survey of the various supergravity theories is given. The mathematical and physical motivations of supergravity (simple or extended) are discussed and then a general formulation of the supergravity in a space- time V of \( d = 4 + n \) dimensions is presented. One considers on V a connection \( \omega \) , metric but with torsion S; in addition to the metric g appears, as auxiliary unknown, the orthonormal moving frame e.
The contorsion tensor and the curvature are defined on V and then a Lagrangian of supergravity (i.e., for
a spinor valued 1-form \( \psi = (\psi_M ) \) , \( M = 0, 1 \) , …, \( d-1 \) , on V) is written. The simple supergravity \( (d = 4) \)
and the extended supergravities \( (d = 4 + N ) \) are considered in detail. In particular, the Kaluza–Klein supergravity is analysed and some remarks about the \( d = 11 \) supergravity are given.
@incollection {key780219m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Supergravities},
BOOKTITLE = {Gravitation, geometry and relativistic
physics},
SERIES = {Lecture Notes in Phys.},
NUMBER = {212},
PUBLISHER = {Springer},
YEAR = {1984},
PAGES = {88--106},
DOI = {10.1007/BFb0012580},
NOTE = {({A}ussois, 1984). MR:780219. Zbl:0557.53050.},
}
[126]
F. Cagnac and Y. Choquet-Bruhat :
“Solution globale d’une équation non linéaire sur une variété hyperbolique ,”
J. Math. Pures Appl. (9)
63 : 4
(1984 ),
pp. 377–390 .
MR
789558
Zbl
0554.58049
article
Abstract
People
BibTeX
The authors prove the existence of a global and unique solution of the Cauchy problem for the equation
\[ \square_g u + au + bu^3 = 0 \]
on a globally hyperbolic 4-dimensional manifold \( (V,g) \) when the Cauchy data are given on a space-like section and \( a,b \) are given positive functions on \( V \) .
@article {key789558m,
AUTHOR = {Cagnac, Francis and Choquet-Bruhat,
Yvonne},
TITLE = {Solution globale d'une \'{e}quation
non lin\'{e}aire sur une vari\'{e}t\'{e}
hyperbolique},
JOURNAL = {J. Math. Pures Appl. (9)},
FJOURNAL = {Journal de Math\'{e}matiques Pures et
Appliqu\'{e}es. Neuvi\`eme S\'{e}rie},
VOLUME = {63},
NUMBER = {4},
YEAR = {1984},
PAGES = {377--390},
NOTE = {MR:789558. Zbl:0554.58049.},
ISSN = {0021-7824},
}
[127]
Y. Choquet-Bruhat :
“Positive-energy theorems ,”
pp. 739–785
in
Relativity, groups and topology, II
(Les Houches, 1983 ).
Edited by B. S. DeWitt and R. Stora .
North-Holland (Amsterdam ),
1984 .
MR
830248
Zbl
0593.53055
incollection
Abstract
BibTeX
General relativity deals with space-time models consisting of a metric of Lorentz signature over a four-manifold satisfying the Einstein equations. These require that the Einstein tensor equal the matter tensor, which in turn must satisfy certain conditions of physical reasonableness. Under certain circumstances, it is possible to define a total energy including gravitational contributions, for such a space-time. This problem requires either asymptotic flatness, which must be defined, or a comparison manifold. Further, the definition must be physically reasonable, and result in a constant total energy for an isolated system. In physics, energy is intimately tied up with a definition of time. In general relativity, time, as a coordinate on a manifold, may be defined only locally. These and other considerations have made the definition of total energy for a gravitational system a non-trivial problem in mathematical physics.
This paper begins with a review of these questions and the standard approaches to them and proceeds to the main issue which is the so-called “positive energy” theorems. These assert that such quantities must be positive definite for isolated systems. Only recently theorems have been proven establishing such results rigorously and under various conditions. This paper presents a very thorough and easily followed discussion of this problem and the known theorems.
@incollection {key830248m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Positive-energy theorems},
BOOKTITLE = {Relativity, groups and topology, {II}},
EDITOR = {Bryce S. DeWitt and Raymond Stora},
PUBLISHER = {North-Holland},
ADDRESS = {Amsterdam},
YEAR = {1984},
PAGES = {739--785},
NOTE = {({L}es {H}ouches, 1983). MR:830248.
Zbl:0593.53055.},
}
[128]
D. Bao, Y. Choquet-Bruhat, J. Isenberg, and P. B. Yasskin :
“The well-posedness of (\( N=1 \) ) classical supergravity ,”
J. Math. Phys.
26 : 2
(1985 ),
pp. 329–333 .
MR
776502
Zbl
0563.53060
article
Abstract
People
BibTeX
In this paper the authors investigate whether classical (\( N=1 \) ) supergravity has a well-posed locally causal Cauchy problem. One defines well-posedness to mean that any choice of initial data (from an appropriate function space) which satisfies the supergravity constraint equations and a set of gauge conditions can be continuously developed into a space-time solution of the supergravity field equations around the initial surface. Local causally means that the domains of dependence of the evolution equations coincide with those determined by the light cones. They show that when the fields of classical supergravity are treated as formal objects, the field equations are (under certain gauge conditions) equivalent to a coupled system of quasilinear nondiagonal second-order partial differential equations which is formally nonstrictly hyperbolic (in the sense of Leray-Ohy). Hence, if the fields were numerical valued, there would be an applicable existence theorem leading to well-posedness.
@article {key776502m,
AUTHOR = {Bao, David and Choquet-Bruhat, Yvonne
and Isenberg, James and Yasskin, Philip
B.},
TITLE = {The well-posedness of (\$N=1\$) classical
supergravity},
JOURNAL = {J. Math. Phys.},
FJOURNAL = {Journal of Mathematical Physics},
VOLUME = {26},
NUMBER = {2},
YEAR = {1985},
PAGES = {329--333},
DOI = {10.1063/1.526663},
NOTE = {MR:776502. Zbl:0563.53060.},
ISSN = {0022-2488},
}
[129]
Y. Choquet-Bruhat :
“The Cauchy problem in extended supergravity, \( N=1 \) , \( d=11 \) ,”
Comm. Math. Phys.
97 : 4
(1985 ),
pp. 541–552 .
MR
787117
Zbl
0593.53062
article
Abstract
BibTeX
@article {key787117m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {The {C}auchy problem in extended supergravity,
\$N=1\$, \$d=11\$},
JOURNAL = {Comm. Math. Phys.},
FJOURNAL = {Communications in Mathematical Physics},
VOLUME = {97},
NUMBER = {4},
YEAR = {1985},
PAGES = {541--552},
URL = {http://projecteuclid.org/euclid.cmp/1103942186},
NOTE = {MR:787117. Zbl:0593.53062.},
ISSN = {0010-3616},
}
[130]
I. Shoke-Bryua :
“Mathematical problems in general relativity ,”
Uspekhi Mat. Nauk
40 : 6(246)
(1985 ),
pp. 3–39 .
In Russian; translated from the English by A. P. Veselov.
MR
815488
article
BibTeX
@article {key815488m,
AUTHOR = {Shoke-Bryua, I.},
TITLE = {Mathematical problems in general relativity},
JOURNAL = {Uspekhi Mat. Nauk},
FJOURNAL = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe
Obshchestvo. Uspekhi Matematicheskikh
Nauk},
VOLUME = {40},
NUMBER = {6(246)},
YEAR = {1985},
PAGES = {3--39},
URL = {http://mi.mathnet.ru/rus/umn/v40/i6/p3},
NOTE = {In Russian; translated from the English
by A. P. Veselov. MR:815488.},
ISSN = {0042-1316},
}
[131]
Y. Choquet-Bruhat :
“Supermanifolds and supergravities ,”
pp. 25–42
in
Geometrodynamics proceedings, 1985
(Cosenza, 1985 ).
Edited by A. Pràstavo .
World Sci. Publ. (Singapore ),
1985 .
MR
825786
Zbl
0652.58038
incollection
BibTeX
@incollection {key825786m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Supermanifolds and supergravities},
BOOKTITLE = {Geometrodynamics proceedings, 1985},
EDITOR = {Agostino Pr\`astavo},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Singapore},
YEAR = {1985},
PAGES = {25--42},
NOTE = {({C}osenza, 1985). MR:825786. Zbl:0652.58038.},
ISBN = {9971978636},
}
[132]
Y. Choquet-Bruhat :
“Einstein–Cartan theory with spin \( {3/2} \) source and classical supergravity ,”
pp. 27–56
in
On relativity theory: Proceedings of the Sir Arthur Eddington Centenary Symposium, II
(Nagpur, 1984 ).
Edited by Y. Choquet-Bruhat and T. M. Karade .
World Sci. Publ. (Singapore ),
1985 .
MR
827562
inproceedings
BibTeX
@inproceedings {key827562m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Einstein--{C}artan theory with spin
\${3/2}\$ source and classical supergravity},
BOOKTITLE = {On relativity theory: Proceedings of
the {S}ir {A}rthur {E}ddington Centenary
Symposium, II},
EDITOR = {Y. Choquet-Bruhat and T. M. Karade},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Singapore},
YEAR = {1985},
PAGES = {27--56},
NOTE = {({N}agpur, 1984). MR:827562.},
ISBN = {9971966999},
}
[133]
Y. Choquet-Bruhat :
“Causalité des théories de supergravité ,”
pp. 79–93
in
Élie Cartan et les mathématiques d’aujourd’hui
[The mathematical heritage of Élie Cartan ]
(Lyon, 1984 ).
Astérisque (numéro hors série) .
1985 .
MR
837195
Zbl
0604.53047
incollection
Abstract
BibTeX
This paper is an interesting review of the status of supergravity theories with respect to coherence and causality: coherence means the complete integrability of the system of partial differential equations of the gauge invariant theory considered, and causality is preserved when the characteristic cone is on or inside the metrical cone determined by the metric.
@incollection {key837195m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Causalit\'{e} des th\'{e}ories de supergravit\'{e}},
BOOKTITLE = {\'Elie Cartan et les math\'ematiques
d'aujourd'hui [The mathematical heritage
of \'{E}lie Cartan]},
SERIES = {Ast\'{e}risque (num\'{e}ro hors s\'{e}rie)},
YEAR = {1985},
PAGES = {79--93},
URL = {http://www.numdam.org/item/AST_1985__S131__79_0.pdf},
NOTE = {(Lyon, 1984). MR:837195. Zbl:0604.53047.},
ISSN = {0303-1179},
}
[134]
Y. Choquet-Bruhat :
“Kaluza–Klein theories ,”
pp. 155–169
in
Proceedings of the conference commemorating the 1st Centennial
of the Circolo Matematico di Palermo
(Palermo, 1984 ),
published as Rend. Circ. Mat. Palermo
8 : suppl.
(1985 ).
MR
881396
Zbl
0615.53073
incollection
Abstract
BibTeX
@article {key881396m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Kaluza--{K}lein theories},
JOURNAL = {Rend. Circ. Mat. Palermo},
VOLUME = {8},
NUMBER = {suppl.},
YEAR = {1985},
PAGES = {155--169},
NOTE = {\textit{Proceedings of the conference
commemorating the 1st Centennial of
the {C}ircolo {M}atematico di {P}alermo}
({P}alermo, 1984). MR:881396. Zbl:0615.53073.},
ISSN = {1592-9531},
}
[135]
Y. Choquet-Bruhat :
“Supergravities and Kaluza–Klein theories ,”
pp. 31–48
in
Topological properties and global structure of space-time
(Erice, 1985 ).
Edited by P. G. Bergmann and V. D. Sabbata .
NATO Adv. Sci. Inst. Ser. B: Phys. 138 .
Plenum (New York ),
1986 .
MR
1102937
Zbl
0687.53072
incollection
Abstract
BibTeX
@incollection {key1102937m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Supergravities and {K}aluza--{K}lein
theories},
BOOKTITLE = {Topological properties and global structure
of space-time},
EDITOR = {Peter G. Bergmann and Venzo De Sabbata},
SERIES = {NATO Adv. Sci. Inst. Ser. B: Phys.},
NUMBER = {138},
PUBLISHER = {Plenum},
ADDRESS = {New York},
YEAR = {1986},
PAGES = {31--48},
DOI = {10.1007/978-1-4899-3626-4_4},
NOTE = {({E}rice, 1985). MR:1102937. Zbl:0687.53072.},
}
[136]
Y. Choquet-Bruhat :
“Applications harmoniques hyperboliques ,”
C. R. Acad. Sci. Paris Sér. I Math.
303 : 4
(1986 ),
pp. 109–113 .
MR
853598
Zbl
0607.58011
article
Abstract
BibTeX
We prove a local existence theorem of a solution of the Cauchy problem for a harmonic map from a globally hyperbolic manifold \( (S\times \mathbb{R},g) \) into a Riemannian manifold \( (N,h) \) , of arbitrary dimensions. We prove a global existence theorem for \( \dim S=1 \) , and for \( \dim S=n \) , any odd number, if \( S=\mathbb{R}^n,g \) is the Minkowski metric and the initial data are near enough from those for a constant map.
@article {key853598m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Applications harmoniques hyperboliques},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {303},
NUMBER = {4},
YEAR = {1986},
PAGES = {109--113},
NOTE = {MR:853598. Zbl:0607.58011.},
ISSN = {0249-6291},
}
[137]
Y. Choquet-Bruhat and N. Noutchegueme :
“Système hyperbolique pour les équations d’Einstein avec sources ,”
C. R. Acad. Sci. Paris Sér. I Math.
303 : 6
(1986 ),
pp. 259–263 .
MR
860831
article
Abstract
People
BibTeX
We show how, by using the temporal gauge, one can write the Einstein equations with sources as a quasi-diagonal system, hyperbolic in the sense of Leray.
@article {key860831m,
AUTHOR = {Choquet-Bruhat, Yvonne and Noutchegueme,
Norbert},
TITLE = {Syst\`eme hyperbolique pour les \'{e}quations
d'{E}instein avec sources},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {303},
NUMBER = {6},
YEAR = {1986},
PAGES = {259--263},
NOTE = {MR:860831.},
ISSN = {0249-6291},
}
[138]
Y. Choquet-Bruhat :
“The Cauchy problem in higher-dimensional gravity and
Kaluza–Klein theories ,”
pp. 1223–1231
in
Proceedings of the Fourth Marcel Grossmann Meeting on
General Relativity, Part A, B
(Rome, 1985 ).
Edited by R. Ruffini .
North-Holland (Amsterdam ),
1986 .
MR
879816
inproceedings
Abstract
BibTeX
@inproceedings {key879816m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {The {C}auchy problem in higher-dimensional
gravity and {K}aluza--{K}lein theories},
BOOKTITLE = {Proceedings of the Fourth {M}arcel {G}rossmann
Meeting on General Relativity, {P}art
{A}, {B}},
EDITOR = {Remo Ruffini},
PUBLISHER = {North-Holland},
ADDRESS = {Amsterdam},
YEAR = {1986},
PAGES = {1223--1231},
NOTE = {({R}ome, 1985). MR:879816.},
}
[139]
Y. Choquet-Bruhat :
“Global existence theorems for hyperbolic harmonic maps ,”
Ann. Inst. H. Poincaré Phys. Théor.
46 : 1
(1987 ),
pp. 97–111 .
MR
877997
Zbl
0608.58018
article
Abstract
BibTeX
Consider a hyperbolic manifold \( (M,g) \) , \( M = S \times \mathbb{R} \) , of dimension \( n + 1 \) and a Riemannian manifold \( (N,h) \) embedded in Euclidean space. A smooth function \( f : M \to N \) is a (hyperbolic) harmonic map if and only if
\[ \operatorname{tr}_g \nabla^2 f = 0 .\]
Imposing some (geometric) regularity conditions on \( M \) and \( N \) the author shows local existence of a solution \( u \) defined on \( S \times (-\ell, \ell) \) for some \( \ell > 0 \) of the Cauchy problem with initial data
\[ u|_{S\times\{0\}} = \phi, \qquad \partial_0 u|_{S\times \{0\}} = \psi \]
in suitable Sobolev spaces. The proof is based on standard existence results for second order hyperbolic systems. In the special case \( n = 1 \) the local existence theorem can be sharpened (using energy estimates) to give global existence of a solution.
@article {key877997m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global existence theorems for hyperbolic
harmonic maps},
JOURNAL = {Ann. Inst. H. Poincar\'{e} Phys. Th\'{e}or.},
FJOURNAL = {Annales de l'Institut Henri Poincar\'{e}.
Physique Th\'{e}orique},
VOLUME = {46},
NUMBER = {1},
YEAR = {1987},
PAGES = {97--111},
URL = {http://www.numdam.org/item?id=AIHPB_1987__46_1_97_0},
NOTE = {MR:877997. Zbl:0608.58018.},
ISSN = {0246-0211},
}
[140]
F. Cagnac, Y. Choquet-Bruhat, and N. Noutchegueme :
“Solutions of the Einstein equations with data at past
infinity ,”
pp. 35–54
in
Seventh Italian conference on general relativity and gravitational physics
(Rapallo, 1986 ).
Edited by U. Bruzzo, R. Cianci, and E. Massa .
World Sci. Publ. (Singapore ),
1987 .
MR
892547
incollection
Abstract
People
BibTeX
Many studies in general relativity suppose the existence of solutions of Einstein equations for an infinite time in the past, which tend to a stationary solution at past infinity. In this paper the authors give a proof of the existence, for an infinite proper time, of infinitely many solutions of the system of Einstein equations coupled with conservative sources.
@incollection {key892547m,
AUTHOR = {Cagnac, F. and Choquet-Bruhat, Y. and
Noutchegueme, N.},
TITLE = {Solutions of the {E}instein equations
with data at past infinity},
BOOKTITLE = {Seventh {I}talian conference on general
relativity and gravitational physics},
EDITOR = {U. Bruzzo and R. Cianci and E. Massa},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Singapore},
YEAR = {1987},
PAGES = {35--54},
NOTE = {({R}apallo, 1986). MR:892547.},
ISBN = {9789971502577},
}
[141]
Y. Choquet-Bruhat :
“Mathematics for classical supergravities ,”
pp. 73–90
in
Differential geometric methods in mathematical physics
(Salamanca, 1985 ).
Edited by P. L. García and A. Pérez-Rendón .
Lecture Notes in Math. 1251 .
Springer ,
1987 .
MR
897114
Zbl
0619.53051
incollection
Abstract
BibTeX
In the first part of this paper we give the elements of graded differential geometry necessary for the second part: for a more elaborate and general treatment of graded variational calculus see [Pérez-Rendón and Ruipérez 1985],[Ruipérez and Muñoz-Masqué 1985]). In the second part we write the lagrangian of a general, graded Einstein–Cartan theory with sources, the field equations satisfied by its critical points, and identities satisfied by these equations due to the invariance of the lagrangian under diffeomorphims of the base manifold and Lorentz transformations in its tangent space
@incollection {key897114m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Mathematics for classical supergravities},
BOOKTITLE = {Differential geometric methods in mathematical
physics},
EDITOR = {P. L. Garc\'ia and A. P\'erez-Rend\'on},
SERIES = {Lecture Notes in Math.},
NUMBER = {1251},
PUBLISHER = {Springer},
YEAR = {1987},
PAGES = {73--90},
DOI = {10.1007/BFb0077316},
NOTE = {({S}alamanca, 1985). MR:897114. Zbl:0619.53051.},
}
[142]
Y. Choquet-Bruhat :
“Mathematical problems ,”
pp. 331–335
in
General relativity and gravitation: Proceedings of the
11th International Conference on General Relativity and Gravitation
(Stockholm, 1986 ).
Edited by M. A. H. MacCallum .
Cambridge Univ. Press ,
1987 .
MR
915367
incollection
BibTeX
@incollection {key915367m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Mathematical problems},
BOOKTITLE = {General relativity and gravitation:
Proceedings of the 11th International
Conference on General Relativity and
Gravitation},
EDITOR = {M. A. H. MacCallum},
PUBLISHER = {Cambridge Univ. Press},
YEAR = {1987},
PAGES = {331--335},
NOTE = {({S}tockholm, 1986). MR:915367.},
ISBN = {9780521332965},
}
[143]
Y. Choquet-Bruhat :
“Non existence de solutions globales de certaines équations d’onde non linéaires sur une variété ,”
C. R. Acad. Sci. Paris Sér. I Math.
305 : 19
(1987 ),
pp. 817–821 .
In French.
MR
923206
article
Abstract
BibTeX
It is proved that the equation \( \square u \geq A |u|^p \) , \( A > 0 \) , \( p > 1 \) , admits no global solution on a globally hyperbolic manifold \( V_n\times\mathbb{R} \) with \( V_n \) compact if the intial data satisfy a certain condition of positivity in the mean
@article {key923206m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Non existence de solutions globales
de certaines \'{e}quations d'onde non
lin\'{e}aires sur une vari\'{e}t\'{e}},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {305},
NUMBER = {19},
YEAR = {1987},
PAGES = {817--821},
NOTE = {In French. MR:923206.},
ISSN = {0249-6291},
}
[144]
Y. Choquet-Bruhat :
“Spin \( {1/2} \) fields in arbitrary dimensions and the Einstein–Cartan theory ,”
pp. 83–106
in
Gravitation and geometry .
Edited by W. Rindler and A. Trautman .
Monogr. Textbooks Phys. Sci. 4 .
Bibliopolis (Naples ),
1987 .
MR
938534
incollection
BibTeX
@incollection {key938534m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Spin \${1/2}\$ fields in arbitrary dimensions
and the {E}instein--{C}artan theory},
BOOKTITLE = {Gravitation and geometry},
EDITOR = {Wolfgang Rindler and Andrzej Trautman},
SERIES = {Monogr. Textbooks Phys. Sci.},
NUMBER = {4},
PUBLISHER = {Bibliopolis},
ADDRESS = {Naples},
YEAR = {1987},
PAGES = {83--106},
NOTE = {MR:938534.},
}
[145]
Y. Choquet-Bruhat and M. Novello :
“Système conforme régulier pour les équations d’Einstein ,”
C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers
Sci. Terre
305 : 3
(1987 ),
pp. 155–160 .
MR
979834
Zbl
0633.53070
article
Abstract
People
BibTeX
We give a system of partial differential equations satisfied by a metric g conformal to an Einstein metric and by the conformal factor \( \omega \) , regular in the sense that it does not contain negative powers of \( \omega \) . We use the ideas of [Friedrich 1981] and [Friedich 1983], but we obtain here a hyperbolic system in the sense of Leray, by a different method.
@article {key979834m,
AUTHOR = {Choquet-Bruhat, Yvonne and Novello,
Mario},
TITLE = {Syst\`eme conforme r\'{e}gulier pour
les \'{e}quations d'{E}instein},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. II M\'{e}c.
Phys. Chim. Sci. Univers Sci. Terre},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie II. M\'{e}canique,
Physique, Chimie, Sciences de l'Univers,
Sciences de la Terre},
VOLUME = {305},
NUMBER = {3},
YEAR = {1987},
PAGES = {155--160},
NOTE = {MR:979834. Zbl:0633.53070.},
ISSN = {0249-6305},
}
[146]
Y. Choquet-Bruhat :
“Global existence for nonlinear \( \sigma \) -models ,”
pp. 65–86
in
Nonlinear hyperbolic equations in applied sciences ,
published as Rend. Sem. Mat. Univ. Politec. Torino
special issue
(1988 ).
MR
1007367
Zbl
0678.58015
incollection
Abstract
BibTeX
First, a brief review of the fundamental properties of harmonic maps, independent of signature is given. Next, using energy estimates a global existence theorem for a harmonic map from any two-dimensional regular hyperbolic manifold into any compact, regular Riemannian manifold is proved. Also, a global existence theorem for small Cauchy data for harmonic maps from a Minkowski space of arbitrary even dimension into a Riemannian manifold is established.
@article {key1007367m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Global existence for nonlinear \$\sigma\$-models},
JOURNAL = {Rend. Sem. Mat. Univ. Politec. Torino},
FJOURNAL = {Rendiconti del Seminario Matematico
(gi\`a ``Conferenze di Fisica e di Matematica'').
Universit\`a e Politecnico di Torino},
NUMBER = {special issue},
YEAR = {1988},
PAGES = {65--86},
NOTE = {\textit{Nonlinear hyperbolic equations
in applied sciences}. MR:1007367. Zbl:0678.58015.},
ISSN = {0373-1243},
}
[147]
Y. Choquet-Bruhat :
“Cas d’existence globale de solutions de l’équation \( \square
u=A|u|^p \) ,”
C. R. Acad. Sci. Paris Sér. I Math.
306 : 8
(1988 ),
pp. 359–364 .
MR
934619
Zbl
0673.35076
article
Abstract
BibTeX
@article {key934619m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Cas d'existence globale de solutions
de l'\'{e}quation {\$\square u=A|u|^p\$}},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {306},
NUMBER = {8},
YEAR = {1988},
PAGES = {359--364},
NOTE = {MR:934619. Zbl:0673.35076.},
ISSN = {0249-6291},
}
[148]
Y. Choquet-Bruhat :
“Problème de Cauchy pour les modèles gravitationnels avec termes de Gauss–Bonnet ,”
C. R. Acad. Sci. Paris Sér. I Math.
306 : 10
(1988 ),
pp. 445–450 .
MR
937983
Zbl
0646.53074
article
Abstract
BibTeX
@article {key937983m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Probl\`eme de {C}auchy pour les mod\`eles
gravitationnels avec termes de {G}auss--{B}onnet},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {306},
NUMBER = {10},
YEAR = {1988},
PAGES = {445--450},
NOTE = {MR:937983. Zbl:0646.53074.},
ISSN = {0249-6291},
}
[149]
Y. Choquet-Bruhat :
“Global problems in general relativity ,”
pp. 3–27
in
SILARG, VI
(Rio de Janeiro, 1987 ).
Edited by M. Novello .
World Sci. Publ. (Singapore ),
1988 .
MR
948977
Zbl
0658.53075
incollection
Abstract
BibTeX
This paper concentrates its attention on a review of two topics in the global structure of general relativity; the Cauchy problem and the strong and weak cosmic censorship hypotheses. After an initial discussion comparing the study of the Cauchy problem for field theories on a Minkowski background with a similar but more difficult study for Einstein’s equations of general relativity, a brief mention is made of the as yet unsolved problem regarding the stability of Minkowski space of dimension 4. The author then reviews the Klainerman–Christodoulou theorems which solve this problem for \( n\geq 5 \) . The first part of the paper is concluded with a detailed discussion of more general types of stability problems concerning Einstein’s equations with particular emphasis of the role of harmonic coordinates and the structure of Einstein’s equations in these coordinates.
The second part of the paper starts with a discussion of the weak and strong cosmic censorship hypotheses of Penrose and their relation to global hyperbolicity. A survey is then given of examples of violation of the cosmic censorship hypothesis (but the author admits that the examples given contain sources which are not physically reasonable). They include certain types of collapsing dust balls and other forms of fluid balls and a detailed analysis is given of a Tolman-Bondi type solution in this context. The paper ends with a detailed discussion of an example of Christodoulou which satisfies the Einstein-scalar field equations. This example should, according to the author, provide a good indication of the results one might expect for more realistic sources in general relativity — and the results are, apparently, in good
agreement generally with cosmic censorship conjectures.
@incollection {key948977m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global problems in general relativity},
BOOKTITLE = {S{ILARG}, {VI}},
EDITOR = {M. Novello},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Singapore},
YEAR = {1988},
PAGES = {3--27},
NOTE = {({R}io de {J}aneiro, 1987). MR:948977.
Zbl:0658.53075.},
}
[150]
Y. Choquet-Bruhat :
“The Cauchy problem for stringy gravity ,”
J. Math. Phys.
29 : 8
(1988 ),
pp. 1891–1895 .
MR
955194
Zbl
0658.53078
article
Abstract
BibTeX
@article {key955194m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {The {C}auchy problem for stringy gravity},
JOURNAL = {J. Math. Phys.},
FJOURNAL = {Journal of Mathematical Physics},
VOLUME = {29},
NUMBER = {8},
YEAR = {1988},
PAGES = {1891--1895},
DOI = {10.1063/1.527841},
NOTE = {MR:955194. Zbl:0658.53078.},
ISSN = {0022-2488},
}
[151]
Y. Choquet-Bruhat :
“Les travaux de André Lichnerowicz en relativité générale ,”
pp. 1–10
in
Physique quantique et géométrie: Colloq. Géom. Phys.
(Paris, 1986 ).
Edited by D. Bernard and Y. Choquet-Bruhat .
Travaux en Cours 32 .
Hermann (Paris ),
1988 .
MR
955859
Zbl
0648.01004
incollection
Abstract
BibTeX
In recognition of Lichnerowicz’s contribution to the General Theory of Relativity one of his pupils gives a survey. From the beginning onwards Lichnerowicz, provided with a geometric mind, was interested in manifolds with a hyperbolic metric in correlation with the Einstein equations. Lichnerowicz was able to prove that gravitational solitons do not exist. Proceeding from this result Lichnerowicz worked on the integration of the Einstein equations. He was one of the first to find out that gravitational radiation appears in form of a curvature tensor. The curved space-time also was within Lichnerowicz’s main interests. Another subject of his work were the boson-fields which led him to investigate on the theory of spinors in pseudo-Riemannian manifolds. During his whole carrier Lichnerowicz dealt with the relativistic mechanics of continua. Astrophysicists recognized well Lichnerowicz’s article on shock-waves in magnetohydrodynamics, which had appeared in 1975. Four appendices enriched by references allow to verify the mathematical details.
@incollection {key955859m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Les travaux de {A}ndr\'{e} {L}ichnerowicz
en relativit\'{e} g\'{e}n\'{e}rale},
BOOKTITLE = {Physique quantique et g\'{e}om\'{e}trie:
Colloq. {G{\'e}om}. {Phys}.},
EDITOR = {D. Bernard and Y. Choquet-Bruhat},
SERIES = {Travaux en Cours},
NUMBER = {32},
PUBLISHER = {Hermann},
ADDRESS = {Paris},
YEAR = {1988},
PAGES = {1--10},
NOTE = {({P}aris, 1986). MR:955859. Zbl:0648.01004.},
}
[152]
Y. Choquet-Bruhat :
“Ondes à haute fréquence pour la gravitation avec termes de Gauss–Bonnet ,”
C. R. Acad. Sci. Paris Sér. I Math.
307 : 12
(1988 ),
pp. 693–696 .
MR
967815
Zbl
0648.53046
article
Abstract
BibTeX
@article {key967815m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Ondes \`a haute fr\'{e}quence pour la
gravitation avec termes de {G}auss--{B}onnet},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {307},
NUMBER = {12},
YEAR = {1988},
PAGES = {693--696},
NOTE = {MR:967815. Zbl:0648.53046.},
ISSN = {0249-6291},
}
[153]
Y. Choquet-Bruhat :
“Global existence theorems by the conformal method ,”
pp. 16–37
in
Recent developments in hyperbolic equations
(Pisa, 1987 ).
Edited by L. Cattabriga, F. Colombini, M. K. V. Murthy, and S. Spagnolo .
Pitman Res. Notes Math. Ser. 183 .
Longman Sci. Tech. (Harlow ),
1988 .
MR
984357
Zbl
0734.35142
incollection
Abstract
BibTeX
This paper is a brief review of previous results. The author recalles the conformal mapping from the Minkowski space time \( M_{n+1} \) onto a bounded subset of
\[ \Sigma_{n+1}= S^n \times \mathbb{R} .\]
Then she shows how it has been used by [Christodoulou 1986] to prove the global existence of solutions of the Cauchy problem for general second order equations of the form
\[ \square u = f (u, \partial u, \partial^2 u) \]
where \( \square \) is the usual wave operator on \( M_{n+1} \) . Finally, she indicates how these theorems can be extended to some asymptotically flat manifolds and notes that global existence theorems, obtained by the conformal method, include decay estimates of the solutions [Choquet-Bruhat, Paneitz and Segal 1983] and [Choquet-Bruhat and Christodoulou 1981].
@incollection {key984357m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {Global existence theorems by the conformal
method},
BOOKTITLE = {Recent developments in hyperbolic equations},
EDITOR = {L. Cattabriga and F. Colombini and M.
K. V. Murthy and S. Spagnolo},
SERIES = {Pitman Res. Notes Math. Ser.},
NUMBER = {183},
PUBLISHER = {Longman Sci. Tech.},
ADDRESS = {Harlow},
YEAR = {1988},
PAGES = {16--37},
NOTE = {({P}isa, 1987). MR:984357. Zbl:0734.35142.},
}
[154]
Y. Choquet-Bruhat and C. DeWitt-Morette :
Analysis, manifolds and physics, Part II: 92 applications .
North-Holland Publishing Co. (Amsterdam ),
1989 .
A companion volume to the revised 1982 edition .
MR
1016603
Zbl
0682.58002
book
People
BibTeX
@book {key1016603m,
AUTHOR = {Choquet-Bruhat, Yvonne and DeWitt-Morette,
C\'{e}cile},
TITLE = {Analysis, manifolds and physics, {P}art
{II}: 92 applications},
PUBLISHER = {North-Holland Publishing Co.},
ADDRESS = {Amsterdam},
YEAR = {1989},
PAGES = {xii+449},
NOTE = {A companion volume to the revised 1982
edition. MR:1016603. Zbl:0682.58002.},
ISBN = {0-444-87071-7},
}
[155]
Y. Choquet-Bruhat :
“Gravitation with Gauss–Bonnet terms ,”
pp. 53–72
in
Conference on Mathematical Relativity
(Canberra, 1988 ).
Edited by R. Bartnik .
Proc. Centre Math. Anal. Austral. Nat. Univ. 19 .
Austral. Nat. Univ. (Canberra ),
1989 .
MR
1020790
Zbl
0684.53061
incollection
Abstract
BibTeX
In the theory of gravity with Gauss–Bonnet terms, the Lagrangian consists of the scalar curvature plus a particular polynomial combination of the Riemann tensor such that the resulting field equations are of the second order. In the present paper the author studies the initial value problem of that theory. She shows that, as in Einstein’s gravity, the equations split into constraint and evolution equations. For analytical data it is shown, as a simple application of the Cauchy–Kowalewski theorem, that the evolution equations preserve the constraints. It is found that the characteristics of the equations are not necessarily tangent to the light cones. In addition, high frequency waves of the Gauss–Bonnet theory are obtained and analyzed.
@incollection {key1020790m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Gravitation with {G}auss--{B}onnet terms},
BOOKTITLE = {Conference on {M}athematical {R}elativity},
EDITOR = {Robert Bartnik},
SERIES = {Proc. Centre Math. Anal. Austral. Nat.
Univ.},
NUMBER = {19},
PUBLISHER = {Austral. Nat. Univ.},
ADDRESS = {Canberra},
YEAR = {1989},
PAGES = {53--72},
NOTE = {({C}anberra, 1988). MR:1020790. Zbl:0684.53061.},
}
[156]
Y. Choquet-Bruhat :
“Global existence for solutions of \( \square u=A|u|^p \) ,”
J. Differential Equations
82 : 1
(1989 ),
pp. 98–108 .
MR
1023303
Zbl
0694.58040
article
BibTeX
@article {key1023303m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global existence for solutions of \$\square
u=A|u|^p\$},
JOURNAL = {J. Differential Equations},
FJOURNAL = {Journal of Differential Equations},
VOLUME = {82},
NUMBER = {1},
YEAR = {1989},
PAGES = {98--108},
DOI = {10.1016/0022-0396(89)90169-1},
NOTE = {MR:1023303. Zbl:0694.58040.},
ISSN = {0022-0396},
}
[157]
Y. Choquet-Bruhat :
Graded bundles and supermanifolds .
Monographs and Textbooks in Physical Science. Lecture Notes 12 .
Bibliopolis (Naples ),
1989 .
MR
1026098
Zbl
0707.58006
book
BibTeX
@book {key1026098m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Graded bundles and supermanifolds},
SERIES = {Monographs and Textbooks in Physical
Science. Lecture Notes},
NUMBER = {12},
PUBLISHER = {Bibliopolis},
ADDRESS = {Naples},
YEAR = {1989},
PAGES = {xii+94},
NOTE = {MR:1026098. Zbl:0707.58006.},
ISBN = {88-7088-223-3},
}
[158]
Y. Choquet-Bruhat :
“Global solutions of Yang–Mills equations on anti-de
Sitter spacetime ,”
Classical Quantum Gravity
6 : 12
(1989 ),
pp. 1781–1789 .
MR
1028380
Zbl
0698.53040
article
Abstract
BibTeX
Anti-de Sitter spacetime is a \( C^{\infty} \) manifold diffeomorphic to \( \mathbb{R}^4 \) , endowed with a \( C^{\infty} \) metric of hyperbolic signature. However this spacetime is not globally hyperbolic, and the known results about the solution of the Cauchy problem for wave equations on Lorentzian manifolds do not apply, even for a small interval of time and even for linear equations. We prove the global existence of a solution of the Cauchy problem for the Yang–Mills–Higgs equations on anti-de Sitter spacetime, under the condition that there is no radiation at timelike infinity, a condition that is explained mathematically.
@article {key1028380m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global solutions of {Y}ang--{M}ills
equations on anti-de {S}itter spacetime},
JOURNAL = {Classical Quantum Gravity},
FJOURNAL = {Classical and Quantum Gravity},
VOLUME = {6},
NUMBER = {12},
YEAR = {1989},
PAGES = {1781--1789},
DOI = {10.1088/0264-9381/6/12/007},
URL = {http://stacks.iop.org/0264-9381/6/1781},
NOTE = {MR:1028380. Zbl:0698.53040.},
ISSN = {0264-9381},
}
[159]
Y. Choquet-Bruhat :
“High frequency waves for stringy gravity ,”
pp. 349–361
in
Proceedings of the Fifth Marcel Grossmann Meeting on General Relativity, Part A, B
(Perth, 1988 ).
Edited by D. G. Blair, M. J. Buckingham, and R. Ruffini .
World Sci. Publ. (Teaneck, NJ ),
1989 .
MR
1056882
inproceedings
BibTeX
@inproceedings {key1056882m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {High frequency waves for stringy gravity},
BOOKTITLE = {Proceedings of the {F}ifth {M}arcel
{G}rossmann {M}eeting on {G}eneral {R}elativity,
{P}art {A}, {B}},
EDITOR = {D. G. Blair and M. J. Buckingham and
Remo Ruffini},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Teaneck, NJ},
YEAR = {1989},
PAGES = {349--361},
NOTE = {({P}erth, 1988). MR:1056882.},
}
[160]
Y. Choquet-Bruhat and C. H. Gu :
“Existence globale d’applications harmoniques sur l’espace-temps de Minkowski \( M_3 \) ,”
C. R. Acad. Sci. Paris Sér. I Math.
308 : 6
(1989 ),
pp. 167–170 .
In French.
MR
984915
Zbl
0661.53043
article
Abstract
People
BibTeX
We prove the existence of global solutions of the Cauchy problem for harmonic maps from three dimensional Minkowski space time \( M^3 \) into some pseudo Riemannian manifolds, including spaces with constant curvature, when the Cauchy data are small in appropriate norms.
@article {key984915m,
AUTHOR = {Choquet-Bruhat, Yvonne and Gu, Chao
Hao},
TITLE = {Existence globale d'applications harmoniques
sur l'espace-temps de {M}inkowski \$M_3\$},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {308},
NUMBER = {6},
YEAR = {1989},
PAGES = {167--170},
NOTE = {In French. MR:984915. Zbl:0661.53043.},
ISSN = {0249-6291},
}
[161]
Y. Choquet-Bruhat :
“Solutions globales d’équations d’ondes sur l’espace-temps anti
de Sitter ,”
C. R. Acad. Sci. Paris Sér. I Math.
308 : 11
(1989 ),
pp. 323–327 .
MR
989897
Zbl
0662.53068
article
Abstract
BibTeX
We prove the global existence of solutions, with conserved energy, of the Cauchy problem for the Yang–Mills–Higgs equations on anti de Sitter space time, a non globally hyperbolic manifold.
@article {key989897m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solutions globales d'\'{e}quations d'ondes
sur l'espace-temps anti de {S}itter},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {308},
NUMBER = {11},
YEAR = {1989},
PAGES = {323--327},
NOTE = {MR:989897. Zbl:0662.53068.},
ISSN = {0249-6291},
}
[162]
Relativistic fluid dynamics: Lectures given at the first 1987 session of the Centro Internazionale Matematico Estivo (C.I.M.E.)
(Noto, Italy, 1987 ).
Edited by A. M. Anile and Y. Choquet-Bruhat .
Lect. Notes Math. 1385 .
Springer (Cham ),
1989 .
book
People
BibTeX
@book {key80238197,
TITLE = {Relativistic fluid dynamics: {Lectures}
given at the first 1987 session of the
{Centro} {Internazionale} {Matematico}
{Estivo} ({C}.{I}.{M}.{E}.)},
EDITOR = {Anile, Angelo M. and Choquet-Bruhat,
Yvonne},
SERIES = {Lect. Notes Math.},
NUMBER = {1385},
PUBLISHER = {Springer},
ADDRESS = {Cham},
YEAR = {1989},
DOI = {10.1007/BFb0084027},
NOTE = {(Noto, Italy, 1987).},
ISSN = {0075-8434},
}
[163]
Y. Choquet-Bruhat and R. McLenaghan :
“Noyau de diffusion en coordonnées de Bondi de l’opérateur
des ondes sur une variété lorentzienne ,”
C. R. Acad. Sci. Paris Sér. I Math.
311 : 8
(1990 ),
pp. 483–486 .
MR
1076477
Zbl
0717.35044
article
Abstract
People
BibTeX
@article {key1076477m,
AUTHOR = {Choquet-Bruhat, Yvonne and McLenaghan,
Ray},
TITLE = {Noyau de diffusion en coordonn\'{e}es
de {B}ondi de l'op\'{e}rateur des ondes
sur une vari\'{e}t\'{e} lorentzienne},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {311},
NUMBER = {8},
YEAR = {1990},
PAGES = {483--486},
NOTE = {MR:1076477. Zbl:0717.35044.},
ISSN = {0764-4442},
}
[164]
Y. Choquet-Bruhat and N. Noutchegueme :
“Solution des systèmes de Yang–Mills–Vlasov: Théorèmes d’existence locale [Solutions of the Yang–Mills–Vlasov systems: Local existence theorems] ,”
C. R. Acad. Sci. Paris Sér. I Math.
311 : 10
(1990 ),
pp. 611–616 .
MR
1081417
Zbl
0717.35072
article
Abstract
People
BibTeX
@article {key1081417m,
AUTHOR = {Choquet-Bruhat, Yvonne and Noutchegueme,
Norbert},
TITLE = {Solution des syst\`emes de {Y}ang--{M}ills--{V}lasov:
Th\'{e}or\`emes d'existence locale [{Solutions}
of the {Yang}--{Mills}--{Vlasov} systems:
{Local} existence theorems]},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {311},
NUMBER = {10},
YEAR = {1990},
PAGES = {611--616},
NOTE = {MR:1081417. Zbl:0717.35072.},
ISSN = {0764-4442},
}
[165]
Y. Choquet-Bruhat and N. Noutchegueme :
“Solutions globales du système de Yang–Mills–Vlasov
(masse nulle) ”
[Global solutions of the Yang–Mills–Vlasov system with zero rest mass ],
C. R. Acad. Sci. Paris Sér. I Math.
311 : 12
(1990 ),
pp. 785–788 .
MR
1082633
Zbl
0715.53046
article
Abstract
People
BibTeX
In a previous Note [Choquet-Bruhat 1990] we have considered the Yang–Mills–Vlasov system on a pseudo-Riemannian manifold \( (V,g) \) of hyperbolic signature
\begin{align}
& \hat{\nabla}_a F^{\alpha,\beta} = J^{\beta},
\quad J^{\beta}(x)= \int_{\mathcal{P}_x} f(x,p,q)p^{\beta}q\omega_p \omega_q,
\tag{1}\\
& \mathcal{L}_Y f \equiv p^\alpha \frac{\partial f}{\partial x^{\alpha}} + (-\Gamma^{\alpha}_{\lambda\mu}p^{\lambda} p^{\mu} + q\cdot F^{\alpha}_{\lambda} p^{\lambda})\frac{\partial f}{\partial p^{\alpha}} - p^{\alpha}[A_{\alpha},q]\cdot \frac{\partial f}{\partial q} = 0
\tag{2}
\end{align}
where \( F = (F_{\alpha,\beta}) \) is a Yang–Mills field with potential \( A = (A_{\alpha}) \) ,
\[ \hat{\nabla} = \nabla + [A,\,] \]
is the gauge covariant derivative, \( [\ ,\,] \) the Lie bracket in the algebra \( \mathcal{G} \) where the fields take their values and a dot denotes an Ad invariant positive definite scalar product; \( J = (J_{\beta}) \) is the \( \mathcal{G} \) valued current generated by the distribution function f of particles with energy momentum p and Yang–Mills charge q: in the absence of collisions f satisfies the Vlasov equation (2). A possible physical situation modeled by (1), (2) is a plasma of quarks and gluons. In the above cited paper we have proved that when \( (V,g) \) is regularly hyperbolic, when the particles have a given rest mass m and their charges a given norm the Cauchy problem for (1), (2) has a local in time solution if:
The Cauchy data are in appropriate weighted Sobolev spaces.
These data satisfy the constraint \( \hat{\nabla}_{\alpha}F^{\alpha 0} = J^0 \) .
In the case \( m = 0 \) the initial value \( \phi \) of f satisfies in addition Support \( \phi \subset \{p^0 > c > 0\} \) .
In this Note we use this result together with the conformal invariance of the system in the case \( m = 0 \) to prove a global existence theorem on Minkowski space time \( M_4 \) , for small initial data.
@article {key1082633m,
AUTHOR = {Choquet-Bruhat, Yvonne and Noutchegueme,
Norbert},
TITLE = {Solutions globales du syst\`eme de {Y}ang--{M}ills--{V}lasov
(masse nulle) [Global solutions of the
{Yang}--{Mills}--{Vlasov} system with
zero rest mass]},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {311},
NUMBER = {12},
YEAR = {1990},
PAGES = {785--788},
NOTE = {MR:1082633. Zbl:0715.53046.},
ISSN = {0764-4442},
}
[166]
Y. Choquet-Bruhat :
“Yang–Mills fields on Lorentzian manifolds ,”
pp. 289–313
in
Mechanics, analysis and geometry: 200 years after Lagrange .
Edited by M. Francaviglia .
North-Holland Delta .
North-Holland (Amsterdam ),
1991 .
MR
1098521
Zbl
0717.53066
incollection
Abstract
BibTeX
We recall briefly the equations and identities satisfied by a system of Yang–Mills, Higgs and spinor multiplets on a manifold endowed with a riemannian metric of arbitrary signature, and the solution of the local Cauchy problem for such a system when the metric has lorentzian signature. We then show how the conformal method of Choquet-Bruhat and Christodoulou can be used to prove the global existence of the solution on strongly asymptotically minkovskian manifolds of even dimension \( d \geq 4 \) .
@incollection {key1098521m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Yang--{M}ills fields on {L}orentzian
manifolds},
BOOKTITLE = {Mechanics, analysis and geometry: 200
years after {L}agrange},
EDITOR = {Mauro Francaviglia},
SERIES = {North-Holland Delta},
PUBLISHER = {North-Holland},
ADDRESS = {Amsterdam},
YEAR = {1991},
PAGES = {289--313},
DOI = {10.1016/B978-0-444-88958-4.50016-1},
NOTE = {MR:1098521. Zbl:0717.53066.},
}
[167]
Y. Choquet-Bruhat :
“Yang–Mills–Higgs fields in three space time dimensions ,”
pp. 73–97
in
Analyse globale et physique mathématique (colloque à la mémoire d’Edmond Combet)
(Lyon, 1989 ).
Mém. Soc. Math. France 46 .
1991 .
MR
1125837
Zbl
0773.53036
incollection
Abstract
BibTeX
This paper is concerned with the problem of the global existence of solutions to the Y-M-H system, i.e. to the Yang–Mills equations coupled with the Higgs equations for a scalar multiplet. When \( M_{n+1} \) is the Minkowski space-time, existence theorems for global solutions are already known. They have been proved for \( n=1 \) or 2 by Ginibre and Velo and for \( n=3 \) by Eardley and Moncrief. Ginibre and Velo use a priori estimates in temporal gauge which do not allow to complete the proof for \( n=3 \) . On the other hand, the author and Christodoulou proved the global existence only for small Cauchy data, but including also spinor sources. Their proof extends only to Lorentzian manifolds which are asymptotically Minkowskian at infinity. In this paper, the author shows that the proof of Ginibre and Velo extends to a general regularly (and then globally) hyperbolic manifold of dimension 2 or 3, even if the Yang–Mills bundle is not trivial. She uses the local existence theorem proved for such manifolds by her, Paneitz and Segal, and the Sobolev and Gagliardo–Nirenberg inequalities for \( n \lt 4 \) , to obtain the required a priori estimates.
@incollection {key1125837m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Yang--{M}ills--{H}iggs fields in three
space time dimensions},
BOOKTITLE = {Analyse globale et physique math\'{e}matique
(colloque \`a la m\'emoire d'Edmond
Combet)},
SERIES = {M\'{e}m. Soc. Math. France},
NUMBER = {46},
YEAR = {1991},
PAGES = {73--97},
DOI = {10.24033/msmf.355},
NOTE = {(Lyon, 1989). MR:1125837. Zbl:0773.53036.},
ISSN = {0037-9484},
}
[168]
Y. Choquet-Bruhat :
“Fluides chargés non abéliens ,”
C. R. Acad. Sci. Paris Sér. I Math.
313 : 8
(1991 ),
pp. 551–555 .
MR
1131874
Zbl
0733.76098
article
Abstract
BibTeX
We write the Yang–Mills equations with source the current corresponding to a classical fluid with charge density taking its values in the Y. M. Lie algebra. We obtain Helmholtz equations for the vorticity tensor. We prove the hyperbolicity of the coupled system, in Lorenz gauge.
@article {key1131874m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Fluides charg\'{e}s non ab\'{e}liens},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {313},
NUMBER = {8},
YEAR = {1991},
PAGES = {551--555},
NOTE = {MR:1131874. Zbl:0733.76098.},
ISSN = {0764-4442},
}
[169]
Y. Choquet-Bruhat and N. Noutchegueme :
“Système de Yang–Mills–Vlasov en jauge temporelle ,”
Ann. Inst. H. Poincaré Phys. Théor.
55 : 3
(1991 ),
pp. 759–787 .
MR
1141713
Zbl
0767.58045
article
Abstract
People
BibTeX
Yang–Mills–Vlasov equations are a set of nonlinear integro-differential equations for a Yang–Mills gauge field, i.e., connection on a Lie group bundle over a manifold, coupled to distributions representing particle sources of the field, whose paths are themselves determined by differential equations involving the gauge field. This paper establishes a local time evolution existence theorem for the Cauchy problem for this set.
@article {key1141713m,
AUTHOR = {Choquet-Bruhat, Yvonne and Noutchegueme,
Norbert},
TITLE = {Syst\`eme de {Y}ang--{M}ills--{V}lasov
en jauge temporelle},
JOURNAL = {Ann. Inst. H. Poincar\'{e} Phys. Th\'{e}or.},
FJOURNAL = {Annales de l'Institut Henri Poincar\'{e}.
Physique Th\'{e}orique},
VOLUME = {55},
NUMBER = {3},
YEAR = {1991},
PAGES = {759--787},
URL = {http://www.numdam.org/item?id=AIHPA_1991__55_3_759_0},
NOTE = {MR:1141713. Zbl:0767.58045.},
ISSN = {0246-0211},
}
[170]
Y. Choquet-Bruhat and G. Pichon :
“Plasmas with discrete velocities ,”
pp. 85–96
in
Discrete models of fluid dynamics
(Figueira da Foz, 1990 ).
Edited by A. S. Alves .
Ser. Adv. Math. Appl. Sci. 2 .
World Sci. Publ. (River Edge, NJ ),
1991 .
MR
1192797
Zbl
0828.76002
incollection
Abstract
People
BibTeX
We apply the general scheme given in [7] for discrete Boltzmann equations on a tangent fiber bundle to obtain the Maxwell–Boltzmann system satisfied by a plasma where the velocities take only a finite number of values. We show that the system is non strictly hyperbolic in the sense of Leray–Ohya. We consider then the case of a plasma in a given electromagnetic field \( (E,H) \) . We construct solutions with \( E = 0 \) , \( H \) the magnetic field of a rotating body.
@incollection {key1192797m,
AUTHOR = {Choquet-Bruhat, Yvonne and Pichon, Guy},
TITLE = {Plasmas with discrete velocities},
BOOKTITLE = {Discrete models of fluid dynamics},
EDITOR = {A. S. Alves},
SERIES = {Ser. Adv. Math. Appl. Sci.},
NUMBER = {2},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {River Edge, NJ},
YEAR = {1991},
PAGES = {85--96},
DOI = {10.1142/9789814503525_0008},
NOTE = {({F}igueira da {F}oz, 1990). MR:1192797.
Zbl:0828.76002.},
ISSN = {1793-0901},
ISBN = {981-02-0521-X},
}
[171]
Y. Choquet-Bruhat :
“High frequency Gauss–Bonnet gravity ,”
pp. 57–73
in
Classical mechanics and relativity: Relationship and consistency (papers from the international conference in memory of Carlo Cattaneo)
(Elba, 1989 ).
Edited by G. Ferrarese .
Monogr. Textbooks Phys. Sci. Lecture Notes 20 .
Bibliopolis (Naples ),
1991 .
MR
1204438
Zbl
0934.83003
incollection
BibTeX
@incollection {key1204438m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {High frequency {G}auss--{B}onnet gravity},
BOOKTITLE = {Classical mechanics and relativity:
Relationship and consistency (papers
from the international conference in
memory of {Carlo} {Cattaneo})},
EDITOR = {Giorgio Ferrarese},
SERIES = {Monogr. Textbooks Phys. Sci. Lecture
Notes},
NUMBER = {20},
PUBLISHER = {Bibliopolis},
ADDRESS = {Naples},
YEAR = {1991},
PAGES = {57--73},
NOTE = {({E}lba, 1989). MR:1204438. Zbl:0934.83003.},
ISBN = {88-7088-253-5},
}
[172]
Y. Choquet-Bruhat :
“Fluides chargés non abéliens de conductivité infinie ,”
C. R. Acad. Sci. Paris Sér. I Math.
314 : 1
(1992 ),
pp. 87–91 .
MR
1149646
Zbl
0800.76552
article
Abstract
BibTeX
We establish the equations satisfied by a fluid having a charge density of Yang–Mills type, taking its values in a Lie algebra, in the case of an infinite conductivity. Classical magnetohydrodynamics is a particular case which appears as a degenerate one.
@article {key1149646m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Fluides charg\'{e}s non ab\'{e}liens
de conductivit\'{e} infinie},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {314},
NUMBER = {1},
YEAR = {1992},
PAGES = {87--91},
NOTE = {MR:1149646. Zbl:0800.76552.},
ISSN = {0764-4442},
}
[173]
Y. Choquet-Bruhat :
“Cosmological Yang–Mills hydrodynamics ,”
J. Math. Phys.
33 : 5
(1992 ),
pp. 1782–1785 .
MR
1158999
Zbl
0753.76201
article
Abstract
BibTeX
The partial differential equations that govern the evolution of a self-gravitating fluid endowed with a density of charge taking its values in a Lie algebra, generating a Yang–Mills current, and hence a Yang–Mills field are written and studied. The local properties of the solutions are analogous to those of gravitating plasmas, but may be quite different globally.
@article {key1158999m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Cosmological {Y}ang--{M}ills hydrodynamics},
JOURNAL = {J. Math. Phys.},
FJOURNAL = {Journal of Mathematical Physics},
VOLUME = {33},
NUMBER = {5},
YEAR = {1992},
PAGES = {1782--1785},
DOI = {10.1063/1.529655},
NOTE = {MR:1158999. Zbl:0753.76201.},
ISSN = {0022-2488},
}
[174]
Y. Choquet-Bruhat and N. Noutchegueme :
“Yang–Mills Vlasov systems ,”
pp. 52–71
in
Nonlinear hyperbolic equations and field theory: Papers from a workshop on nonlinear hyperbolic equations
(Lake Como, 1990 ).
Edited by M. K. V. Murthy and S. Spagnolo .
Pitman Res. Notes Math. Ser. 253 .
Longman Sci. Tech.; Wiley (Harlow, UK; New York ),
1992 .
MR
1175201
Zbl
0799.35188
incollection
Abstract
People
BibTeX
@incollection {key1175201m,
AUTHOR = {Choquet-Bruhat, Y. and Noutchegueme,
N.},
TITLE = {Yang--{M}ills {V}lasov systems},
BOOKTITLE = {Nonlinear hyperbolic equations and field
theory: Papers from a workshop on nonlinear
hyperbolic equations},
EDITOR = {M. K. V. Murthy and S. Spagnolo},
SERIES = {Pitman Res. Notes Math. Ser.},
NUMBER = {253},
PUBLISHER = {Longman Sci. Tech.; Wiley},
ADDRESS = {Harlow, UK; New York},
YEAR = {1992},
PAGES = {52--71},
NOTE = {({L}ake {C}omo, 1990). MR:1175201. Zbl:0799.35188.},
ISBN = {0-582-08766-X; 0-470-21853-3},
}
[175]
Y. Choquet-Bruhat, J. Isenberg, and V. Moncrief :
“Solutions of constraints for Einstein equations ,”
C. R. Acad. Sci. Paris Sér. I Math.
315 : 3
(1992 ),
pp. 349–355 .
MR
1179734
Zbl
0796.35161
article
Abstract
People
BibTeX
@article {key1179734m,
AUTHOR = {Choquet-Bruhat, Yvonne and Isenberg,
James and Moncrief, Vincent},
TITLE = {Solutions of constraints for {E}instein
equations},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {315},
NUMBER = {3},
YEAR = {1992},
PAGES = {349--355},
NOTE = {MR:1179734. Zbl:0796.35161.},
ISSN = {0764-4442},
}
[176]
Y. Choquet-Bruhat :
“Cosmological Yang–Mills fluids ,”
pp. 685–687
in
On recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories: The Sixth Marcel Grossmann Meeting, Part A, B
(Kyoto, 1991 ).
Edited by H. Sato and T. Nakamura .
World Sci. Publ. (River Edge, NJ ),
1992 .
MR
1236927
incollection
BibTeX
@incollection {key1236927m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Cosmological {Y}ang--{M}ills fluids},
BOOKTITLE = {On recent developments in theoretical
and experimental general relativity,
gravitation and relativistic field theories:
The {S}ixth {M}arcel {G}rossmann {M}eeting,
{P}art {A}, {B}},
EDITOR = {Humitaka Sato and Takashi Nakamura},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {River Edge, NJ},
YEAR = {1992},
PAGES = {685--687},
DOI = {10.1142/1644},
NOTE = {({K}yoto, 1991). MR:1236927.},
}
[177]
Y. Choquet-Bruhat :
“Solution of the Einstein constraints on nonmaximal
submanifolds ,”
pp. S205–S206
in
Les Journées Relativistes
(Amsterdam, 1992 ),
published as Classical Quantum Gravity
10 : suppl.
(1993 ).
MR
1212813
Zbl
0788.53082
incollection
Abstract
BibTeX
It has long been known that, by use of the “conformal method”, the Einstein constraints on an initial manifold split into a linear elliptic system and a nonlinear elliptic (Lichnerowicz) equation in the case where the manifold has constant mean extrinsic curvature. However there are spacetimes which do not admit such submanifolds (cf. Brill, Bartnik). In a recent paper, in collaboration with J. Isenberg and V. Moncrief, the author proved existence theorems for the coupled system of constraints, on an initial compact manifold with non-constant mean extrinsic curvature. Here the author considers the non-compact, asymptotically Euclidean case of non-maximal initial submanifolds.
@article {key1212813m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solution of the {E}instein constraints
on nonmaximal submanifolds},
JOURNAL = {Classical Quantum Gravity},
FJOURNAL = {Classical and Quantum Gravity},
VOLUME = {10},
NUMBER = {suppl.},
YEAR = {1993},
PAGES = {S205--S206},
DOI = {10.1088/0264-9381/10/S/024},
URL = {http://stacks.iop.org/0264-9381/10/S205},
NOTE = {\textit{Les Journ\'{e}es Relativistes}
(Amsterdam, 1992). MR:1212813. Zbl:0788.53082.},
ISSN = {0264-9381},
}
[178]
Y. Choquet-Bruhat :
“Solution des contraintes pour les équations d’Einstein sur
une variété asymptotiquement euclidienne non maximale ”
[Solution of constraints for Einstein equations on non maximal asymptotically Euclidean manifolds ],
C. R. Acad. Sci. Paris Sér. I Math.
317 : 1
(1993 ),
pp. 109–114 .
MR
1228975
Zbl
0783.53047
article
Abstract
BibTeX
We consider the coupled elliptic system of constraints on the Cauchy data for Einstein’s equations obtained by the conformal method when the initial manifold is asymptotically Euclidean and has a non-zero mean extrinsic curvature \( \tau \) . We prove that this system admits asymptotically Euclidean solutions when \( \nabla \tau \) is small in an appropriate norm and the scalar curvature of the conformal metric g is either everywhere negative with fall off conditions that we specify, or such that g belongs to the positive Yamabe class.
@article {key1228975m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solution des contraintes pour les \'{e}quations
d'{E}instein sur une vari\'{e}t\'{e}
asymptotiquement euclidienne non maximale
[Solution of constraints for {Einstein}
equations on non maximal asymptotically
{Euclidean} manifolds]},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {317},
NUMBER = {1},
YEAR = {1993},
PAGES = {109--114},
NOTE = {MR:1228975. Zbl:0783.53047.},
ISSN = {0764-4442},
}
[179]
Y. Choquet-Bruhat :
“Applications of generalized functions to shocks and discrete
models ,”
pp. 37–49
in
Generalized functions and their applications: Proceedings of the international symposium
(Varanasi, 1991 ).
Edited by R. S. Pathak .
Plenum (New York ),
1993 .
MR
1240062
Zbl
0849.46052
incollection
Abstract
BibTeX
Generalized functions, also called distributions, have proved useful in many problems related to physics even before their rigorous and general definition. Generalized functions are also a powerful tool to formulate in a unified manner fundamental physical laws. We shall give here two general examples of such an application of generalized functions. The first is to the writing of the equations satisfied by shock waves: we establish in particular the algebraic conditions satisfied across a gravitational shock wave and the propagation of the corresponding discontinuities. In the second example we use a representation of the distribution function of kinetic theory by a sum of discrete measures to find the Boltzmann equation for a model with a finite number of velocities, together with propagation equations satisfied by these velocities.
@incollection {key1240062m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Applications of generalized functions
to shocks and discrete models},
BOOKTITLE = {Generalized functions and their applications:
Proceedings of the international symposium},
EDITOR = {R. S. Pathak},
PUBLISHER = {Plenum},
ADDRESS = {New York},
YEAR = {1993},
PAGES = {37--49},
DOI = {10.1007/978-1-4899-1591-7_4},
NOTE = {({V}aranasi, 1991). MR:1240062. Zbl:0849.46052.},
ISBN = {0-306-44404-6},
}
[180]
Y. Choquet-Bruhat :
“Einstein equations with 1 parameter spacelike isometry group ,”
pp. 137–145
in
Modern group analysis: Advanced analytical and computational
methods in mathematical physics
(Acireale, 1992 ).
Edited by N. H. Ibragimov, M. Torrisi, and A. Valenti .
Kluwer Acad. (Dordrecht ),
1993 .
MR
1259548
Zbl
0793.53066
incollection
Abstract
BibTeX
In a recent series of interesting articles V. Moncrief has obtained reduced Hamiltonians for vacuum Einstein, or Einstein–Maxwell–Higgs equations. We show how one can obtain by direct methods, without making use of a Hamiltonian formalism, the splitting of vacuum Einstein equations into a system elliptic on each spacelike slice on the one hand, and on the other hand a hyperbolic system which is an harmonic map equation from a pseudo-Riemannian manifold, whose metric depends on the solution of the elliptic system, into a fixed 2-dimensional symmetric Riemannian space. We discuss, following with some variants ideas of Cameron and Moncrief, the general solution of the system, depending on the topology of space.
@incollection {key1259548m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Einstein equations with {1} parameter
spacelike isometry group},
BOOKTITLE = {Modern group analysis: Advanced analytical
and computational methods in mathematical
physics},
EDITOR = {N. H. Ibragimov and M. Torrisi and A.
Valenti},
PUBLISHER = {Kluwer Acad.},
ADDRESS = {Dordrecht},
YEAR = {1993},
PAGES = {137--145},
DOI = {10.1007/978-94-011-2050-0_1},
NOTE = {({A}cireale, 1992). MR:1259548. Zbl:0793.53066.},
ISBN = {0-7923-2480-3},
}
[181]
Y. Choquet-Bruhat :
“Solution of Einstein equations ,”
Math. Today
11
(1993 ),
pp. 3–12 .
MR
1311850
Zbl
0789.53044
article
Abstract
BibTeX
In this lecture I shall not try to enter into the mystery of the action of gravity through eventual graviton exchange, neither in its quantization. Following J. V. Narlikar in his second Vaidya–Raychauduri Endowment Lecuture I shall quote from Newton’s letter to Bently “…cause of gravity is what I do not pretend to know and therefore would take more time to consider of it.” I shall only try to give a short review of what mathematicians know today about the general solutions of Einstein field equations of classical General Relativity, comparing it with the stronger results obtained in recent years for the so called Yang–Mills equations which govern the three other fundamental fields: the electromagnetic, weak and strong interactions.
@article {key1311850m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solution of {E}instein equations},
JOURNAL = {Math. Today},
FJOURNAL = {Mathematics Today},
VOLUME = {11},
YEAR = {1993},
PAGES = {3--12},
URL = {http://mathematicstoday.co.in/archives/V11_June_1993_1.pdf},
NOTE = {MR:1311850. Zbl:0789.53044.},
}
[182]
Y. Choquet-Bruhat :
“Solution of the coupled Einstein constraints on asymptotically Euclidean manifolds ,”
pp. 83–96
in
Directions in general relativity: Proceedings of the international symposium
(University of Maryland, College Park, MD, 1993 ).
Cambridge University Press (Cambridge ),
1993 .
Papers in honor of Charles Misner on the occasion of his 60th birthday.
Zbl
0850.83012
incollection
Abstract
BibTeX
We consider the coupled elliptic system of constraints on the Cauchy data for Einstein’s equations obtained by the conformal method when the initial manifold has non constant mean extrinsic curvature \( \tau \) . We prove that this system admits asymptotically euclidean solutions when \( \nabla_{\tau} \) is small in an appropriate norm and the scalar curvature of the conformal metric is either everywhere non negative, or everywhere negative with fall off conditions that we specify.
@incollection {key0850.83012z,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Solution of the coupled {Einstein} constraints
on asymptotically {Euclidean} manifolds},
BOOKTITLE = {Directions in general relativity: Proceedings
of the international symposium},
PUBLISHER = {Cambridge University Press},
ADDRESS = {Cambridge},
YEAR = {1993},
PAGES = {83--96},
DOI = {10.1017/CBO9780511524653.010},
NOTE = {(University of Maryland, College Park,
MD, 1993). Papers in honor of Charles
Misner on the occasion of his 60th birthday.
Zbl:0850.83012.},
ISBN = {0-521-45267-8},
}
[183]
Y. Choquet-Bruhat :
“Cosmological Yang–Mills magnetohydrodynamics ,”
C. R. Acad. Sci. Paris Sér. I Math.
318 : 8
(1994 ),
pp. 775–782 .
MR
1272347
Zbl
0802.76099
article
Abstract
BibTeX
We recall the equations satisfied by a fluid with Yang–Mills type charge and infinite conductivity. We couple this system with the Einstein equations with the source term being the stress energy tensor of the Yang–Mills fluid. We give an explicit expression for the magnetoacoustic wave fronts, which do not split in the generic case into Alfvén and acoustic waves.
@article {key1272347m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Cosmological {Y}ang--{M}ills magnetohydrodynamics},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {318},
NUMBER = {8},
YEAR = {1994},
PAGES = {775--782},
NOTE = {MR:1272347. Zbl:0802.76099.},
ISSN = {0764-4442},
}
[184]
Y. Choquet-Bruhat and V. Moncrief :
“An existence theorem for the reduced Einstein equation ,”
C. R. Acad. Sci. Paris Sér. I Math.
319 : 2
(1994 ),
pp. 153–159 .
MR
1288395
Zbl
0813.35060
article
Abstract
People
BibTeX
We discuss the reduced Einstein equations for \( U (1) \) -symmetric Lorentzian metrics defined on circle bundles ove \( \Sigma \times R \) where \( \Sigma \) is a compact orientable surface. For the special case \( \Sigma \sim S^2 \) these correspond to a certain harmonic map evolving on a “background” determined (via the elliptic constraint equations) by the harmonic map itself. We prove local (in time) existence, uniqueness and regularity for this (nonlocal) harmonic map equation, and hence the Einstein equations, for the case \( \Sigma \sim S^2 \) .
@article {key1288395m,
AUTHOR = {Choquet-Bruhat, Yvonne and Moncrief,
Vincent},
TITLE = {An existence theorem for the reduced
{E}instein equation},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {319},
NUMBER = {2},
YEAR = {1994},
PAGES = {153--159},
NOTE = {MR:1288395. Zbl:0813.35060.},
ISSN = {0764-4442},
}
[185]
Y. Choquet-Bruhat :
“Théorèmes d’existence globaux pour des fluides ultra
relativistes ,”
C. R. Acad. Sci. Paris Sér. I Math.
319 : 12
(1994 ),
pp. 1337–1342 .
MR
1310683
Zbl
0834.76100
article
Abstract
BibTeX
@article {key1310683m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Th\'{e}or\`emes d'existence globaux
pour des fluides ultra relativistes},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {319},
NUMBER = {12},
YEAR = {1994},
PAGES = {1337--1342},
NOTE = {MR:1310683. Zbl:0834.76100.},
ISSN = {0764-4442},
}
[186]
Y. Choquet-Bruhat :
“Hydrodynamics and magnetohydrodynamics of Yang–Mills fluids ,”
pp. 54–68
in
Waves and stability in continuous media
(Bologna, 1993 ).
Edited by S. Rionero and T. Ruggeri .
Ser. Adv. Math. Appl. Sci. 23 .
World Sci. Publ. (River Edge, NJ ),
1994 .
MR
1320064
incollection
BibTeX
@incollection {key1320064m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Hydrodynamics and magnetohydrodynamics
of {Y}ang--{M}ills fluids},
BOOKTITLE = {Waves and stability in continuous media},
EDITOR = {Salvatore Rionero and Tommaso Ruggeri},
SERIES = {Ser. Adv. Math. Appl. Sci.},
NUMBER = {23},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {River Edge, NJ},
YEAR = {1994},
PAGES = {54--68},
NOTE = {({B}ologna, 1993). MR:1320064.},
ISBN = {9789814533898},
}
[187]
A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W. York, Jr. :
“Einstein and Yang–Mills theories in hyperbolic form
without gauge fixing ,”
Phys. Rev. Lett.
75 : 19
(1995 ),
pp. 3377–3381 .
MR
1356171
Zbl
1020.83503
article
Abstract
People
BibTeX
The evolution of physical and gauge degrees of freedom in the Einstein and Yang–Mills theories are separated in a gauge-invariant manner. We show that the equations of motion of these theories can be written in flux-conservative first-order symmetric hyperbolic form where the only nonzero characteristic speed is that of light. This dynamical form is ideal for global analysis, analytic approximation methods such as gauge-invariant perturbation theory, and numerical solution.
@article {key1356171m,
AUTHOR = {Abrahams, Andrew and Anderson, Arlen
and Choquet-Bruhat, Yvonne and York,
Jr., James W.},
TITLE = {Einstein and {Y}ang--{M}ills theories
in hyperbolic form without gauge fixing},
JOURNAL = {Phys. Rev. Lett.},
FJOURNAL = {Physical Review Letters},
VOLUME = {75},
NUMBER = {19},
YEAR = {1995},
PAGES = {3377--3381},
DOI = {10.1103/PhysRevLett.75.3377},
NOTE = {MR:1356171. Zbl:1020.83503.},
ISSN = {0031-9007},
}
[188]
Y. Choquet-Bruhat and J. W. York :
“Geometrical well posed systems for the Einstein equations ,”
C. R. Acad. Sci. Paris Sér. I Math.
321 : 8
(1995 ),
pp. 1089–1095 .
MR
1360579
Zbl
0839.53063
article
Abstract
People
BibTeX
We show that, given an arbitrary shift, the lapse \( N \) can be chosen so that the extrinsic curvature \( K \) of the space slices with metric \( \bar{g} \) of a solution of Einstein’s equations satisfies a quasilinear wave equation. We give a geometric first-order symmetric hyperbolic system verified in vacuum by \( \bar{g} \) , \( K \) and \( N \) . We show that one can also obtain a quasilinear wave equation for \( K \) by requiring \( N \) to satisfy at each time an elliptic equation which fixes the value of the mean extrinsic curvature of the space slices.
@article {key1360579m,
AUTHOR = {Choquet-Bruhat, Yvonne and York, James
W.},
TITLE = {Geometrical well posed systems for the
{E}instein equations},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {321},
NUMBER = {8},
YEAR = {1995},
PAGES = {1089--1095},
NOTE = {MR:1360579. Zbl:0839.53063.},
ISSN = {0764-4442},
}
[189]
Y. Choquet-Bruhat and V. Moncrief :
“Existence theorem for solutions of Einstein’s equations with 1 parameter spacelike isometry groups ,”
pp. 67–80
in
Quantization, nonlinear partial differential equations, and operator algebra
(Cambridge, MA, 1994 ).
Edited by W. Arveson, T. Branson, and I. Segal .
Proc. Sympos. Pure Math. 59 .
Amer. Math. Soc. (Providence, RI ),
1996 .
MR
1392984
Zbl
0861.53063
incollection
Abstract
People
BibTeX
We shall first show in this paper how one can obtain by direct methods, without making use of a Hamiltonian formalism, the splitting of part of the vacuum Einstein equations with 1 parameter isometry group into a system elliptic on each spacelike slice on the one hand, and on the other hand a hyperbolic system which is essentially a harmonic map equation from a pseudo-Riemannian manifold, whose metric
depends on the solution of the elliptic system, into the 2-dimensional symmetric Riemannian space \( \mathcal{H} \) .
We then prove global in space, local in time existence and uniqueness of solutions of the Cauchy problem for the hyperbolic-elliptic system so obtained, when \( \Sigma = S^2 \) , in appropriate functional spaces. We show that in that case, the obtained solution satisfies the original Einstein equations. We finally discuss the general solution of the system, in the case where \( \Sigma \) is not simply connected. We show that when the genus of \( \Sigma \) is greater than 1, we can determine gt so that it is conformal to a metric at which remains in some chosen cross section of a bundle over the Teiehmuller space of \( \Sigma \) (cf. an analogous method in [Moncrief 1989] for the 3-dimensional Einstein vacuum equations). Here the evolution of at is determined by requiring the mixed elliptic-hyperbolic system obtained previously to be a solution of the original, 4-dimensional, Einstein equations
@incollection {key1392984m,
AUTHOR = {Choquet-Bruhat, Yvonne and Moncrief,
Vincent},
TITLE = {Existence theorem for solutions of {E}instein's
equations with {1} parameter spacelike
isometry groups},
BOOKTITLE = {Quantization, nonlinear partial differential
equations, and operator algebra},
EDITOR = {William Arveson and Thomas Branson and
Irving Segal},
SERIES = {Proc. Sympos. Pure Math.},
NUMBER = {59},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {1996},
PAGES = {67--80},
DOI = {10.1090/pspum/059/1392984},
NOTE = {({C}ambridge, {MA}, 1994). MR:1392984.
Zbl:0861.53063.},
}
[190]
Y. Choquet-Bruhat :
“Yang–Mills plasmas ,”
pp. 3–31
in
Global structure and evolution in general relativity: Proceedings of the First Samos Meeting on Cosmology, Geometry and Relativity
(Karlovassi, 1994 ).
Edited by S. Cotsakis and G. W. Gibbons .
Lecture Notes in Phys. 460 .
Springer (Berlin ),
1996 .
MR
1398907
Zbl
0844.53053
incollection
Abstract
BibTeX
The Yang–Mills plasmas generalize to the case of a Yang–Mills type, non-abelian, charge the usual electrically charged plasmas. It has been proved recently that at very high temperature deconfined quarks and their gluon field can be effectively modeled by such a plasma. Yang–Mills type plasmas, with more “elementary” particles could also have occurred in the early stages of the universe. We consider in the first part the kinetic model of a Yang–Mills plasma: the particles have a charge which takes its values in a Lie algebra. They follow between collisions the flow lines corresponding to the average Yang-Mills field they generate through their distribution function. This function satisfies a Liouville–Vlasov equation if collisions are neglected, a Boltzmann equation if they are taken into account.
In the second part we study fluid models, with finite or infinite
conductivity.
@incollection {key1398907m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Yang--{M}ills plasmas},
BOOKTITLE = {Global structure and evolution in general
relativity: Proceedings of the First
Samos Meeting on Cosmology, Geometry
and Relativity},
EDITOR = {Spiros Cotsakis and Gary W. Gibbons},
SERIES = {Lecture Notes in Phys.},
NUMBER = {460},
PUBLISHER = {Springer},
ADDRESS = {Berlin},
YEAR = {1996},
PAGES = {3--31},
DOI = {10.1007/BFb0103444},
NOTE = {({K}arlovassi, 1994). MR:1398907. Zbl:0844.53053.},
}
[191]
Y. Choquet Bruhat :
“Global existence theorems for Einstein equations in high
dimensions ,”
pp. 19–28
in
Gravity, particles and space-time .
Edited by P. Pronin and G. Sardanashvily .
World Sci. Publ. (River Edge, NJ ),
1996 .
MR
1450873
incollection
Abstract
BibTeX
Classical General Relativity is the best available theory of the gravitational field. It is tested by the most recent astronomical observations with a great accuracy against alternative theories, through very sophisticated experimental as well as mathematical devices. Its fundamental unknown, the gravitational potential, is a pseudo riemannian metric \( g \) of lorentzian signature on a four dimensional manifold. It satisfies the Einstein field equations. Analogous equations on higher dimensional manifolds have been introduced long ago. Kaluza and Klein used a metric in five dimensions, with a one parameter isometry group, to unify the gravitational and electro magnetic fields. Later it has been proved by Kerner that \( 4 + N \) dimensional Einstein equations with cosmological constant can be used to obtain the Einstein Yang–Mills system on the classical space time and an N dimensional Yang Mills group. In recent physical theories which may be pertinent at microscopic scales, one considers anew space-times with dimension greater than 4, for instance 10 in some superstrings models. We will give in this article a general study of Einstein equations in arbitrary dimensions and prove a global existence theorem for small data in dimensions greater than six.
@incollection {key1450873m,
AUTHOR = {Choquet Bruhat, Yvonne},
TITLE = {Global existence theorems for {E}instein
equations in high dimensions},
BOOKTITLE = {Gravity, particles and space-time},
EDITOR = {P. Pronin and G. Sardanashvily},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {River Edge, NJ},
YEAR = {1996},
PAGES = {19--28},
DOI = {10.1142/9789812830180_0002},
NOTE = {MR:1450873.},
}
[192]
Y. Choquet-Bruhat and A. Greco :
“Interaction of gravitational and fluid waves ,”
pp. 111–123
in
Proceedings of the Eighth International Conference on Waves and Stability in Continuous Media, Part I
(Palermo, 1995 ),
published as Rend. Circ. Mat. Palermo
45 : suppl.
(1996 ).
MR
1461067
Zbl
0893.76098
inproceedings
People
BibTeX
@article {key1461067m,
AUTHOR = {Choquet-Bruhat, Yvonne and Greco, Antonio},
TITLE = {Interaction of gravitational and fluid
waves},
JOURNAL = {Rend. Circ. Mat. Palermo},
FJOURNAL = {Rendiconti del Circolo Matematico di
Palermo. Serie II},
VOLUME = {45},
NUMBER = {suppl.},
YEAR = {1996},
PAGES = {111--123},
NOTE = {\textit{Proceedings of the Eighth {I}nternational
{C}onference on {W}aves and {S}tability
in {C}ontinuous {M}edia, {P}art {I}}
({P}alermo, 1995). MR:1461067. Zbl:0893.76098.},
ISSN = {1592-9531},
}
[193]
A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W. York :
“Un système hyperbolique non strict pour les équations d’Einstein ,”
C. R. Acad. Sci., Paris, Sér. II, Fasc. b
323 : 12
(1996 ),
pp. 835–841 .
Zbl
0916.35126
article
Abstract
People
BibTeX
We obtain a system for the spatial metric and extrinsic curvature of a spacelike slice that is hyperbolic non-strict i the sense of Leray and Ohya and is equivalent to the Einstein equations. Its characteristics are the light cone and the normal to the slice for any choice of lapse and shift functions, and it admits a well-posed causal Cauchy problem in a Gevrey class of index \( \alpha = 2 \) . The system becomes quasidiagonal hyperbolic if we posit a certain wave equation for the lapse function, and we can then relate the results to our previously obtained first order symmetric hyperbolic system for general relativity.
@article {key0916.35126z,
AUTHOR = {Abrahams, Andrew and Anderson, Arlen
and Choquet-Bruhat, Yvonne and York,
James W.},
TITLE = {Un syst{\`e}me hyperbolique non strict
pour les {\'e}quations d'{Einstein}},
JOURNAL = {C. R. Acad. Sci., Paris, S{\'e}r. II,
Fasc. b},
FJOURNAL = {Comptes Rendus de l'Acad{\'e}mie des
Sciences. S{\'e}rie II. Fascicule b},
VOLUME = {323},
NUMBER = {12},
YEAR = {1996},
PAGES = {835--841},
NOTE = {Zbl:0916.35126.},
ISSN = {1251-8069},
}
[194]
Y. Choquet-Bruhat and A. Greco :
“Ondes gravitationnelles à haute fréquence et interaction avec la matière ,”
C. R. Acad. Sci., Paris, Sér. II, Fasc. b
323 : 2
(1996 ),
pp. 117–124 .
Zbl
0936.83014
article
Abstract
People
BibTeX
@article {key0936.83014z,
AUTHOR = {Choquet-Bruhat, Yvonne and Greco, Antonio},
TITLE = {Ondes gravitationnelles {\`a} haute
fr{\'e}quence et interaction avec la
mati{\`e}re},
JOURNAL = {C. R. Acad. Sci., Paris, S{\'e}r. II,
Fasc. b},
FJOURNAL = {Comptes Rendus de l'Acad{\'e}mie des
Sciences. S{\'e}rie II. Fascicule b},
VOLUME = {323},
NUMBER = {2},
YEAR = {1996},
PAGES = {117--124},
NOTE = {Zbl:0936.83014.},
ISSN = {1251-8069},
}
[195]
Y. Choquet-Bruhat and J. W. York, Jr. :
“Well posed reduced systems for the Einstein equations ,”
pp. 119–131
in
Mathematics of gravitation, Part I
(Warsaw, 1996 ).
Edited by P. T. Chruściel .
Banach Center Publ. 41 .
Polish Acad. Sci. Inst. Math. (Warsaw ),
1997 .
MR
1466512
Zbl
0896.53052
incollection
Abstract
People
BibTeX
@incollection {key1466512m,
AUTHOR = {Choquet-Bruhat, Yvonne and York, Jr.,
James W.},
TITLE = {Well posed reduced systems for the {E}instein
equations},
BOOKTITLE = {Mathematics of gravitation, {P}art {I}},
EDITOR = {Piotr T. Chru\'{s}ciel},
SERIES = {Banach Center Publ.},
NUMBER = {41},
PUBLISHER = {Polish Acad. Sci. Inst. Math.},
ADDRESS = {Warsaw},
YEAR = {1997},
PAGES = {119--131},
NOTE = {({W}arsaw, 1996). MR:1466512. Zbl:0896.53052.},
}
[196]
A. Anderson, Y. Choquet-Bruhat, and J. W. York, Jr. :
“Einstein–Bianchi hyperbolic system for general relativity ,”
Topol. Methods Nonlinear Anal.
10 : 2
(1997 ),
pp. 353–373 .
MR
1634577
Zbl
0917.35145
article
People
BibTeX
@article {key1634577m,
AUTHOR = {Anderson, Arlen and Choquet-Bruhat,
Yvonne and York, Jr., James W.},
TITLE = {Einstein--{B}ianchi hyperbolic system
for general relativity},
JOURNAL = {Topol. Methods Nonlinear Anal.},
FJOURNAL = {Topological Methods in Nonlinear Analysis},
VOLUME = {10},
NUMBER = {2},
YEAR = {1997},
PAGES = {353--373},
DOI = {10.12775/TMNA.1997.037},
NOTE = {MR:1634577. Zbl:0917.35145.},
ISSN = {1230-3429},
}
[197]
Y. Choquet-Bruhat :
“A global existence theorem for ultra relativistic fluids on Minkowski space time ,”
pp. 14–22
in
Collection of papers on geometry, analysis and mathematical physics .
Edited by T.-T. Li .
World Sci. Publ. (River Edge, NJ ),
1997 .
In honor of Professor Gu Chaohao.
MR
1635656
Zbl
1021.35132
incollection
Abstract
BibTeX
We show that the Cauchy problem for the equations of a perfect fluid on Minkowski space time admits global solutions for certain open sets of initial data provided the equation of state is ultrarelativistic, i.e. \( \rho = 3p \) . The method uses the conformal invariance of the equations, and the local existence on an arbitrary globally hyperbolic manifold. This conformal method, which we first recall, has been used before for other systems of partial differential equa tions of physical interest. The results that we prove here can be extended to electrically charged fluids.
@incollection {key1635656m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {A global existence theorem for ultra
relativistic fluids on {M}inkowski space
time},
BOOKTITLE = {Collection of papers on geometry, analysis
and mathematical physics},
EDITOR = {Ta-Tsien Li},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {River Edge, NJ},
YEAR = {1997},
PAGES = {14--22},
DOI = {10.1142/9789812812896_0003},
NOTE = {In honor of Professor Gu Chaohao. MR:1635656.
Zbl:1021.35132.},
}
[198]
A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W. York, Jr. :
“Geometrical hyperbolic systems for general relativity and
gauge theories ,”
Classical Quantum Gravity
14 : 1A
(1997 ),
pp. A9–A22 .
MR
1691883
Zbl
0866.58059
article
Abstract
People
BibTeX
The evolution equations of Einstein’s theory and of Maxwell’s theory — the latter used as a simple model to illustrate the former — are written in gauge-covariant first-order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom (the spatial shift vector \( \beta^i(t, x^j) \) and the spatial scalar potential \( \phi(t, x^j) \) , respectively) are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of \( (t, x^j) \) from subsidiary equations that are not part of the evolution equations. Propagation of certain (“radiative”) dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by
taking a further time derivative of the equation of motion of the canonical momentum, and
adding a covariant spatial derivative of
the momentum constraints of general relativity (Lagrange multiplier \( \beta^i \) ) or of the Gauss law constraint of electromagnetism (Lagrange multiplier \( \phi \) ).
General relativity also requires a harmonic time-slicing condition or a specific generalization of it that brings in the Hamiltonian constraint when we pass to first-order symmetric form. The dynamically propagating gravity fields straightforwardly determine the “electric” or “tidal” parts of the Riemann tensor
@article {key1691883m,
AUTHOR = {Abrahams, Andrew and Anderson, Arlen
and Choquet-Bruhat, Yvonne and York,
Jr., James W.},
TITLE = {Geometrical hyperbolic systems for general
relativity and gauge theories},
JOURNAL = {Classical Quantum Gravity},
FJOURNAL = {Classical and Quantum Gravity},
VOLUME = {14},
NUMBER = {1A},
YEAR = {1997},
PAGES = {A9--A22},
DOI = {10.1088/0264-9381/14/1A/002},
NOTE = {MR:1691883. Zbl:0866.58059.},
ISSN = {0264-9381},
}
[199]
Y. Choquet-Bruhat :
“Applications d’ondes sur un univers en expansion ,”
C. R. Acad. Sci. Paris Sér. I Math.
326 : 10
(1998 ),
pp. 1175–1180 .
MR
1650238
Zbl
0908.53047
article
Abstract
BibTeX
@article {key1650238m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Applications d'ondes sur un univers
en expansion},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {326},
NUMBER = {10},
YEAR = {1998},
PAGES = {1175--1180},
DOI = {10.1016/S0764-4442(98)80222-X},
NOTE = {MR:1650238. Zbl:0908.53047.},
ISSN = {0764-4442},
}
[200]
Y. Choquet-Bruhat :
“Global existence of wave maps ,”
pp. 143–152
in
Proceedings of the Ninth International Conference on
Waves and Stability in Continuous Media
(Bari, 1997 ),
published as Rend. Circ. Mat. Palermo
57 : suppl.
Issue edited by M. Maiellaro and S. Rionero .
1998 .
MR
1708504
Zbl
0933.58028
inproceedings
BibTeX
@article {key1708504m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global existence of wave maps},
JOURNAL = {Rend. Circ. Mat. Palermo},
FJOURNAL = {Rendiconti del Circolo Matematico di
Palermo. Serie II},
VOLUME = {57},
NUMBER = {suppl.},
YEAR = {1998},
PAGES = {143--152},
NOTE = {\textit{Proceedings of the Ninth {I}nternational
{C}onference on {W}aves and {S}tability
in {C}ontinuous {M}edia} ({B}ari, 1997).
Issue edited by M. Maiellaro
and S. Rionero. MR:1708504.
Zbl:0933.58028.},
ISSN = {1592-9531},
}
[201]
Y. Choquet-Bruhat :
“Wave maps in general relativity ,”
pp. 147–169
in
On Einstein’s path
(New York, 1996 ).
Edited by A. Harvey .
Springer ,
1999 .
MR
1658871
Zbl
0981.83010
incollection
Abstract
BibTeX
Wave maps from a pseudo-Riemannian manifold of hyperbolic (Lorentzian) signature \( (V, g) \) into a pseudo-Riemannian manifold are the generalization of the usual wave equations for scalar functions on \( (V, g) \) . They are the counterpart in hyperbolic signature of the harmonic mappings between properly Riemannian manifolds. The first wave maps to be considered in physics were the \( \sigma \) -models, e.g., the mapping from the Minkowski spacetime into the 3-sphere which models the classical dynamics of 4-meson fields linked by the relation
\[ \sum_{a=1}^{4}|f_a|^2 =1 .\]
@incollection {key1658871m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Wave maps in general relativity},
BOOKTITLE = {On {E}instein's path},
EDITOR = {Alex Harvey},
PUBLISHER = {Springer},
YEAR = {1999},
PAGES = {147--169},
DOI = {https://doi.org/10.1007/978-1-4612-1422-9_11},
NOTE = {({N}ew {Y}ork, 1996). MR:1658871. Zbl:0981.83010.},
}
[202]
M. Berger, J.-P. Bourguignon, Y. Choquet-Bruhat, C.-M. Marle, and A. Revuz :
“André Lichnerowicz (1915–1998) ,”
Notices Amer. Math. Soc.
46 : 11
(1999 ),
pp. 1387–1396 .
MR
1723248
Zbl
0932.01060
article
People
BibTeX
@article {key1723248m,
AUTHOR = {Berger, Marcel and Bourguignon, Jean-Pierre
and Choquet-Bruhat, Yvonne and Marle,
Charles-Michel and Revuz, Andr\'{e}},
TITLE = {Andr\'{e} {L}ichnerowicz (1915--1998)},
JOURNAL = {Notices Amer. Math. Soc.},
FJOURNAL = {Notices of the American Mathematical
Society},
VOLUME = {46},
NUMBER = {11},
YEAR = {1999},
PAGES = {1387--1396},
URL = {https://www.ams.org/notices/199911/mem-lichnerowicz.pdf},
NOTE = {MR:1723248. Zbl:0932.01060.},
ISSN = {0002-9920},
}
[203]
Y. Choquet-Bruhat :
“Lichnérowicz et la relativité générale ,”
Gaz. Math.
82
(1999 ),
pp. 99–101 .
MR
1730680
Zbl
1388.01019
article
BibTeX
@article {key1730680m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Lichn\'{e}rowicz et la relativit\'{e}
g\'{e}n\'{e}rale},
JOURNAL = {Gaz. Math.},
FJOURNAL = {Gazette des Math\'{e}maticiens},
VOLUME = {82},
YEAR = {1999},
PAGES = {99--101},
NOTE = {MR:1730680. Zbl:1388.01019.},
ISSN = {0224-8999},
}
[204]
Y. Choquet-Bruhat, J. W. York, Jr., and A. Anderson :
“Curvature-based hyperbolic systems for general relativity ,”
pp. 112–121
in
The Eighth Marcel Grossmann Meeting, Part A, B
(Jerusalem, 1997 ).
Edited by T. Piran .
World Sci. Publ. (River Edge, NJ ),
1999 .
MR
1891864
Zbl
0970.83005
incollection
Abstract
People
BibTeX
@incollection {key1891864m,
AUTHOR = {Choquet-Bruhat, Yvonne and York, Jr.,
James W. and Anderson, Arlen},
TITLE = {Curvature-based hyperbolic systems for
general relativity},
BOOKTITLE = {The {E}ighth {M}arcel {G}rossmann {M}eeting,
{P}art {A}, {B}},
EDITOR = {Tsvi Piran},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {River Edge, NJ},
YEAR = {1999},
PAGES = {112--121},
NOTE = {({J}erusalem, 1997). MR:1891864. Zbl:0970.83005.},
}
[205]
Y. Choquet-Bruhat :
“The null condition and asymptotic expansions for the
Einstein equations ,”
Ann. Phys.
9 : 3–5
(2000 ),
pp. 258–266 .
MR
1770106
Zbl
0973.83018
article
Abstract
BibTeX
The global existence of solutions of non linear wave equations on the Minkowski spacetime of dimension 4 is linked with the non linearities satisfying the “null condition” discovered by Klainerman and Christodoulou. This null condition also improves local existence results, lowering the sufficient regularity of the Cauchy data. The non linear stability of the Minkowski spacetime among solutions of the vacuum Einstein equations relies on estimates for the Weyl tensor probably linked with some kind of null condition. It had been proved long ago that the significant part of an high frequency gravitational wave in General Relativity obeys a transport law along the rays which is linear, but inflicts a “back reaction” on the background metric. These two properties reflect the fact that the Einstein equations satisfy almost, but not quite, a “polarized” null condition. We will explicit this result, also for associated field equations, and explain its relation with the properties of high frequency waves.
@article {key1770106m,
AUTHOR = {Choquet-Bruhat, Y.},
TITLE = {The null condition and asymptotic expansions
for the {E}instein equations},
JOURNAL = {Ann. Phys.},
FJOURNAL = {Annalen der Physik},
VOLUME = {9},
NUMBER = {3--5},
YEAR = {2000},
PAGES = {258--266},
DOI = {10.1002/(SICI)1521-3889(200005)9:3/5<258::AID-ANDP258>3.3.CO;2-P},
NOTE = {MR:1770106. Zbl:0973.83018.},
ISSN = {0003-3804},
}
[206]
Y. Choquet-Bruhat :
“Jean Leray, souvenirs ,”
Gaz. Math.
84 : suppl.
(2000 ),
pp. 7–9 .
MR
1775585
article
BibTeX
@article {key1775585m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Jean {L}eray, souvenirs},
JOURNAL = {Gaz. Math.},
FJOURNAL = {Gazette des Math\'{e}maticiens},
VOLUME = {84},
NUMBER = {suppl.},
YEAR = {2000},
PAGES = {7--9},
NOTE = {MR:1775585.},
ISSN = {0224-8999},
}
[207]
Y. Choquet-Bruhat :
“Global wave maps on Robertson–Walker spacetimes ,”
Nonlinear Dynam.
22 : 1
(2000 ),
pp. 39–47 .
MR
1776183
Zbl
0997.83116
article
Abstract
BibTeX
We prove the global existence and uniqueness of wave maps onexpanding universes of dimension three or four, that is Robertson–Walker spacetimes whose inverse radius is integrable with respect to the cosmic time. A result is obtained for small initial data by using the first andsecond energy estimates.
@article {key1776183m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global wave maps on {R}obertson--{W}alker
spacetimes},
JOURNAL = {Nonlinear Dynam.},
FJOURNAL = {Nonlinear Dynamics. An International
Journal of Nonlinear Dynamics and Chaos
in Engineering Systems},
VOLUME = {22},
NUMBER = {1},
YEAR = {2000},
PAGES = {39--47},
DOI = {10.1023/A:1008313208204},
NOTE = {MR:1776183. Zbl:0997.83116.},
ISSN = {0924-090X},
}
[208]
Y. Choquet-Bruhat, J. Isenberg, and J. W. York, Jr. :
“Einstein constraints on asymptotically Euclidean manifolds ,”
Phys. Rev. D (3)
61 : 8
(2000 ),
pp. 084034, 20 .
MR
1791413
article
Abstract
People
BibTeX
@article {key1791413m,
AUTHOR = {Choquet-Bruhat, Yvonne and Isenberg,
James and York, Jr., James W.},
TITLE = {Einstein constraints on asymptotically
{E}uclidean manifolds},
JOURNAL = {Phys. Rev. D (3)},
FJOURNAL = {Physical Review. D. Third Series},
VOLUME = {61},
NUMBER = {8},
YEAR = {2000},
PAGES = {084034, 20},
DOI = {10.1103/PhysRevD.61.084034},
NOTE = {MR:1791413.},
ISSN = {0556-2821},
}
[209]
Y. Choquet-Bruhat :
“Global wave maps on curved space times ,”
pp. 1–29
in
Mathematical and quantum aspects of relativity and cosmology
(Pythagoreon, Samos, 1998 ).
Edited by S. Cotsakis and G. W. Gibbons .
Lecture Notes in Phys. 537 .
Springer ,
2000 .
MR
1843031
Zbl
0994.83006
incollection
Abstract
BibTeX
Wave maps from a pseudoriemannian manifold of hyperbolic (Lorentzian) signature \( (V, g) \) into a pseudoriemannian manifold are the generalisation of the usual wave equations for scalar functions on \( (V, g) \) . They are the counterpart in hyperbolic signature of the harmonic mappings between properly riemannian manifolds.
The wave map equations are an interesting model of geometric origin for the mathematician, in local coordinates they look like a quasilinear quasidiagonal system of second order partial differential equations which satisfy the [Christodoulou 1993] and [Klainerman 1993] null condition. They also appear in various areas of physics (cf. [Nutku 1974], [Misner 1978].)
@incollection {key1843031m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global wave maps on curved space times},
BOOKTITLE = {Mathematical and quantum aspects of
relativity and cosmology},
EDITOR = {Spiros Cotsakis and Gary W. Gibbons},
SERIES = {Lecture Notes in Phys.},
NUMBER = {537},
PUBLISHER = {Springer},
YEAR = {2000},
PAGES = {1--29},
DOI = {10.1007/3-540-46671-1_1},
NOTE = {({P}ythagoreon, Samos, 1998). MR:1843031.
Zbl:0994.83006.},
}
[210]
A. Anderson, Y. Choquet-Bruhat, and J. W. York, Jr. :
“Einstein’s equations and equivalent hyperbolic dynamical systems ,”
pp. 30–54
in
Mathematical and quantum aspects of relativity and cosmology
(Pythagoreon, Samos, 1998 ).
Edited by S. Cotsakis and G. W. Gibbons .
Lecture Notes in Phys. 537 .
Springer (Berlin ),
2000 .
MR
1843032
Zbl
0987.83006
incollection
Abstract
People
BibTeX
We discuss several explicitly causal hyperbolic formulations of Einstein’s dynamical \( 3 + 1 \) equations in a coherent way, emphasizing throughout the fundamental role of the “slicing function,” \( \alpha \) — the quantity that relates the lapse \( N \) to the determinant of the spatial metric \( \bar{g} \) through \( N = \bar{g}^{1/2}\alpha \) . The slicing function allows us to demonstrate explicitly that every foliation of spacetime by spatial time-slices can be used in conjunction with the causal hyperbolic forms of the dynamical Einstein equations. Specifically, the slicing function plays an essential role
in a clearer form of the canonical action principle and Hamiltonian dynamics for gravity, and leads to a recasting
of the Bianchi identities \( \nabla_{\beta} G^{\beta} \alpha \equiv 0 \) as a well-posed system for the evolution of the gravitational constraints in vacuum, and also
of \( \nabla_{\beta} T^{\beta}_{\alpha} \equiv 0 \) as a well-posed system for evolution of the energy and momentum components of the stress tensor in the presence of matter,
in an explicit rendering of four hyperbolic formulations of Einstein’s equations with only physical characteristics, and
in providing guidance to a new “conformal thin sandwich” form of the initial value constraints.
@incollection {key1843032m,
AUTHOR = {Anderson, Arlen and Choquet-Bruhat,
Yvonne and York, Jr., James W.},
TITLE = {Einstein's equations and equivalent
hyperbolic dynamical systems},
BOOKTITLE = {Mathematical and quantum aspects of
relativity and cosmology},
EDITOR = {Spiros Cotsakis and Gary W. Gibbons},
SERIES = {Lecture Notes in Phys.},
NUMBER = {537},
PUBLISHER = {Springer},
ADDRESS = {Berlin},
YEAR = {2000},
PAGES = {30--54},
DOI = {10.1007/3-540-46671-1_2},
NOTE = {({P}ythagoreon, Samos, 1998). MR:1843032.
Zbl:0987.83006.},
}
[211]
Y. Choquet-Bruhat and C. DeWitt-Morette :
Analysis, manifolds and physics. Part II. ,
Revised and enl. edition.
Elsevier/North-Holland (Amsterdam ),
2000 .
A revised and enlarged version of the 1989 edition .
book
People
BibTeX
@book {key19971670,
AUTHOR = {Choquet-Bruhat, Yvonne and DeWitt-Morette,
C{\'e}cile},
TITLE = {Analysis, manifolds and physics. {Part}
{II}.},
EDITION = {Revised and enl.},
PUBLISHER = {Elsevier/North-Holland},
ADDRESS = {Amsterdam},
YEAR = {2000},
NOTE = {A revised and enlarged version of the
1989 edition.},
ISBN = {0-444-50473-7},
}
[212]
Y. Choquet-Bruhat and V. Moncrief :
“Future complete Einsteinian space times with \( U(1) \) isometry group ,”
C. R. Acad. Sci. Paris Sér. I Math.
332 : 2
(2001 ),
pp. 137–144 .
A version of this paper was published as “Future global in time Einsteinian spacetimes with \( U(1) \) isometry group,” in Ann. Henri Poincaré 6 , 1007–1064 (2001) .
MR
1813771
Zbl
0976.83004
article
Abstract
People
BibTeX
We prove that spacetimes satisfying the vacuum Einstein equations on a manifold of the form
\[ \Sigma \times U(1) \times R ,\]
where \( \Sigma \) is a compact surface of genus \( G > 1 \) and where the Cauchy data is invariant with respect to \( U(1) \) and sufficiently small exist for an infinite proper time in the expanding direction.
@article {key1813771m,
AUTHOR = {Choquet-Bruhat, Yvonne and Moncrief,
Vincent},
TITLE = {Future complete {E}insteinian space
times with \$U(1)\$ isometry group},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus de l'Acad\'{e}mie des
Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {332},
NUMBER = {2},
YEAR = {2001},
PAGES = {137--144},
DOI = {10.1016/S0764-4442(00)01786-9},
NOTE = {A version of this paper was published
as ``Future global in time Einsteinian
spacetimes with \$U(1)\$ isometry group,''
in \textit{Ann. Henri Poincar\'{e}}
\textbf{6}, 1007--1064 (2001). MR:1813771.
Zbl:0976.83004.},
ISSN = {0764-4442},
}
[213]
Y. Choquet-Bruhat and V. Moncrief :
“Future global in time Einsteinian spacetimes with \( U(1) \) isometry group ,”
Ann. Henri Poincaré
2 : 6
(2001 ),
pp. 1007–1064 .
MR
1877233
Zbl
0998.83007
article
Abstract
People
BibTeX
We prove that spacetimes satisfying the vacuum Einstein equations on a manifold of the form
\[ \Sigma \times U (1) \times R ,\]
where \( \Sigma \) is a compact surface of genus \( G > 1 \) and where the Cauchy data is invariant with respect to \( U(1) \) and sufficiently small exist for an infinite proper time in the expanding direction.
@article {key1877233m,
AUTHOR = {Choquet-Bruhat, Y. and Moncrief, V.},
TITLE = {Future global in time {E}insteinian
spacetimes with \$U(1)\$ isometry group},
JOURNAL = {Ann. Henri Poincar\'{e}},
FJOURNAL = {Annales Henri Poincar\'{e}. A Journal
of Theoretical and Mathematical Physics},
VOLUME = {2},
NUMBER = {6},
YEAR = {2001},
PAGES = {1007--1064},
DOI = {10.1007/s00023-001-8602-5},
NOTE = {MR:1877233. Zbl:0998.83007.},
ISSN = {1424-0637},
}
[214]
Y. Choquet-Bruhat and J. W. York :
“On H. Friedrich’s formulation of the Einstein equations with fluid sources ,”
Topol. Methods Nonlinear Anal.
18 : 2
(2001 ),
pp. 321–335 .
MR
1911385
Zbl
1043.35141
article
Abstract
People
BibTeX
@article {key1911385m,
AUTHOR = {Choquet-Bruhat, Yvonne and York, James
W.},
TITLE = {On {H}. {F}riedrich's formulation of
the {E}instein equations with fluid
sources},
JOURNAL = {Topol. Methods Nonlinear Anal.},
FJOURNAL = {Topological Methods in Nonlinear Analysis},
VOLUME = {18},
NUMBER = {2},
YEAR = {2001},
PAGES = {321--335},
DOI = {10.12775/TMNA.2001.037},
NOTE = {MR:1911385. Zbl:1043.35141.},
ISSN = {1230-3429},
}
[215]
Y. Choquet-Bruhat and S. Cotsakis :
“Global hyperbolicity and completeness ,”
J. Geom. Phys.
43 : 4
(2002 ),
pp. 345–350 .
MR
1929912
Zbl
1022.83002
article
Abstract
People
BibTeX
@article {key1929912m,
AUTHOR = {Choquet-Bruhat, Yvonne and Cotsakis,
Spiros},
TITLE = {Global hyperbolicity and completeness},
JOURNAL = {J. Geom. Phys.},
FJOURNAL = {Journal of Geometry and Physics},
VOLUME = {43},
NUMBER = {4},
YEAR = {2002},
PAGES = {345--350},
DOI = {10.1016/S0393-0440(02)00028-1},
NOTE = {MR:1929912. Zbl:1022.83002.},
ISSN = {0393-0440},
}
[216]
Y. Choquet-Bruhat and J. W. York :
“Bianchi–Euler system for relativistic fluids and Bel–Robinson type energy ,”
C. R. Math. Acad. Sci. Paris
335 : 8
(2002 ),
pp. 711–716 .
MR
1941654
Zbl
1011.83010
article
Abstract
People
BibTeX
We write a first order symmetric hyperbolic system coupling the Riemann tensor with the dynamical acceleration of a prefect relativistic fluid. We determine the associated, coupled, Bel–Robinson type energy, and the integral equality that it satisfies.
@article {key1941654m,
AUTHOR = {Choquet-Bruhat, Yvonne and York, James
W.},
TITLE = {Bianchi--{E}uler system for relativistic
fluids and {B}el--{R}obinson type energy},
JOURNAL = {C. R. Math. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Math\'{e}matique. Acad\'{e}mie
des Sciences. Paris},
VOLUME = {335},
NUMBER = {8},
YEAR = {2002},
PAGES = {711--716},
DOI = {10.1016/S1631-073X(02)02550-5},
NOTE = {MR:1941654. Zbl:1011.83010.},
ISSN = {1631-073X},
}
[217]
Y. Choquet-Bruhat :
“Local and global results on the Cauchy problem for the Einstein equations ,”
pp. 7–27
in
The Ninth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories
(Rome, Italy, 2000 ),
vol. 1 .
World Scientific (Singapore ),
2002 .
Zbl
1032.83013
incollection
Abstract
BibTeX
@incollection {key1032.83013z,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Local and global results on the {Cauchy}
problem for the {Einstein} equations},
BOOKTITLE = {The Ninth Marcel Grossmann Meeting:
On recent developments in theoretical
and experimental general relativity,
gravitation, and relativistic field
theories},
VOLUME = {1},
PUBLISHER = {World Scientific},
ADDRESS = {Singapore},
YEAR = {2002},
PAGES = {7--27},
DOI = {10.1142/9789812777386_0002},
NOTE = {(Rome, Italy, 2000). Zbl:1032.83013.},
ISBN = {9812380108},
}
[218]
Y. Choquet-Bruhat and J. W. York :
“Constraints and evolution in cosmology ,”
pp. 29–58
in
Cosmological crossroads. An advanced course in mathematical, physical and string cosmology. Lectures given at first Aegean summer school on cosmology
(Samos Island, Greece, 2001 ).
Lecture Notes in Physics 592 .
Springer (Berlin ),
2002 .
Zbl
1043.83006
incollection
Abstract
People
BibTeX
@incollection {key1043.83006z,
AUTHOR = {Choquet-Bruhat, Yvonne and York, James
W.},
TITLE = {Constraints and evolution in cosmology},
BOOKTITLE = {Cosmological crossroads. An advanced
course in mathematical, physical and
string cosmology. Lectures given at
first Aegean summer school on cosmology},
SERIES = {Lecture Notes in Physics},
NUMBER = {592},
PUBLISHER = {Springer},
ADDRESS = {Berlin},
YEAR = {2002},
PAGES = {29--58},
DOI = {10.1007/3-540-48025-0_3},
NOTE = {(Samos Island, Greece, 2001). Zbl:1043.83006.},
ISBN = {3-540-43778-9},
}
[219]
Y. Choquet-Bruhat and V. Moncrief :
“Nonlinear stability of an expanding universe with the \( S^1 \) isometry group ,”
pp. 57–71
in
Partial differential equations and mathematical physics
(Tokyo, 2001 ).
Edited by K. Kajitani and J. Vaillant .
Progr. Nonlinear Differential Equations Appl. 52 .
Birkhäuser (Boston ),
2003 .
MR
1957625
Zbl
1062.35149
incollection
Abstract
People
BibTeX
We prove the existence for an infinite proper time in the expanding direction of spacetimes satisfying the vacuum Einstein equations on a manifold of the form
\[ \Sigma \times S^1\times R ,\]
where \( \Sigma \) is a compact surface of genus \( G > 1 \) . The Cauchy data are supposed to be invariant with respect to the group \( S^1 \) and sufficiently small, but we do not impose a restrictive hypothesis made in the previous work [Choquet-Bruhat and Moncrief 2001].
@incollection {key1957625m,
AUTHOR = {Choquet-Bruhat, Yvonne and Moncrief,
Vincent},
TITLE = {Nonlinear stability of an expanding
universe with the \$S^1\$ isometry group},
BOOKTITLE = {Partial differential equations and mathematical
physics},
EDITOR = {Kunihiko Kajitani and Jean Vaillant},
SERIES = {Progr. Nonlinear Differential Equations
Appl.},
NUMBER = {52},
PUBLISHER = {Birkh\"{a}user},
ADDRESS = {Boston},
YEAR = {2003},
PAGES = {57--71},
NOTE = {({T}okyo, 2001). MR:1957625. Zbl:1062.35149.},
}
[220]
Y. Choquet-Bruhat :
“Future complete \( S^1 \) symmetric Einsteinian spacetimes,
the unpolarized case ,”
C. R. Math. Acad. Sci. Paris
337 : 2
(2003 ),
pp. 129–136 .
MR
1998845
Zbl
1027.83005
article
Abstract
BibTeX
We prove the existence of vacuum \( S^1 \) symmetric Einsteinian, unpolarized, space times which are complete in the direction of the expansion, for small initial data.
@article {key1998845m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Future complete \$S^1\$ symmetric {E}insteinian
spacetimes, the unpolarized case},
JOURNAL = {C. R. Math. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Math\'{e}matique. Acad\'{e}mie
des Sciences. Paris},
VOLUME = {337},
NUMBER = {2},
YEAR = {2003},
PAGES = {129--136},
DOI = {10.1016/S1631-073X(03)00277-2},
NOTE = {MR:1998845. Zbl:1027.83005.},
ISSN = {1631-073X},
}
[221]
Y. Choquet-Bruhat :
“Causal evolution for Einsteinian gravitation ,”
pp. 129–144
in
Hyperbolic differential operators and related problems .
Edited by V. Ancona and J. Vaillant .
Lecture Notes in Pure and Appl. Math. 233 .
Dekker (New York ),
2003 .
MR
2004863
Zbl
1205.83016
incollection
BibTeX
@incollection {key2004863m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Causal evolution for {E}insteinian gravitation},
BOOKTITLE = {Hyperbolic differential operators and
related problems},
EDITOR = {Vincenzo Ancona and Jean Vaillant},
SERIES = {Lecture Notes in Pure and Appl. Math.},
NUMBER = {233},
PUBLISHER = {Dekker},
ADDRESS = {New York},
YEAR = {2003},
PAGES = {129--144},
NOTE = {MR:2004863. Zbl:1205.83016.},
}
[222]
Y. Choquet-Bruhat :
“Global wave maps on black holes ,”
pp. 469–482
in
Jean Leray ’99 Conference Proceedings .
Edited by M. de Gosson .
Math. Phys. Stud. 24 .
Kluwer Acad. (Dordrecht ),
2003 .
MR
2051505
inproceedings
Abstract
BibTeX
Wave maps are the generalization of the usual wave equation to mappings from a pseudo-Riemannian manifold of hyperbolic (Lorentzian) signature, called the source, into another pseudo-Riemannian manifold, called the target, which can be of arbitrary signature. Wave maps appear in various areas of physics, with properly Riemannian or Lorentzian targets. The first ones to be considered were the \( \sigma \) -models, mappings from Minkowski space-time into a sphere.
@inproceedings {key2051505m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Global wave maps on black holes},
BOOKTITLE = {Jean {L}eray '99 {C}onference {P}roceedings},
EDITOR = {Maurice de Gosson},
SERIES = {Math. Phys. Stud.},
NUMBER = {24},
PUBLISHER = {Kluwer Acad.},
ADDRESS = {Dordrecht},
YEAR = {2003},
PAGES = {469--482},
DOI = {10.1007/978-94-017-2008-3_31},
NOTE = {MR:2051505.},
}
[223]
Y. Choquet-Bruhat :
“Einstein constraints on compact \( n \) -dimensional manifolds ,”
Classical Quantum Gravity
21 : 3
(2004 ),
pp. S127–S151 .
MR
2053003
Zbl
1040.83004
article
Abstract
BibTeX
@article {key2053003m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Einstein constraints on compact \$n\$-dimensional
manifolds},
JOURNAL = {Classical Quantum Gravity},
FJOURNAL = {Classical and Quantum Gravity},
VOLUME = {21},
NUMBER = {3},
YEAR = {2004},
PAGES = {S127--S151},
DOI = {10.1088/0264-9381/21/3/009},
NOTE = {\textit{A spacetime safari: essays in
honour of Vincent Moncrief}. MR:2053003.
Zbl:1040.83004.},
ISSN = {0264-9381},
}
[224]
Y. Choquet-Bruhat :
“Future complete \( \mathrm{ U}(1) \) symmetric Einsteinian spacetimes, the unpolarized case ,”
pp. 251–298
in
The Einstein equations and the large scale behavior of gravitational fields .
Edited by P. T. Chruściel and H. Friedrich .
Birkhäuser (Basel ),
2004 .
MR
2098918
Zbl
1064.83005
incollection
Abstract
BibTeX
In this paper I generalize the non linear stability theorem obtained in collaboration with V. Moncrief [Choquet-Bruhat and Moncrief 2001; Choquet-Bruhat and Moncrief 2003] for vacuum Einsteinian 4-manifolds \( (V, {}^{(4)}g) \) where \( V = M \times R \) with \( M \) a circle bundle over a compact, orient able surface \( \Sigma \) of genus greater than 1. The Lorentzian metric \( {}^{(4)}g \) admits a Killing symmetry along the (spacelike) circular fibers. I remove the so-called polarization condition, i.e., the orthogonality of the fibers to quotient 3-manifolds. The reduced field equations take now the form of a wave map equation, instead of a linear wave equation in the polarized case, coupled to \( 2 + 1 \) gravity. I use results on wave maps from curved manifolds obtained in [Choquet-Bruhat 1998a; Choquet-Bruhat 1998b]. Like in [Choquet-Bruhat and Moncrief 2003] we do not restrict the conformal geometry of \( \Sigma \) to avoid those regions of Teichmüller space for which the lowest positive eigenvalues of the scalar Laplacian lie, in our normalization, in the gap \( (0, 1/8] \) . A consequence is that the asymptotic behavior of the wave map field does not exhibit a universal rate of decay but instead develops a decay rate which depends upon the asymptotic values of the lowest eigenvalue.
@incollection {key2098918m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Future complete \${\rm U}(1)\$ symmetric
{E}insteinian spacetimes, the unpolarized
case},
BOOKTITLE = {The {E}instein equations and the large
scale behavior of gravitational fields},
EDITOR = {Piotr T. Chru\'sciel and Helmut Friedrich},
PUBLISHER = {Birkh\"{a}user},
ADDRESS = {Basel},
YEAR = {2004},
PAGES = {251--298},
NOTE = {MR:2098918. Zbl:1064.83005.},
}
[225]
Y. Choquet-Bruhat, J. Isenberg, and V. Moncrief :
“Topologically general U(1) symmetric vacuum space-times with AVTD behavior ,”
Nuovo Cimento Soc. Ital. Fis. B
119 : 7–9
(2004 ),
pp. 625–638 .
MR
2136898
article
Abstract
People
BibTeX
We use Fuchsian methods to show that, for any two-dimensional manifold \( \Sigma^2 \) , there is a large family of \( U (1) \) symmetric solutions of the vacuum Einstein equations on the manifold
\[ \Sigma \times S^1 \times \mathbb{R} ,\]
each of which has AVTD behavior in theneighborhood of its singularity.
@article {key2136898m,
AUTHOR = {Choquet-Bruhat, Y. and Isenberg, J.
and Moncrief, V.},
TITLE = {Topologically general {U}(1) symmetric
vacuum space-times with {AVTD} behavior},
JOURNAL = {Nuovo Cimento Soc. Ital. Fis. B},
FJOURNAL = {Il Nuovo Cimento della Societ\`a Italiana
di Fisica B},
VOLUME = {119},
NUMBER = {7-9},
YEAR = {2004},
PAGES = {625--638},
DOI = {10.1393/ncb/i2004-10174-x},
NOTE = {MR:2136898.},
ISSN = {1594-9982},
}
[226]
Y. Choquet-Bruhat :
“Asymptotic solutions of non linear wave equations and polarized null conditions ,”
pp. 125–141
in
Actes des Journées Mathématiques à la mémoire de Jean Leray .
Edited by L. Guillopé and D. Robert .
Sémin. Congr. 9 .
Soc. Math. France (Paris ),
2004 .
MR
2145939
Zbl
1062.35148
incollection
Abstract
BibTeX
La généralisation faite par Leray de la méthode WKB pour la construction de solutions asymptotiques à haute fréquence de systèmes arbitraires d’équations aux dérivées partielles linéaires a permis le traitement de systèmes quasilinéaires et l’apparition de propriétés nouvelles comme la distorsion des signaux. La non linéarité est aussi une obstruction à l’existence de solutions globales des systèmes d’évolution. On introduit une condition nulle polarisée, généralisation de la condition nulle de Christodoulou–Klainerman à des systèmes mal posés par suite de l’invariance de jauge. On montre qu’elle conduit à une équation de transport linéaire le long des rayons d’une solution asymptotique. Elle est satisfaite par le modèle standard, mais un terme résiduel dans le cas des équations d’Einstein conduit à une “réaction en retour” sur la métrique de base.
@incollection {key2145939m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Asymptotic solutions of non linear wave
equations and polarized null conditions},
BOOKTITLE = {Actes des {J}ourn\'{e}es {M}ath\'{e}matiques
\`a la {m}\'{e}moire de {J}ean {L}eray},
EDITOR = {Laurent Guillop\'e and Didier Robert},
SERIES = {S\'{e}min. Congr.},
NUMBER = {9},
PUBLISHER = {Soc. Math. France},
ADDRESS = {Paris},
YEAR = {2004},
PAGES = {125--141},
NOTE = {MR:2145939. Zbl:1062.35148.},
}
[227]
Y. Choquet-Bruhat, J. Isenberg, and D. Pollack :
“The Einstein-scalar field constraints on asymptotically Euclidean manifolds ,”
Chinese Ann. Math. Ser. B
27 : 1
(2006 ),
pp. 31–52 .
MR
2209950
Zbl
1112.83008
article
Abstract
People
BibTeX
By using the conformal method, solutions of the Einstein-scalar field gravitational constraint equations are obtained. Handling scalar fields is a bit more challenging than handling matter fields such as fluids, Maxwell fields or Yang-Mills fields, because the scalar field introduces three extra terms into the Lichnerowicz equation, rather than just one. The proofs are constructive and allow for arbitrary dimension (\( > 2 \) ) as well as low regularity initial data.
@article {key2209950m,
AUTHOR = {Choquet-Bruhat, Yvonne and Isenberg,
James and Pollack, Daniel},
TITLE = {The {E}instein-scalar field constraints
on asymptotically {E}uclidean manifolds},
JOURNAL = {Chinese Ann. Math. Ser. B},
FJOURNAL = {Chinese Annals of Mathematics. Series
B},
VOLUME = {27},
NUMBER = {1},
YEAR = {2006},
PAGES = {31--52},
DOI = {10.1007/s11401-005-0280-z},
NOTE = {MR:2209950. Zbl:1112.83008.},
ISSN = {0252-9599},
}
[228]
Y. Choquet-Bruhat and J. W. York :
“Einstein–Bianchi system with sources ,”
pp. 59–70
in
Nonlinear hyperbolic fields and waves: A tribute to Guy Boillat ,
published as Rend. Circ. Mat. Palermo
78 : suppl.
(2006 ).
MR
2210593
Zbl
1101.35047
incollection
People
BibTeX
@article {key2210593m,
AUTHOR = {Choquet-Bruhat, Yvonne and York, James
W.},
TITLE = {Einstein--{B}ianchi system with sources},
JOURNAL = {Rend. Circ. Mat. Palermo},
FJOURNAL = {Rendiconti del Circolo Matematico di
Palermo. Serie II},
VOLUME = {78},
NUMBER = {suppl.},
YEAR = {2006},
PAGES = {59--70},
NOTE = {\textit{Nonlinear hyperbolic fields
and waves: A tribute to Guy Boillat}.
MR:2210593. Zbl:1101.35047.},
ISSN = {1592-9531},
}
[229]
Y. Choquet-Bruhat :
“From the big bang to future complete cosmologies ,”
pp. 110–121
in
“WASCOM 2005”: 13th Conference on Waves and
Stability in Continuous Media .
Edited by R. Monaco, G. Mulone, S. Rionero, and T. Ruggeri .
World Sci. Publ. (Hackensack, NJ ),
2006 .
MR
2231273
Zbl
1345.83023
incollection
BibTeX
@incollection {key2231273m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {From the big bang to future complete
cosmologies},
BOOKTITLE = {``{WASCOM} 2005'': 13th {C}onference
on {W}aves and {S}tability in {C}ontinuous
{M}edia},
EDITOR = {Roberto Monaco and Giuseppe Mulone and
Salvatore Rionero and Tommaso Ruggeri},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Hackensack, NJ},
YEAR = {2006},
PAGES = {110--121},
DOI = {10.1142/9789812773616_0017},
NOTE = {MR:2231273. Zbl:1345.83023.},
}
[230]
Y. Choquet-Bruhat and J. Isenberg :
“Half polarized \( \mathrm{ U}(1) \) symmetric vacuum spacetimes with AVTD behavior ,”
J. Geom. Phys.
56 : 8
(2006 ),
pp. 1199–1214 .
MR
2234438
Zbl
1113.83006
article
Abstract
People
BibTeX
In a previous work, we used a polarization condition to show that there is a family of \( U(1) \) symmetric solutions of the vacuum Einstein equations on
\[ \Sigma \times S^1 \times R \]
(\( \Sigma \) any two-dimensional manifold) such that each exhibits AVTD1 behavior in the neighbourhood of its singularity. Here we consider the general case of \( S^1 \) bundles over the base \( \Sigma \times R \) and determine a condition, called the half polarization condition, necessary and sufficient in our context, for AVTD behavior near the singularity.
@article {key2234438m,
AUTHOR = {Choquet-Bruhat, Yvonne and Isenberg,
James},
TITLE = {Half polarized \${\rm U}(1)\$ symmetric
vacuum spacetimes with {AVTD} behavior},
JOURNAL = {J. Geom. Phys.},
FJOURNAL = {Journal of Geometry and Physics},
VOLUME = {56},
NUMBER = {8},
YEAR = {2006},
PAGES = {1199--1214},
DOI = {10.1016/j.geomphys.2005.06.011},
NOTE = {MR:2234438. Zbl:1113.83006.},
ISSN = {0393-0440},
}
[231]
Y. Choquet-Bruhat and H. Friedrich :
“Motion of isolated bodies ,”
Classical Quantum Gravity
23 : 20
(2006 ),
pp. 5941–5949 .
MR
2270110
Zbl
1107.83011
article
Abstract
People
BibTeX
@article {key2270110m,
AUTHOR = {Choquet-Bruhat, Yvonne and Friedrich,
Helmut},
TITLE = {Motion of isolated bodies},
JOURNAL = {Classical Quantum Gravity},
FJOURNAL = {Classical and Quantum Gravity},
VOLUME = {23},
NUMBER = {20},
YEAR = {2006},
PAGES = {5941--5949},
DOI = {10.1088/0264-9381/23/20/015},
NOTE = {MR:2270110. Zbl:1107.83011.},
ISSN = {0264-9381},
}
[232]
Y. Choquet-Bruhat, P. T. Chruściel, and J. Loizelet :
“Global solutions of the Einstein–Maxwell equations in higher dimensions ,”
Classical Quantum Gravity
23 : 24
(2006 ),
pp. 7383–7394 .
MR
2279722
Zbl
1117.83024
article
Abstract
People
BibTeX
We consider the Einstein–Maxwell equations in space-dimension \( n \) . We point out that the Lindblad–Rodnianski stability proof applies to those equations whatever the space-dimension \( n \geq 3 \) . In even spacetime dimension \( n + 1 \geq 6 \) , we use the standard conformal method on a Minkowski background to give a simple proof that the maximal globally hyperbolic development of initial data sets which are sufficiently close to the data for Minkowski spacetime and which are Schwarzschildian outside of a compact set lead to geodesically complete spacetimes, with a complete Scri, with a smooth conformal structure, and with the gravitational field approaching the Minkowski metric along null directions at least as fast as \( r^{-(n-1)/2} \) .
@article {key2279722m,
AUTHOR = {Choquet-Bruhat, Yvonne and Chru\'{s}ciel,
Piotr T. and Loizelet, Julien},
TITLE = {Global solutions of the {E}instein--{M}axwell
equations in higher dimensions},
JOURNAL = {Classical Quantum Gravity},
FJOURNAL = {Classical and Quantum Gravity},
VOLUME = {23},
NUMBER = {24},
YEAR = {2006},
PAGES = {7383--7394},
DOI = {10.1088/0264-9381/23/24/011},
NOTE = {MR:2279722. Zbl:1117.83024.},
ISSN = {0264-9381},
}
[233]
Y. Choquet-Bruhat, J. Isenberg, and D. Pollack :
“Applications of theorems of Jean Leray to the Einstein-scalar field equations ,”
J. Fixed Point Theory Appl.
1 : 1
(2007 ),
pp. 31–46 .
MR
2282342
Zbl
1169.83007
article
Abstract
People
BibTeX
The Einstein-scalar field theory can be used to model gravitational physics with scalar field sources. We discuss the initial value formulation of this field theory, and show that the ideas of Leray can be used to show that the Einstein-scalar field system of partial differential equations is well-posed as an evolutionary system. We also show that one can generate solutions of the Einstein-scalar field constraint equations using conformal methods.
@article {key2282342m,
AUTHOR = {Choquet-Bruhat, Yvonne and Isenberg,
James and Pollack, Daniel},
TITLE = {Applications of theorems of {J}ean {L}eray
to the {E}instein-scalar field equations},
JOURNAL = {J. Fixed Point Theory Appl.},
FJOURNAL = {Journal of Fixed Point Theory and Applications},
VOLUME = {1},
NUMBER = {1},
YEAR = {2007},
PAGES = {31--46},
DOI = {10.1007/s11784-006-0006-1},
NOTE = {MR:2282342. Zbl:1169.83007.},
ISSN = {1661-7738},
}
[234]
Y. Choquet-Bruhat, J. Isenberg, and D. Pollack :
“The constraint equations for the Einstein-scalar field system on compact manifolds ,”
Classical Quantum Gravity
24 : 4
(2007 ),
pp. 809–828 .
MR
2297268
Zbl
1111.83002
article
Abstract
People
BibTeX
We study the constraint equations for the Einstein-scalar field system on compact manifolds. Using the conformal method we reformulate these equations as a determined system of nonlinear partial differential equations. By introducing a new conformal invariant, which is sensitive to the presence of the initial data for the scalar field, we are able to divide the set of free conformal data into subclasses depending on the possible signs for the coefficients of terms in the resulting Einstein-scalar field Lichnerowicz equation. For many of these subclasses we determine whether or not a solution exists. In contrast to other well studied field theories, there are certain cases, depending on the mean curvature and the potential of the scalar field, for which we are unable to resolve the question of existence of a solution. We consider this system in such generality so as to include the vacuum constraint equations with an arbitrary cosmological constant, the Yamabe equation and even (all cases of) the prescribed scalar curvature problem as special cases.
@article {key2297268m,
AUTHOR = {Choquet-Bruhat, Yvonne and Isenberg,
James and Pollack, Daniel},
TITLE = {The constraint equations for the {E}instein-scalar
field system on compact manifolds},
JOURNAL = {Classical Quantum Gravity},
FJOURNAL = {Classical and Quantum Gravity},
VOLUME = {24},
NUMBER = {4},
YEAR = {2007},
PAGES = {809--828},
DOI = {10.1088/0264-9381/24/4/004},
NOTE = {MR:2297268. Zbl:1111.83002.},
ISSN = {0264-9381},
}
[235]
Y. Choquet-Bruhat :
“Results and open problems in mathematical general relativity ,”
Milan J. Math.
75
(2007 ),
pp. 273–289 .
MR
2371545
Zbl
1164.83001
article
BibTeX
@article {key2371545m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Results and open problems in mathematical
general relativity},
JOURNAL = {Milan J. Math.},
FJOURNAL = {Milan Journal of Mathematics},
VOLUME = {75},
YEAR = {2007},
PAGES = {273--289},
DOI = {10.1007/s00032-007-0067-7},
NOTE = {MR:2371545. Zbl:1164.83001.},
ISSN = {1424-9286},
}
[236]
Y. Choquet-Bruhat :
“Fuchsian partial differential equations ,”
pp. 153–161
in
“WASCOM 2007”: 14th Conference on Waves and
Stability in Continuous Media .
Edited by N. Manganaro, R. Monaco, and S. Rionero .
World Sci. Publ. (Hackensack, NJ ),
2008 .
MR
2484759
Zbl
1184.35305
incollection
Abstract
BibTeX
It is generally believed that our cosmos started with an initial singularity, the big bang. In fact all solutions of Einstein equations with compact spacelike sections present a singularity, at least in one time direction, except if the space is the flat three torus. The behavior near the singularity, chaotic or not, is a subject of active research. A case amenable to rigorous mathematical treatment is when the difference of the solution with a given spacetime metric satisfies a Fuchsian system of partial differential equations. In this article we give a more general definition than Kichenassamy and Rendall of a Fuchsian system and give a simpler proof of existence of solutions tending to zero at the singularity. Our generalization is interesting for Hamiltonian systems, as pointed out by Thibault Damour and Sophie de Buyl.
@incollection {key2484759m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Fuchsian partial differential equations},
BOOKTITLE = {``{WASCOM} 2007'': 14th {C}onference
on {W}aves and {S}tability in {C}ontinuous
{M}edia},
EDITOR = {Natale Manganaro and Roberto Monaco
and Salvatore Rionero},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Hackensack, NJ},
YEAR = {2008},
PAGES = {153--161},
DOI = {10.1142/9789812772350_0024},
NOTE = {MR:2484759. Zbl:1184.35305.},
}
[237]
Y. Choquet-Bruhat :
General relativity and the Einstein equations .
Oxford Mathematical Monographs .
Oxford University Press (Oxford, UK ),
2009 .
MR
2473363
Zbl
1157.83002
book
BibTeX
@book {key2473363m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {General relativity and the {E}instein
equations},
SERIES = {Oxford Mathematical Monographs},
PUBLISHER = {Oxford University Press},
ADDRESS = {Oxford, UK},
YEAR = {2009},
PAGES = {xxvi+785},
DOI = {10.1093/acprof:oso/9780199230723.001.0001},
NOTE = {MR:2473363. Zbl:1157.83002.},
ISBN = {978-0-19-923072-3},
}
[238]
Y. Choquet-Bruhat, P. T. Chruściel, and J. M. Martín-García :
“The light-cone theorem ,”
Classical Quantum Gravity
26 : 13
(2009 ),
pp. 135011, 22 .
MR
2515694
Zbl
1171.83001
article
Abstract
People
BibTeX
We prove that the area of cross-sections of light cones, in spacetimes satisfying suitable energy conditions, is smaller than or equal to that of the corresponding cross-sections in Minkowski, or de Sitter, or anti-de Sitter spacetime. The equality holds if and only if the metric coincides with the corresponding model in the domain of dependence of the light cone.
@article {key2515694m,
AUTHOR = {Choquet-Bruhat, Yvonne and Chru\'{s}ciel,
Piotr T. and Mart\'{\i}n-Garc\'{\i}a,
Jos\'{e} M.},
TITLE = {The light-cone theorem},
JOURNAL = {Classical Quantum Gravity},
FJOURNAL = {Classical and Quantum Gravity},
VOLUME = {26},
NUMBER = {13},
YEAR = {2009},
PAGES = {135011, 22},
DOI = {10.1088/0264-9381/26/13/135011},
NOTE = {MR:2515694. Zbl:1171.83001.},
ISSN = {0264-9381},
}
[239]
Y. Choquet-Bruhat, P. T. Chruściel, and J. M. Martín-García :
“A property of light-cones in Einstein’s gravity ,”
C. R. Math. Acad. Sci. Paris
347 : 15–16
(2009 ),
pp. 971–977 .
MR
2542904
Zbl
1170.83005
article
Abstract
People
BibTeX
We prove that the area of cross-sections of future light-cones in a space-time of arbitrary dimension, solution of the Einstein equations with sources satisfying suitable energy conditions, is smaller than the area of corresponding cross-sections for Minkowskian cones, equal only in space-times which are Minkowskian to the future of the light-cone.
@article {key2542904m,
AUTHOR = {Choquet-Bruhat, Yvonne and Chru\'{s}ciel,
Piotr T. and Mart\'{\i}n-Garc\'{\i}a,
Jos\'{e} M.},
TITLE = {A property of light-cones in {E}instein's
gravity},
JOURNAL = {C. R. Math. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Math\'{e}matique. Acad\'{e}mie
des Sciences. Paris},
VOLUME = {347},
NUMBER = {15-16},
YEAR = {2009},
PAGES = {971--977},
DOI = {10.1016/j.crma.2009.06.001},
NOTE = {MR:2542904. Zbl:1170.83005.},
ISSN = {1631-073X},
}
[240]
Y. Choquet-Bruhat, P. T. Chruściel, and J. M. Martín-García :
“Einstein constraints on a characteristic cone ,”
pp. 93–102
in
Proceedings “WASCOM 2009” 15th Conference on Waves and Stability in Continuous Media .
World Sci. Publ. (Hackensack, NJ ),
2010 .
MR
2762005
Zbl
1243.83015
inproceedings
Abstract
People
BibTeX
We analyse the Cauchy problem on a characteristic cone, including its vertex, for the Einstein equations in arbitrary dimensions. We use a wave map gauge, solve the obtained constraints and show gauge conservation.
@inproceedings {key2762005m,
AUTHOR = {Choquet-Bruhat, Y. and Chru\'{s}ciel,
P. T. and Mart\'{\i}n-Garc\'{\i}a, J.
M.},
TITLE = {Einstein constraints on a characteristic
cone},
BOOKTITLE = {Proceedings ``{WASCOM} 2009'' 15th {C}onference
on {W}aves and {S}tability in {C}ontinuous
{M}edia},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Hackensack, NJ},
YEAR = {2010},
PAGES = {93--102},
DOI = {10.1142/9789814317429_0016},
NOTE = {MR:2762005. Zbl:1243.83015.},
}
[241]
Y. Choquet-Bruhat, P. T. Chruściel, and J. M. Martín-García :
“The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions ,”
Ann. Henri Poincaré
12 : 3
(2011 ),
pp. 419–482 .
MR
2785136
Zbl
1215.83016
article
Abstract
People
BibTeX
We derive explicit formulae for a set of constraints for the Einstein equations on a null hypersurface, in arbitrary space-time dimensions \( n + 1 \geq 3 \) . We solve these constraints and show that they provide necessary and sufficient conditions so that a spacetime solution of the Cauchy problem on a characteristic cone for the hyperbolic system of the reduced Einstein equations in wave-map gauge also satisfies the full Einstein equations. We prove a geometric uniqueness theorem for this Cauchy problem in the vacuum case.
@article {key2785136m,
AUTHOR = {Choquet-Bruhat, Yvonne and Chru\'{s}ciel,
Piotr T. and Mart\'{\i}n-Garc\'{\i}a,
Jos\'{e} M.},
TITLE = {The {C}auchy problem on a characteristic
cone for the {E}instein equations in
arbitrary dimensions},
JOURNAL = {Ann. Henri Poincar\'{e}},
FJOURNAL = {Annales Henri Poincar\'{e}. A Journal
of Theoretical and Mathematical Physics},
VOLUME = {12},
NUMBER = {3},
YEAR = {2011},
PAGES = {419--482},
DOI = {10.1007/s00023-011-0076-5},
NOTE = {MR:2785136. Zbl:1215.83016.},
ISSN = {1424-0637},
}
[242]
Y. Choquet-Bruhat :
“Positive gravitational energy in arbitrary dimensions ,”
C. R. Math. Acad. Sci. Paris
349 : 15–16
(2011 ),
pp. 915–921 .
MR
2835903
Zbl
1227.83017
article
Abstract
BibTeX
We present a streamlined, complete proof, valid in arbitrary space dimension \( n \) , and using only spinors on the oriented Riemannian space \( (M^n;g) \) , of the positive energy theorem in General Relativity.
@article {key2835903m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Positive gravitational energy in arbitrary
dimensions},
JOURNAL = {C. R. Math. Acad. Sci. Paris},
FJOURNAL = {Comptes Rendus Math\'{e}matique. Acad\'{e}mie
des Sciences. Paris},
VOLUME = {349},
NUMBER = {15-16},
YEAR = {2011},
PAGES = {915--921},
DOI = {10.1016/j.crma.2011.07.017},
NOTE = {MR:2835903. Zbl:1227.83017.},
ISSN = {1631-073X},
}
[243]
Y. Choquet-Bruhat and J. M. Martín-García :
“A geometric energy estimate for data on a characteristic cone ,”
pp. 17–25
in
Advances in Lorentzian geometry .
Edited by M. Plaue, A. Rendall, and M. Scherfner .
AMS/IP Stud. Adv. Math. 49 .
Amer. Math. Soc. (Providence, RI ),
2011 .
MR
2867849
Zbl
1243.83016
incollection
Abstract
People
BibTeX
The Einstein equations in wave map gauge are a geometric second order system for a Lorentzian metric. To study existence of solutions of this hyperbolic quasi diagonal system with initial data on a characteristic cone which are not zero in a neighbourhood of the vertex one can appeal to theorems due to Cagnac and Dossa, proved for a scalar wave equation, for initial data in functional spaces relevant for their proofs. It is difficult to check that the initial data that we have constructed as solutions of the Einstein wave-map gauge constraints satisfy the more general of the Cagnac-Dossa hypotheses which uses weighted energy estimates. In this paper we start a new study of energy estimates using on the cone coordinates adapted to its null structure which are precisely the coordinates used to solve the constraints, following work of Rendall who considered the Cauchy problem for Einstein equations with data on two intersecting characteristic surfaces.
@incollection {key2867849m,
AUTHOR = {Choquet-Bruhat, Yvonne and Mart\'{\i}n-Garc\'{\i}a,
Jos\'{e} M.},
TITLE = {A geometric energy estimate for data
on a characteristic cone},
BOOKTITLE = {Advances in Lorentzian geometry},
EDITOR = {Matthias Plaue and Alan Rendall and
Mike Scherfner},
SERIES = {AMS/IP Stud. Adv. Math.},
NUMBER = {49},
PUBLISHER = {Amer. Math. Soc.},
ADDRESS = {Providence, RI},
YEAR = {2011},
PAGES = {17--25},
DOI = {10.1090/amsip/049/03},
NOTE = {MR:2867849. Zbl:1243.83016.},
}
[244]
Y. Choquet-Bruhat, P. T. Chruściel, and J. M. Martín-García :
“An existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations ,”
pp. 73–81
in
Complex analysis and dynamical systems, IV: Part 2 .
Edited by M. Agranovsky, M. Ben-Artzi, G. Galloway, L. Karp, S. Reich, D. S. G. Weinstein, and L. Zalcman .
Contemp. Math. 554 .
American Mathematical Society; Bar-Ilan University (Providence, RI; Ramat Gan ),
2011 .
MR
2884395
Zbl
1235.83011
incollection
Abstract
People
BibTeX
@incollection {key2884395m,
AUTHOR = {Choquet-Bruhat, Y. and Chru\'{s}ciel,
Piotr T. and Mart\'{\i}n-Garc\'{\i}a,
Jos\'{e} M.},
TITLE = {An existence theorem for the {C}auchy
problem on a characteristic cone for
the {E}instein equations},
BOOKTITLE = {Complex analysis and dynamical systems,
{IV}: {P}art 2},
EDITOR = {Mark Agranovsky and Matania Ben-Artzi
and Greg Galloway and Lavi Karp and
Simeon Reich and David Shoikhet Gilbert
Weinstein and Lawrence Zalcman},
SERIES = {Contemp. Math.},
NUMBER = {554},
PUBLISHER = {American Mathematical Society; Bar-Ilan
University},
ADDRESS = {Providence, RI; Ramat Gan},
YEAR = {2011},
PAGES = {73--81},
DOI = {10.1090/conm/554/10961},
NOTE = {MR:2884395. Zbl:1235.83011.},
}
[245]
Y. Choquet-Bruhat, P. T. Chruściel, and J. M. Martín-García :
“An existence theorem for the Cauchy problem on the light-cone for the vacuum Einstein equations with near-round analytic data ,”
Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki
153 : 3
(2011 ),
pp. 115–138 .
MR
3244416
Zbl
1344.83002
article
Abstract
People
BibTeX
@article {key3244416m,
AUTHOR = {Choquet-Bruhat, Y. and Chru\'{s}ciel,
P. T. and Mart\'{\i}n-Garc\'{\i}a, J.
M.},
TITLE = {An existence theorem for the {C}auchy
problem on the light-cone for the vacuum
{E}instein equations with near-round
analytic data},
JOURNAL = {Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat.
Nauki},
FJOURNAL = {Uchenye Zapiski Kazanskogo Universiteta.
Seriya Fiziko-Matematicheskie Nauki},
VOLUME = {153},
NUMBER = {3},
YEAR = {2011},
PAGES = {115--138},
NOTE = {MR:3244416. Zbl:1344.83002.},
ISSN = {2541-7746},
}
[246]
Y. Choquet-Bruhat :
Introduction to general relativity, black holes, and cosmology .
Oxford University Press (Oxford, UK ),
2015 .
MR
3379262
Zbl
1307.83001
book
BibTeX
@book {key3379262m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Introduction to general relativity,
black holes, and cosmology},
PUBLISHER = {Oxford University Press},
ADDRESS = {Oxford, UK},
YEAR = {2015},
PAGES = {xx+279},
NOTE = {MR:3379262. Zbl:1307.83001.},
ISBN = {978-0-19-966645-4; 978-0-19-966646-1},
}
[247]
Y. Choquet-Bruhat :
“Beginnings of the Cauchy problem for Einstein’s field equations ,”
pp. 1–16
in
Surveys in differential geometry 2015: One hundred years of
general relativity .
Edited by L. Bieri and S.-T. Yau .
Surv. Differ. Geom. 20 .
Int. Press (Boston ),
2015 .
MR
3467361
Zbl
1339.83006
incollection
Abstract
BibTeX
This is a brief account of results on the Cauchy problem for the Einstein equations starting with the early works of Darmois and Lichnerowicz and going up to the proofs of existence and uniqueness of solutions global in space and local in time, in Sobolev spaces, for the general equations either in vacuum or with classical sources.
@incollection {key3467361m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Beginnings of the {C}auchy problem for
{E}instein's field equations},
BOOKTITLE = {Surveys in differential geometry 2015:
{O}ne hundred years of general relativity},
EDITOR = {Lydia Bieri and Shing-Tung Yau},
SERIES = {Surv. Differ. Geom.},
NUMBER = {20},
PUBLISHER = {Int. Press},
ADDRESS = {Boston},
YEAR = {2015},
PAGES = {1--16},
DOI = {10.4310/SDG.2015.v20.n1.a1},
NOTE = {MR:3467361. Zbl:1339.83006.},
}
[248]
Y. Choquet-Bruhat :
Une mathématicienne dans cet étrange univers : mémoires .
Odile Jacob (Paris ),
2016 .
book
BibTeX
@book {key76920394,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {Une math{\'e}maticienne dans cet {\'e}trange
univers : m{\'e}moires},
PUBLISHER = {Odile Jacob},
ADDRESS = {Paris},
YEAR = {2016},
ISBN = {9782738134554},
}
[249]
Y. Choquet-Bruhat :
A lady mathematician in this strange universe: memoirs .
World Sci. Publ. (Hackensack, NJ ),
2018 .
Translated from the 2016 French original.
MR
3753699
Zbl
1387.83002
book
BibTeX
@book {key3753699m,
AUTHOR = {Choquet-Bruhat, Yvonne},
TITLE = {A lady mathematician in this strange
universe: memoirs},
PUBLISHER = {World Sci. Publ.},
ADDRESS = {Hackensack, NJ},
YEAR = {2018},
PAGES = {x+351},
DOI = {10.1142/10754},
NOTE = {Translated from the 2016 French original.
MR:3753699. Zbl:1387.83002.},
ISBN = {978-981-3231-62-7},
}
[250]
Y. Fourès-Bruhat :
“Republication of: ‘Existence theorem for the Einsteinian gravitational field equations in the non-analytic case’ ,”
Gen. Relativity Gravitation
54 : 4
(2022 ),
pp. Paper No. 35, 4 .
Reprint of 1950 original.
Republication of the article “Théorème d’existence pour les équations de la gravitation
einsteinienne dans le cas non analytique,” originally published in Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences , 230 , 618–620 (1950) .
MR
4406810
Zbl
1490.83007
article
Abstract
BibTeX
This paper was the first announcement of results later elaborated in detail in the more extensive 1952 paper by the same author (now Prof. Yvonne Choquet-Bruhat). They provide a very important theorem on the uniqueness of solutions of the initial value problem for the Einstein equations. This showed that Einstein’s theory shared the property of other physical theories that the evolution of the system is unique given the initial “position” and “velocity”, which here are the Cauchy data for the metric and its derivative.
@article {key4406810m,
AUTHOR = {Four\`es-Bruhat, Yvonne},
TITLE = {Republication of: `{E}xistence theorem
for the {E}insteinian gravitational
field equations in the non-analytic
case'},
JOURNAL = {Gen. Relativity Gravitation},
FJOURNAL = {General Relativity and Gravitation},
VOLUME = {54},
NUMBER = {4},
YEAR = {2022},
PAGES = {Paper No. 35, 4},
DOI = {10.1007/s10714-022-02917-4},
NOTE = {Reprint of 1950 original. Republication
of the article ``Th\'{e}or\`eme d'existence
pour les \'{e}quations de la gravitation
einsteinienne dans le cas non analytique'',
originally published in \textit{Comptes
Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences}, \textbf{230},
618--620 (1950). MR:4406810. Zbl:1490.83007.},
ISSN = {0001-7701},
}