Y. Choquet-Bruhat, D. Christodoulou, and M. Francaviglia :
“Cauchy data on a manifold ,”
Ann. Inst. H. Poincaré Sect. A (N.S.)
29 : 3
(1978 ),
pp. 241–255 .
MR
519694
Zbl
0412.35018
article
People
BibTeX
@article {key519694m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios and Francaviglia, Mauro},
TITLE = {Cauchy data on a manifold},
JOURNAL = {Ann. Inst. H. Poincar\'{e} Sect. A (N.S.)},
FJOURNAL = {Annales de l'Institut Henri Poincar\'{e}.
Section A. Physique Th\'{e}orique. Nouvelle
S\'{e}rie},
VOLUME = {29},
NUMBER = {3},
YEAR = {1978},
PAGES = {241--255},
URL = {http://www.numdam.org/item/AIHPA_1978__29_3_241_0/},
NOTE = {MR:519694. Zbl:0412.35018.},
ISSN = {0246-0211},
}
Y. Choquet-Bruhat, D. Christodoulou, and M. Francaviglia :
“Problème de Cauchy sur une variété ,”
C. R. Acad. Sci. Paris Sér. A-B
287 : 5
(1978 ),
pp. A373–A375 .
MR
524042
Zbl
0412.35017
article
Abstract
People
BibTeX
@article {key524042m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios and Francaviglia, Mauro},
TITLE = {Probl\`eme de {C}auchy sur une vari\'{e}t\'{e}},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {287},
NUMBER = {5},
YEAR = {1978},
PAGES = {A373--A375},
NOTE = {MR:524042. Zbl:0412.35017.},
ISSN = {0151-0509},
}
Y. Choquet-Bruhat, D. Christodoulou, and M. Francaviglia :
“On the wave equation in curved spacetime ,”
Ann. Inst. H. Poincaré Sect. A (N.S.)
31 : 4
(1979 ),
pp. 399–414 .
MR
574143
Zbl
0454.58016
article
People
BibTeX
@article {key574143m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios and Francaviglia, Mauro},
TITLE = {On the wave equation in curved spacetime},
JOURNAL = {Ann. Inst. H. Poincar\'{e} Sect. A (N.S.)},
FJOURNAL = {Annales de l'Institut Henri Poincar\'{e}.
Section A. Physique Th\'{e}orique. Nouvelle
S\'{e}rie},
VOLUME = {31},
NUMBER = {4},
YEAR = {1979},
PAGES = {399--414},
URL = {http://www.numdam.org/item/AIHPA_1979__31_4_399_0.pdf},
NOTE = {MR:574143. Zbl:0454.58016.},
ISSN = {0246-0211},
}
Y. Choquet-Bruhat and D. Christodoulou :
“Systèmes elliptiques sur une variété euclidienne à l’infini ,”
C. R. Acad. Sci. Paris Sér. A-B
290 : 17
(1980 ),
pp. A781–A785 .
MR
580565
Zbl
0453.58021
article
Abstract
People
BibTeX
We establish a priori estimates for elliptic systems of order \( m \) on manifolds whicih are euclidean at infinity, in weighted Sobolev spaces \( H_{s,\delta} \) . We use inclusion and multiplication properties stronger than those previously known. We obtain in particular an isomorphism theorem which generalizes the one proved by M. Cantor [Cantor 1970] in \( W^p_{s,\delta} (\mathbb{R}^n) \) with \( p > n/(n-m) \) .
@article {key580565m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios},
TITLE = {Syst\`emes elliptiques sur une vari\'{e}t\'{e}
euclidienne \`a l'infini},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. A-B},
FJOURNAL = {Comptes Rendus Hebdomadaires des S\'{e}ances
de l'Acad\'{e}mie des Sciences. S\'{e}ries
A et B},
VOLUME = {290},
NUMBER = {17},
YEAR = {1980},
PAGES = {A781--A785},
NOTE = {MR:580565. Zbl:0453.58021.},
ISSN = {0151-0509},
}
Y. Choquet-Bruhat and D. Christodoulou :
“Elliptic systems in \( H_{s,\delta } \) spaces on manifolds which are Euclidean at infinity ,”
Acta Math.
146 : 1–2
(1981 ),
pp. 129–150 .
MR
594629
article
Abstract
People
BibTeX
In this paper we study elliptic differential systems of order \( m \) on non-compact manifolds which are euclidean at infinity, in weighted Sobolev spaces \( H_{s,\delta} \) . Such a study has been done in weighted Hölder spaces \( C^{1,\alpha}_{\beta} \) , for equations of order 2 in [Chaljub-Simon and Choquet-Bruhat 1978]. On the other hand, M. Cantor has proved [Cantor 1979] closed range and isomorphism theorems for elliptic operators of order \( m \) in \( \mathbf{R}^n \) , in weighted Sobolev spaces \( W^{p}_{s,\delta} \) , where \( p > n/(n-m) \) . His paper is based on a work by L. Nirenberg and H. Walker [Nirenberg and Walker 1973] on the null spaces of such operators with continuous coefficients. In the present article we show that this restriction on \( p \) is unnecessary. Although we shall treat explicitly only the case \( p = 2 \) which is of special interest since \( W^2_{s,\delta}=H_{s,\delta} \) is a Hilbert space, the results extend trivially to any \( p > 1 \) . The hypotheses on the coefficients which we make, permit the study of nonlinear systems in the same framework.
@article {key594629m,
AUTHOR = {Choquet-Bruhat, Y. and Christodoulou,
D.},
TITLE = {Elliptic systems in \$H_{s,\delta }\$
spaces on manifolds which are {E}uclidean
at infinity},
JOURNAL = {Acta Math.},
FJOURNAL = {Acta Mathematica},
VOLUME = {146},
NUMBER = {1-2},
YEAR = {1981},
PAGES = {129--150},
DOI = {10.1007/BF02392460},
NOTE = {MR:594629.},
ISSN = {0001-5962},
}
Y. Choquet-Bruhat and D. Christodoulou :
“Existence de solutions globales des équations classiques des théories de jauge ,”
C. R. Acad. Sci. Paris Sér. I Math.
293 : 3
(1981 ),
pp. 195–199 .
MR
635980
Zbl
0478.58027
article
Abstract
People
BibTeX
This paper proves the global existence of Minkowski space-time of solutions of the Cauchy problem for the coupled Yang–Mills, Higgs and spinor classical field equations in \( 3+1 \) dimensions for small Cauchy data. The proof relies on the transformation of the global Cauchy problem on Minkowski space time into a local Cauchy problem on the Einstein static universe by conformal transformation.
@article {key635980m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios},
TITLE = {Existence de solutions globales des
\'{e}quations classiques des th\'{e}ories
de jauge},
JOURNAL = {C. R. Acad. Sci. Paris S\'{e}r. I Math.},
FJOURNAL = {Comptes Rendus des S\'{e}ances de l'Acad\'{e}mie
des Sciences. S\'{e}rie I. Math\'{e}matique},
VOLUME = {293},
NUMBER = {3},
YEAR = {1981},
PAGES = {195--199},
NOTE = {MR:635980. Zbl:0478.58027.},
ISSN = {0249-6291},
}
Y. Choquet-Bruhat and D. Christodoulou :
“Existence of global solutions of the Yang–Mills, Higgs and spinor field equations in \( 3+1 \) dimensions ,”
Ann. Sci. École Norm. Sup. (4)
14 : 4
(1981 ),
pp. 481–506 .
MR
654209
Zbl
0499.35076
article
Abstract
People
BibTeX
@article {key654209m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios},
TITLE = {Existence of global solutions of the
{Y}ang--{M}ills, {H}iggs and spinor
field equations in \$3+1\$ dimensions},
JOURNAL = {Ann. Sci. \'{E}cole Norm. Sup. (4)},
FJOURNAL = {Annales Scientifiques de l'\'{E}cole
Normale Sup\'{e}rieure. Quatri\`eme
S\'{e}rie},
VOLUME = {14},
NUMBER = {4},
YEAR = {1981},
PAGES = {481--506},
DOI = {10.24033/asens.1417},
URL = {http://www.numdam.org/item?id=ASENS_1981_4_14_4_481_0},
NOTE = {MR:654209. Zbl:0499.35076.},
ISSN = {0012-9593},
}
Y. Choquet-Bruhat and D. Christodoulou :
“Cauchy problem at past infinity for nonlinear equations in curved spacetime ,”
pp. 73–91
in
Studies in applied mathematics .
Edited by V. Guillemin .
Adv. Math. Suppl. Stud. 8 .
Academic Press (New York ),
1983 .
MR
759906
Zbl
0517.53028
incollection
Abstract
People
BibTeX
The authors consider the Cauchy problem at past infinity for both linear and non-linear wave equations on a globally hyperbolic curved spacetime whose metric tends to be stationary at past infinity. The first five sections consider the problem of a linear wave equation with a source term, and the final two sections consider weakly coupled systems of non-linear wave equations. The last section applies these results to a general Yang–Mills system in the Lorentz gauge with a source on a curved spacetime. Contents include sections on definitions and hypotheses, function spaces, energy estimates, weighted function spaces, existence theorems for linear equations, quasi-linear wave equations, existence theorems.
@incollection {key759906m,
AUTHOR = {Choquet-Bruhat, Yvonne and Christodoulou,
Demetrios},
TITLE = {Cauchy problem at past infinity for
nonlinear equations in curved spacetime},
BOOKTITLE = {Studies in applied mathematics},
EDITOR = {Victor Guillemin},
SERIES = {Adv. Math. Suppl. Stud.},
NUMBER = {8},
PUBLISHER = {Academic Press},
ADDRESS = {New York},
YEAR = {1983},
PAGES = {73--91},
NOTE = {MR:759906. Zbl:0517.53028.},
}