Celebratio Mathematica

Wolfgang Haken

Wolfgang Haken: A biographical sketch

Filter the Bibliography List

clear

W. Haken: “The­or­ie der Nor­malflächen: Ein Iso­topiekri­teri­um für den Kre­isk­noten” [The­ory of nor­mal sur­faces: An iso­top­ic cri­terion for the cir­cu­lar knot], Acta Math. 105 : 3–​4 (1961), pp. 245–​375. MR 141106 Zbl 0100.​19402 article

W. Haken: “Über das Homöomorphiep­rob­lem der 3-Man­nig­faltigkeiten, I” [On the ho­mo­morph­ism prob­lem for 3-man­i­folds, I], Math. Z. 80 : 1 (December 1962), pp. 89–​120. MR 160196 Zbl 0106.​16605 article

W. Haken: “On ho­mo­topy 3-spheres,” Ill. J. Math. 10 : 1 (1966), pp. 159–​178. Re­prin­ted in Ill. J. Math. 60:1 (2016). MR 219072 Zbl 0131.​20704 article

W. Haken: “Trivi­al loops in ho­mo­topy 3-spheres,” Ill. J. Math. 11 : 4 (1967), pp. 547–​554. MR 219073 Zbl 0153.​25703 article

W. Haken: “Some res­ults on sur­faces in 3-man­i­folds,” pp. 39–​98 in Stud­ies in mod­ern to­po­logy. Edi­ted by P. J. Hilton. MAA Stud­ies in Math­em­at­ics 5. Pren­tice-Hall (Engle­wood Cliffs, NJ), 1968. MR 224071 Zbl 0194.​24902 incollection

W. W. Boone, W. Haken, and V. Poénaru: “On re­curs­ively un­solv­able prob­lems in to­po­logy and their clas­si­fic­a­tion,” pp. 37–​74 in Con­tri­bu­tions to math­em­at­ic­al lo­gic (Han­nov­er, Ger­many, Au­gust 1966). Edi­ted by H. A. Schmidt, K. Schütte, and H.-J. Thiele. Stud­ies in Lo­gic and the Found­a­tions of Math­em­at­ics 50. North-Hol­land (Am­s­ter­dam), 1968. MR 263090 Zbl 0246.​57015 incollection

W. Haken: “Al­geb­ra­ic­ally trivi­al de­com­pos­i­tions of ho­mo­topy 3-spheres,” Ill. J. Math. 12 : 1 (1968), pp. 133–​170. MR 222902 Zbl 0171.​22302 article

W. Haken: “Vari­ous as­pects of the three-di­men­sion­al Poin­caré prob­lem,” pp. 140–​152 in To­po­logy of man­i­folds (Athens, GA, 11–22 Au­gust 1969). Edi­ted by J. C. Cantrell and C. H. Ed­wards. Markham (Chica­go), 1970. MR 273624 Zbl 0298.​55002 incollection

W. Haken: “Con­nec­tions between to­po­lo­gic­al and group the­or­et­ic­al de­cision prob­lems,” pp. 427–​441 in Word prob­lems: De­cision prob­lems and the Burn­side prob­lem in group the­ory (Irvine, CA, Septem­ber 1969). Edi­ted by W. W. Boone, R. C. Lyn­don, and F. B. Can­nonito. Stud­ies in Lo­gic and the Found­a­tions of Math­em­at­ics 71. North-Hol­land (Am­s­ter­dam), 1973. Con­fer­ence ded­ic­ated to Hanna Neu­mann. MR 397736 Zbl 0265.​02033 incollection

W. Haken: “Some spe­cial present­a­tions of ho­mo­topy 3-spheres,” pp. 97–​107 in To­po­logy con­fer­ence (Blacks­burg, VA, 22–24 March 1973). Edi­ted by H. F. Dick­man, Jr. and P. Fletch­er. Lec­ture Notes in Math­em­at­ics 375. Spring­er (Ber­lin), 1974. MR 356054 Zbl 0289.​55003 incollection

K. Ap­pel and W. Haken: “Every planar map is four col­or­able,” Bull. Am. Math. Soc. 82 : 5 (September 1976), pp. 711–​712. MR 424602 Zbl 0331.​05106 article

K. Ap­pel and W. Haken: “Every planar map is four col­or­able, I: Dis­char­ging,” Ill. J. Math. 21 : 3 (1977), pp. 429–​490. A mi­crofiche sup­ple­ment to both parts was pub­lished in Ill. J. Math. 21:3 (1977). MR 543792 Zbl 0387.​05009 article

K. Ap­pel, W. Haken, and J. Koch: “Every planar map is four col­or­able, II: Re­du­cib­il­ity,” Ill. J. Math. 21 : 3 (1977), pp. 491–​567. A mi­crofiche sup­ple­ment to both parts was pub­lished in Ill. J. Math. 21:3 (1977). MR 543793 Zbl 0387.​05010 article

K. Ap­pel and W. Haken: “The class check lists cor­res­pond­ing to the sup­ple­ment to ‘Every planar map is four col­or­able. Part I and Part II’,” Ill. J. Math. 21 : 3 (1977), pp. C1–​C210. Mi­crofiche sup­ple­ment. Ex­tra ma­ter­i­al to ac­com­pany the sup­ple­ment pub­lished in Ill. J. Math. 21:3 (1977). MR 543794 article

K. Ap­pel and W. Haken: “Mi­crofiche sup­ple­ment to ‘Every planar map is four col­or­able. Part I and Part II’,” Ill. J. Math. 21 : 3 (1977), pp. 1–​251. Mi­crofiche sup­ple­ment. Sup­ple­ment to the two part art­icle pub­lished as Ill. J. Math. 21:3 (1977) and Ill. J. Math. 21:3 (1977). A class check list was also pub­lished as Ill. J. Math. 21:3 (1977). MR 543795 article

K. Ap­pel and W. Haken: Every planar map is four col­or­able. Con­tem­por­ary Math­em­at­ics 98. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1989. With the col­lab­or­a­tion of J. Koch. MR 1025335 Zbl 0681.​05027 book