return

Celebratio Mathematica

Joel Hass

Complete Bibliography

[1] J. Hass: Em­bed­ded min­im­al sur­faces in three and four di­men­sion­al man­i­folds. Ph.D. thesis, Uni­versity of Cali­for­nia, Berke­ley, 1981. Ad­vised by R. Kirby. MR 2631519 phdthesis

[2] article M. Freed­man, J. Hass, and P. Scott: “Closed geodesics on sur­faces,” Bull. Lon­don Math. Soc. 14 : 5 (1982), pp. 385–​391. MR 0671777 Zbl 0476.​53026

[3] article M. Freed­man, J. Hass, and P. Scott: “Least area in­com­press­ible sur­faces in 3-man­i­folds,” In­vent. Math. 71 : 3 (1983), pp. 609–​642. MR 0695910 Zbl 0482.​53045

[4] J. Hass: “The geo­metry of the slice-rib­bon prob­lem,” Math. Proc. Cam­bridge Philos. Soc. 94 : 1 (July 1983), pp. 101–​108. MR 704804 Zbl 0535.​57004 article

[5] J. Hass: “Com­plete area min­im­iz­ing min­im­al sur­faces which are not totally geodes­ic,” Pac. J. Math. 111 : 1 (1984), pp. 35–​38. MR 732056 Zbl 0534.​53004 article

[6] J. Hass: “Min­im­al sur­faces in Seifert fiber spaces,” To­po­logy Ap­pl. 18 : 2–​3 (1984), pp. 145–​151. MR 769287 Zbl 0559.​57005 article

[7] J. Hass and J. Hughes: “Im­mer­sions of sur­faces in 3-man­i­folds,” To­po­logy 24 : 1 (1985), pp. 97–​112. MR 790679 Zbl 0527.​57020 article

[8] J. Hass and P. Scott: “In­ter­sec­tions of curves on sur­faces,” Is­rael J. Math. 51 : 1–​2 (1985), pp. 90–​120. MR 804478 Zbl 0576.​57009 article

[9]J. Hass and J. H. Ru­bin­stein: “One-sided closed geodesics on sur­faces,” Mich. Math. J. 33 : 2 (1986), pp. 155–​168. MR 837574 Zbl 0614.​53035 article

[10] J. Hass: “Min­im­al sur­faces in fo­li­ated man­i­folds,” Com­ment. Math. Helv. 61 : 1 (1986), pp. 1–​32. MR 847517 Zbl 0601.​53024 article

[11]J. Hass, H. Ru­bin­stein, and P. Scott: “Cov­er­ing spaces of 3-man­i­folds,” Bull. Am. Math. Soc., New Ser. 16 : 1 (January 1987), pp. 117–​119. MR 866028 Zbl 0624.​57016 article

[12] J. Hass: “Min­im­al sur­faces in man­i­folds with \( S^1 \) ac­tions and the simple loop con­jec­ture for Seifert fibered spaces,” Proc. Am. Math. Soc. 99 : 2 (February 1987), pp. 383–​388. MR 870806 Zbl 0627.​57008 article

[13] J. Hass and P. Scott: “The ex­ist­ence of least area sur­faces in 3-man­i­folds,” Trans. Am. Math. Soc. 310 : 1 (November 1988), pp. 87–​114. MR 965747 Zbl 0711.​53008 article

[14] J. Hass: “Sur­faces min­im­iz­ing area in their ho­mo­logy class and group ac­tions on 3-man­i­folds,” Math. Z. 199 : 4 (1988), pp. 501–​509. MR 968316 Zbl 0715.​57005 article

[15]J. Hass, H. Ru­bin­stein, and P. Scott: “Com­pac­ti­fy­ing cov­er­ings of closed 3-man­i­folds,” J. Dif­fer. Geom. 30 : 3 (1989), pp. 817–​832. MR 1021374 Zbl 0693.​57011 article

[16] C. Froh­man and J. Hass: “Un­stable min­im­al sur­faces and Hee­gaard split­tings,” In­vent. Math. 95 : 3 (1989), pp. 529–​540. MR 979363 Zbl 0678.​57009 article

[17] J. Hass and A. Thompson: “A ne­ces­sary and suf­fi­cient con­di­tion for a 3-man­i­fold to have Hee­gaard genus one,” Proc. Am. Math. Soc. 107 : 4 (December 1989), pp. 1107–​1110. MR 984792 Zbl 0694.​57006 article

[18] J. Hass: “Sin­gu­lar curves and the Plat­eau prob­lem,” Int. J. Math. 2 : 1 (1991), pp. 1–​16. MR 1082833 Zbl 0737.​49029 article

[19] J. Hass: “Genus two Hee­gaard split­tings,” Proc. Am. Math. Soc. 114 : 2 (1992), pp. 565–​570. MR 1070519 Zbl 0746.​57005 article

[20] J. Hass: “In­ter­sec­tions of least area sur­faces,” Pac. J. Math. 152 : 1 (1992), pp. 119–​123. MR 1139976 Zbl 0747.​53047 article

[21] J. Hass and P. Scott: “Ho­mo­topy equi­val­ence and homeo­morph­ism of 3-man­i­folds,” To­po­logy 31 : 3 (July 1992), pp. 493–​517. MR 1174254 Zbl 0771.​57007 article

[22]J. Hass, J. T. Pitts, and J. H. Ru­bin­stein: “Ex­ist­ence of un­stable min­im­al sur­faces in man­i­folds with ho­mo­logy and ap­plic­a­tions to triply peri­od­ic min­im­al sur­faces,” pp. 147–​162 in Dif­fer­en­tial geo­metry (Los Angeles, 8–28 Ju­ly 1990), part 1: Par­tial dif­fer­en­tial equa­tions on man­i­folds. Edi­ted by R. E. Green and S.-T. Yau. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 54. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1993. MR 1216582 Zbl 0798.​53009 incollection

[23] J. Hass and P. Scott: “Curve flows on sur­faces and in­ter­sec­tions of curves,” pp. 415–​421 in Dif­fer­en­tial geo­metry (Los Angeles, 8–28 Ju­ly 1990), Part 3: Rieman­ni­an geo­metry. Edi­ted by R. Greene and S.-T. Yau. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 54. Amer­er­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1993. MR 1216633 Zbl 0793.​53006 incollection

[24] J. Hass and W. Menasco: “To­po­lo­gic­ally ri­gid non-Haken 3-man­i­folds,” J. Aus­tral. Math. Soc. Ser. A 55 : 1 (August 1993), pp. 60–​71. MR 1231694 Zbl 0806.​57006 article

[25] J. Hass and P. Scott: “Ho­mo­topy and iso­topy in di­men­sion three,” Com­ment. Math. Helv. 68 : 3 (1993), pp. 341–​364. MR 1236759 Zbl 0805.​57008 article

[26] J. Hass and P. Scott: “Short­en­ing curves on sur­faces,” To­po­logy 33 : 1 (January 1994), pp. 25–​43. MR 1259513 Zbl 0798.​58019 article

[27] J. Hass: “Met­rics on man­i­folds with con­vex or con­cave bound­ary,” pp. 41–​46 in Geo­met­ric to­po­logy: Joint US-Is­rael work­shop on geo­met­ric to­po­logy (Haifa, Is­rael, 10–16 June 1992). Edi­ted by C. Gor­don, Y. Mori­ah, and B. Wa­jnryb. Con­tem­por­ary Math­em­at­ics 164. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1994. MR 1282754 Zbl 0822.​53024 incollection

[28] J. Hass: “Bounded 3-man­i­folds ad­mit neg­at­ively curved met­rics with con­cave bound­ary,” J. Diff. Geom. 40 : 3 (1994), pp. 449–​459. MR 1305977 Zbl 0821.​53035 article

[29] J. Hass: “Acyl­indric­al sur­faces in 3-man­i­folds,” Michigan Math. J. 42 : 2 (1995), pp. 357–​365. MR 1342495 Zbl 0862.​57011 article

[30] J. Hass, M. Hutch­ings, and R. Sch­lafly: “The double bubble con­jec­ture,” Elec­tron. Res. An­nounc. Am. Math. Soc. 1 : 3 (1995), pp. 98–​102. MR 1369639 Zbl 0864.​53007 article

[31] J. Hass and R. Sch­lafly: “Bubbles and double bubbles,” Amer. Sci. 84 : 5 (September–October 1996), pp. 462–​467. A French ver­sion was pub­lished in La Recher­che 303 (1997). article

[32] J. Hass and F. Mor­gan: “Geodes­ic nets on the 2-sphere,” Proc. Am. Math. Soc. 124 : 12 (1996), pp. 3843–​3850. MR 1343696 Zbl 0871.​53038 article

[33] J. Hass and F. Mor­gan: “Geodesics and soap bubbles in sur­faces,” Math. Z. 223 : 2 (1996), pp. 185–​196. MR 1417428 Zbl 0865.​53009 article

[34] J. Hass, J. C. Lagari­as, and N. Pip­penger: “The com­pu­ta­tion­al com­plex­ity of knot and link prob­lems,” pp. 172–​181 in Pro­ceed­ings: 38th an­nu­al sym­posi­um on the found­a­tions of com­puter sci­ence (Miami Beach, FL, 20–22 Oc­to­ber 1997). IEEE Com­puter So­ci­ety Press (Los Alam­i­tos, CA), 1997. pre­lim­in­ary re­port. pre­lim­in­ary re­port for an art­icle even­tu­ally pub­lished in J. ACM 46:2 (1999). incollection

[35] J. Hass and R. Sch­lafly: “His­toires de bulles et de double bulles” [Stor­ies of bubbles and double bubbles], La Recher­che 303 (November 1997), pp. 42–​47. French ver­sion of an art­icle ori­gin­ally pub­lished in Am. Sci. 84:5 (1996). article

[36] J. Hass and A. Thompson: “Neon bulbs and the un­knot­ting of arcs in man­i­folds,” J. Knot The­or. Ramif. 6 : 2 (April 1997), pp. 235–​242. MR 1452439 Zbl 0886.​57003 article

[37] C. Adams, J. Hass, and A. Thompson: How to ace cal­cu­lus: The street­wise guide. W. H. Free­man (New York), 1998. book

[38] J. Hass: “Al­gorithms for re­cog­niz­ing knots and 3-man­i­folds,” pp. 569–​581 in Knot the­ory and its ap­plic­a­tions: Ex­pos­it­ory art­icles on cur­rent re­search, published as Chaos Solitons Fractals 9 : 4–​5. Issue edi­ted by M. S. El Nasch­ie. April–May 1998. MR 1628743 Zbl 0935.​57014 incollection

[39] C. Adams, J. Hass, and P. Scott: “Simple closed geodesics in hy­per­bol­ic 3-man­i­folds,” Bull. Lon­don Math. Soc. 31 : 1 (January 1999), pp. 81–​86. MR 1650997 Zbl 0955.​53025 ArXiv math/​9801071 article

[40] J. Hass, J. C. Lagari­as, and N. Pip­penger: “The com­pu­ta­tion­al com­plex­ity of knot and link prob­lems,” J. ACM 46 : 2 (March 1999), pp. 185–​211. A pre­lim­in­ary re­port was pub­lished in Pro­ceed­ings: 38th an­nu­al sym­posi­um on the found­a­tions of com­puter sci­ence (1997). MR 1693203 Zbl 1065.​68667 article

[41]Pro­ceed­ings of the Kirby­fest (Berke­ley, CA, June 22–26, 1998). Edi­ted by J. Hass and M. Schar­le­mann. Geo­metry & To­po­logy Mono­graphs 2. Geo­metry & To­po­logy Pub­lic­a­tions (Cov­entry), 1999. MR 1734398

[42] J. Hass and P. Scott: “Con­fig­ur­a­tions of curves and geodesics on sur­faces,” pp. 201–​213 in Pro­ceed­ings of the Kirby­fest (Berke­ley, CA, 22–26 June 1998). Edi­ted by J. Hass and M. G. Schar­le­mann. Geo­metry & To­po­logy Mono­graphs 2. Geo­metry & To­po­logy Pub­lic­a­tions (Cov­entry, UK), 1999. MR 1734409 Zbl 1035.​53053 ArXiv math/​9903130 incollection

[43] J. Hass, J. H. Ru­bin­stein, and S. Wang: “Bound­ary slopes of im­mersed sur­faces in 3-man­i­folds,” J. Diff. Geom. 52 : 2 (1999), pp. 303–​325. MR 1758298 Zbl 0978.​57016 ArXiv math/​9911072 article

[44] J. Hass: “Gen­er­al double bubble con­jec­ture in \( \mathbb{R}^3 \) solved,” MAA Fo­cus 20 : 5 (May–June 2000), pp. 4–​5. article

[45] J. Hass and R. Sch­lafly: “Double bubbles min­im­ize,” Ann. Math. (2) 151 : 2 (March 2000), pp. 459–​515. MR 1765704 Zbl 0970.​53008 article

[46] C. Adams, J. Hass, and A. Thompson: How to ace the rest of cal­cu­lus: The street­wise guide. W. H. Free­man (New York), 2001. book

[47] J. Hass and J. C. Lagari­as: “The num­ber of Re­idemeister moves needed for un­knot­ting,” J. Am. Math. Soc. 14 : 2 (2001), pp. 399–​428. MR 1815217 Zbl 0964.​57005 article

[48] J. Hass, S. Wang, and Q. Zhou: “On fi­nite­ness of the num­ber of bound­ary slopes of im­mersed sur­faces in 3-man­i­folds,” Proc. Am. Math. Soc. 130 : 6 (2002), pp. 1851–​1857. MR 1887034 Zbl 0993.​57007 article

[49] I. Agol, J. Hass, and W. Thur­ston: “3-man­i­fold knot genus is NP-com­plete,” pp. 761–​766 in Pro­ceed­ings of the thirty-fourth an­nu­al ACM sym­posi­um on the­ory of com­put­ing (Montreal, 19–21 May 2002). Edi­ted by J. H. Re­if. ACM (New York), 2002. MR 2121524 Zbl 1192.​68305 incollection

[50] J. Hass, J. Snoeyink, and W. P. Thur­ston: “The size of span­ning disks for poly­gon­al curves,” Dis­crete Com­put. Geom. 29 : 1 (2003), pp. 1–​17. MR 1946790 Zbl 1015.​57008 article

[51]J. Hass, P. Nor­bury, and J. H. Ru­bin­stein: “Min­im­al spheres of ar­bit­rar­ily high Morse in­dex,” Com­mun. Anal. Geom. 11 : 3 (2003), pp. 425–​439. MR 2015753 Zbl 1104.​53055 ArXiv 0206286 article

[52] J. Hass and J. C. Lagari­as: “The min­im­al num­ber of tri­angles needed to span a poly­gon em­bed­ded in \( \mathbb{R}^d \),” pp. 509–​526 in Dis­crete and com­pu­ta­tion­al geo­metry: The Good­man–Pol­lack Fest­s­chrift. Edi­ted by B. Aronov, S. Basu, J. Pach, and M. Sharir. Al­gorithms and Com­bin­at­or­ics 25. Spring­er (Ber­lin), 2003. MR 2038489 Zbl 1103.​52013 incollection

[53] X. Song, T. W. Seder­berg, J. Zheng, R. T. Farouki, and J. Hass: “Lin­ear per­turb­a­tion meth­ods for to­po­lo­gic­ally con­sist­ent rep­res­ent­a­tions of free-form sur­face in­ter­sec­tions,” Com­put. Aided Geom. Design 21 : 3 (March 2004), pp. 303–​319. A cor­ri­gendum to this art­icle was pub­lished in Com­put. Aided Geom. Design 21:3 (2004). MR 2042022 Zbl 1069.​65567 article

[54] X. Song, T. W. Seder­berg, J. Zheng, R. T. Farouki, and J. Hass: “Cor­ri­gendum to ‘Lin­ear per­turb­a­tion meth­ods for to­po­lo­gic­ally con­sist­ent rep­res­ent­a­tions of free-form sur­face in­ter­sec­tions’,” Com­put. Aided Geom. Design 21 : 3 (2004), pp. 321. cor­ri­gendum to an art­icle pub­lished in Com­put. Aided Geom. Design 21:3 (2004). MR 2042023 Zbl 1069.​65568 article

[55] R. T. Farouki, C. Y. Han, J. Hass, and T. W. Seder­berg: “To­po­lo­gic­ally con­sist­ent trimmed sur­face ap­prox­im­a­tions based on tri­an­gu­lar patches,” Com­put. Aided Geom. Design 21 : 5 (2004), pp. 459–​478. MR 2058392 Zbl 1069.​65552 article

[56] J. Hass, J. C. Lagari­as, and W. P. Thur­ston: “Area in­equal­it­ies for em­bed­ded disks span­ning un­knot­ted curves,” J. Diff. Geom. 68 : 1 (2004), pp. 1–​29. MR 2152907 Zbl 1104.​53006 ArXiv math/​0306313 article

[57] J. Hass: “Min­im­al sur­faces and the to­po­logy of three-man­i­folds,” pp. 705–​724 in Glob­al the­ory of min­im­al sur­faces (Berke­ley, CA, 25 June–27 Ju­ly 2001). Edi­ted by D. Hoff­man. Clay Math­em­at­ic­al Pro­ceed­ings 2. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2005. MR 2167285 Zbl 1100.​57021 incollection

[58] R. T. Farouki, C. Y. Han, and J. Hass: “Bound­ary eval­u­ation al­gorithms for Minkowski com­bin­a­tions of com­plex sets us­ing to­po­lo­gic­al ana­lys­is of im­pli­cit curves,” Nu­mer. Al­gorithms 40 : 3 (2005), pp. 251–​283. MR 2189407 Zbl 1087.​65011 article

[59] F. R. Giord­ano, M. D. Weir, and J. Hass: Thomas’ cal­cu­lus: Early tran­scend­ent­als, 11th edition. Ad­dis­on-Wes­ley (Bo­ston, MA), 2005. Hass also con­trib­uted to the 12th edi­tion (2009). book

[60] I. Agol, J. Hass, and W. Thur­ston: “The com­pu­ta­tion­al com­plex­ity of knot genus and span­ning area,” Trans. Am. Math. Soc. 358 : 9 (2006), pp. 3821–​3850. MR 2219001 Zbl 1098.​57003 article

[61] J. Hass, R. T. Farouki, C. Y. Han, X. Song, and T. W. Seder­berg: “Guar­an­teed con­sist­ency of sur­face in­ter­sec­tions and trimmed sur­faces us­ing a coupled to­po­logy res­ol­u­tion and do­main de­com­pos­i­tion scheme,” Adv. Com­put. Math. 27 : 1 (2007), pp. 1–​26. MR 2317919 Zbl 1118.​65011 article

[62] R. T. Farouki and J. Hass: “Eval­u­at­ing the bound­ary and cov­er­ing de­gree of planar Minkowski sums and oth­er geo­met­ric­al con­vo­lu­tions,” J. Com­put. Ap­pl. Math. 209 : 2 (2007), pp. 246–​266. MR 2387129 Zbl 1140.​65020 article

[63] J. Hass and T. Nowik: “In­vari­ants of knot dia­grams,” Math. Ann. 342 : 1 (2008), pp. 125–​137. MR 2415317 Zbl 1161.​57002 article

[64] J. Hass, A. Thompson, and W. Thur­ston: “Sta­bil­iz­a­tion of Hee­gaard split­tings,” Geom. To­pol. 13 : 4 (2009), pp. 2029–​2050. MR 2507114 Zbl 1177.​57018 ArXiv 0802.​2145 article

[65] J. Hass, J. H. Ru­bin­stein, and A. Thompson: “Knots and \( k \)-width,” Geom. Ded­icata 143 : 7 (December 2009), pp. 7–​18. MR 2576289 Zbl 1189.​57005 ArXiv math/​0604256 article

[66] M. D. Weir, G. B. Thomas, and J. Hass: Thomas’ cal­cu­lus: Early tran­scend­ent­als, 12th edition. Ad­dis­on-Wes­ley (Bo­ston, MA), 2009. An abridged Ger­man trans­la­tion of this was pub­lished as Basis­buch {Ana­lys­is} (2013). Hass also con­trib­uted to the 11th edi­tion (2005). book

[67] J. R. Hass, M. D. Weir, and G. B. Thomas, Jr.: Uni­versity cal­cu­lus: Ele­ments with early tran­scend­ent­als. Pear­son (Bo­ston, MA), 2009. single vari­able. A second, re­vised edi­tion was pub­lished (with slightly dif­fer­ent title) in 2012. Zbl 1271.​00017 book

[68] P. Fran­cis-Ly­on, S. Gu, J. Hass, N. Amenta, and P. Koehl: “Sampling the con­form­a­tion of pro­tein sur­face residues for flex­ible pro­tein dock­ing,” BMC Bioin­form. 11 (2010), pp. 575–​588. article

[69] J. Hass and T. Nowik: “Un­knot dia­grams re­quir­ing a quad­rat­ic num­ber of Re­idemeister moves to un­tangle,” Dis­crete Com­put. Geom. 44 : 1 (2010), pp. 91–​95. MR 2639820 Zbl 1191.​57006 article

[70] J. Hass and A. Thompson: “Is it knot­ted?,” pp. 129–​135 in Ex­ped­i­tions in math­em­at­ics. Edi­ted by T. Shubin, D. F. Hayes, and G. L. Al­ex­an­der­son. MAA Spec­trum 68. Math­em­at­ic­al As­so­ci­ation of Amer­ica (Wash­ing­ton, DC), 2011. incollection

[71] S. Gu, P. Koehl, J. Hass, and N. Amenta: “Sur­face-his­to­gram: A new shape descriptor for pro­tein-pro­tein dock­ing,” Pro­teins Struct. Funct. Bioinf. 80 : 1 (January 2012), pp. 221–​238. article

[72] J. Hass and G. Ku­per­berg: “The com­plex­ity of re­cog­niz­ing the 3-sphere,” pp. 1425–​1426 in Tri­an­gu­la­tions, published as OWR 9 : 2. Issue edi­ted by G.-M. Greuel. EMS (Zürich), 2012. non­ref­er­eed ex­ten­ded ab­stract. incollection

[73] J. Hass: “What is an al­most nor­mal sur­face?,” pp. 1–​13 in Geo­metry and to­po­logy down un­der: A con­fer­ence in hon­our of Hyam Ru­bin­stein (Mel­bourne, 11–22 Ju­ly 2011). Edi­ted by C. D. Hodg­son, W. H. Jaco, M. G. Schar­le­mann, and S. Till­mann. Con­tem­por­ary Math­em­at­ics 597. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2013. MR 3186667 Zbl 1279.​57002 incollection

[74] A. Tsui, D. Fenton, P. Vuong, J. Hass, P. Koehl, N. Amenta, D. Coeur­jolly, C. De­Carli, and O. Car­mi­chael: “Glob­ally op­tim­al cor­tic­al sur­face match­ing with ex­act land­mark cor­res­pond­ence,” pp. 487–​498 in In­form­a­tion pro­cessing in med­ic­al ima­ging: 23rd in­ter­na­tion­al con­fer­ence, IPMI 2013 (As­ilo­mar, CA, 28 June–3 Ju­ly 2013). Edi­ted by J. C. Gee, S. Joshi, K. M. Pohl, W. M. Wells, and L. Zöl­lei. Lec­ture Notes in Com­puter Sci­ence 7917. Spring­er (Ber­lin), 2013. incollection

[75] G. B. Thomas, M. D. Weir, and J. Hass: Ana­lys­is 1: Lehr- und Übungs­buch [Ana­lys­is 1: Teach­ing and prac­tice book]. Pear­son Stu­di­um (München), 2013. Part 2 was pub­lished in 2013. Zbl 1270.​00022 book

[76] G. B. Thomas, M. D. Weir, and J. Hass: Basis­buch Ana­lys­is [Ba­sic book of ana­lys­is]. Pear­son High­er Eu­ca­tion (München), 2013. abridged Ger­man trans­la­tion of 12th edi­tion of Thomas’ cal­cu­lus (2009). Zbl 1283.​26001 book

[77] P. Koehl and J. Hass: “Auto­mat­ic align­ment of genus-zero sur­faces,” IEEE Trans. Pat­tern Anal. Mach. In­tell. 36 : 3 (March 2014), pp. 466–​478. article

[78] G. B. Thomas, M. D. Weir, and J. Hass: Ana­lys­is 2: Lehr- und Übungs­buch [Ana­lys­is 2: Teach­ing and prac­tice book], 12th up­dated edition. Pear­son Stu­di­um (München), 2014. Part 1 was pub­lished in 2013. Zbl 1296.​26005 book

[79] J. Hass and P. Koehl: “How round is a pro­tein? Ex­plor­ing pro­tein struc­tures for glob­u­lar­ity us­ing con­form­al map­ping,” Front. Mol. Biosci. 1 (December 2014), pp. 1–​26. article

[80] J. Hass: Min­im­al fibra­tions of hy­per­bol­ic 3-man­i­folds. Pre­print, 12 2015. ArXiv 1512.​04145 techreport

[81] J. Hass and P. Koehl: A met­ric for genus-zero sur­faces. Pre­print, July 2015. ArXiv 1507.​00798 techreport

[82] P. Koehl and J. Hass: “Land­mark-free geo­met­ric meth­ods in bio­lo­gic­al shape ana­lys­is,” J. R. Soc. In­ter­face 12 : 113 (2015), pp. 1–​11. article

[83] A. Cow­ard and J. Hass: “To­po­lo­gic­al and phys­ic­al link the­ory are dis­tinct,” Pac. J. Math. 276 : 2 (2015), pp. 387–​400. MR 3374064 Zbl 1326.​53008 article

[84] J. Hass and P. Scott: “Sim­pli­cial en­ergy and sim­pli­cial har­mon­ic maps,” Asi­an J. Math. 19 : 4 (2015), pp. 593–​636. MR 3423736 Zbl 1332.​57024 ArXiv 1206.​2574 article

[85] J. Hass: Iso­peri­met­ric re­gions in non­posit­ively curved man­i­folds. Pre­print, 11 2016. ArXiv 1604.​02768 techreport

[86] J. Hass, C. Even-Zo­har, N. Lini­al, and T. Nowik: In­vari­ants of ran­dom knots and links. Pre­print, June 2016. ArXiv 1411.​3308 techreport

[87] J. Hass, A. Thompson, and A. Ts­vi­etkova: “The num­ber of sur­faces of fixed genus in an al­tern­at­ing link com­ple­ment,” Int. Math. Res. Not. 2017 : 6 (March 2017), pp. 1611–​1622. MR 3658176 ArXiv 1508.​03680 article

[88] J. Hass and P. Koehl: “Com­par­ing shapes of genus-zero sur­faces,” J. Ap­pl. Com­put. To­pol. 1 : 1 (2017), pp. 57–​87. MR 3975549 article

[89] C. Even-Zo­har, J. Hass, N. Lini­al, and T. Nowik: “The dis­tri­bu­tion of knots in the Petaluma mod­el,” Al­gebr. Geom. To­pol. 18 : 6 (2018), pp. 3647–​3667. MR 3868230 article

[90] M. Bell, J. Hass, J. H. Ru­bin­stein, and S. Till­mann: “Com­put­ing tri­sec­tions of 4-man­i­folds,” Proc. Natl. Acad. Sci. USA 115 : 43 (2018), pp. 10901–​10907. MR 3871794 article

[91] C. Even-Zo­har, J. Hass, N. Lini­al, and T. Nowik: “Uni­ver­sal knot dia­grams,” J. Knot The­ory Rami­fic­a­tions 28 : 7 (2019), pp. 1950031, 30. MR 3975570 article

[92] J. Hass, A. Thompson, and A. Ts­vi­etkova: “Al­tern­at­ing links have at most poly­no­mi­ally many Seifert sur­faces of fixed genus,” In­di­ana Univ. Math. J. 70 : 2 (2021), pp. 525–​534. MR 4257618 article

[93] J. Hass, A. Thompson, and A. Ts­vi­etkova: “Tangle de­com­pos­i­tions of al­tern­at­ing link com­ple­ments,” Illinois J. Math. 65 : 3 (2021), pp. 533–​545. MR 4312193 article

[94] C. Even-Zo­har and J. Hass: “Ran­dom col­or­ings in man­i­folds,” Is­rael J. Math. 256 : 1 (2023), pp. 153–​211. MR 4652937 article