### On Jones’ connections between

subfactors, conformal field theory,

Thompson’s groups and knots

#### Filter the Bibliography List

Index for subfactors,”
Invent. Math.
72 : 1
(1983),
pp. 1–25.
A lecture based on this was published in *Fields Medallists’ lectures* (1997).
MR
696688
Zbl
0508.46040
article

A polynomial invariant for knots via von Neumann algebras,”
Bull. Am. Math. Soc.
12 : 1
(January 1985),
pp. 103–111.
A lecture based on this was published in *Fields Medallists’ lectures* (1997).
MR
766964
Zbl
0564.57006
article

The classification of subfactors of index at most 5,” Bull. Am. Math. Soc. (N.S.) 51 : 2 (2014), pp. 277–327. MR 3166042 Zbl 1301.46039 ArXiv 1304.6141 article

: “
Some unitary representations of Thompson’s groups __\( F \)__ and __\( T \)__,”
J. Comb. Algebra
1 : 1
(2017),
pp. 1–44.
MR
3589908
Zbl
06684911
ArXiv
1412.7740
article

A no-go theorem for the continuum limit of a periodic quantum spin chain,” Comm. Math. Phys. 357 : 1 (2018), pp. 295–317. MR 3764571 Zbl 1397.82025 ArXiv 1607.08769 article

: “Scale invariant transfer matrices and Hamiltonians,” J. Phys. A 51 : 10 (2018). article no. 104001, 27 pages. MR 3766219 Zbl 1387.82010 ArXiv 1706.00515 article

: “The Homflypt polynomial and the oriented Thompson group,” Quantum Topol. 9 : 3 (2018), pp. 461–472. MR 3827807 Zbl 1397.57022 ArXiv 1609.02484 article

: “Irreducibility of the Wysiwyg representations of Thompson’s groups. Preprint, June 2019. ArXiv 1906.09619 techreport

:On the construction of knots and links from Thompson’s groups,” pp. 43–66 in Knots, low-dimensional topology and applications: Knots in Hellas (Olympia, Greece, 17–23 July 2016). Edited by C. C. Adams, C. M. Gordon, V. F. R. Jones, L. H. Kauffman, S. Lambropoulou, K. C. Millett, J. H. Przytycki, R. Ricca, and R. Sazdanovic. Springer Proceedings in Mathematics & Statistics 284. Springer (Cham, Switzerland), 2019. MR 3986040 Zbl 1423.57013 ArXiv 1810.06034 incollection

: “Pythagorean representations of Thompson’s groups,” J. Funct. Anal. 277 : 7 (October 2019), pp. 2442–2469. MR 3989149 Zbl 07089431 ArXiv 1807.06215 article

: “On the Haagerup and Kazhdan properties of R. Thompson’s groups,” J. Group Theory 22 : 5 (2019), pp. 795–807. MR 4000616 Zbl 07104291 ArXiv 1805.02177 article

: “