return

Celebratio Mathematica

Wolfgang Haken

Complete Bibliography

[1] W. Haken: Ein to­po­lo­gis­cher Satz über die Ein­bettung \( (d{-}1) \)-di­men­sionaler Man­nig­faltigkeiten in \( d \)-di­men­sionale Man­nig­faltigkeiten [A to­po­lo­gic­al the­or­em about the em­bed­ding of \( (d{-}1) \)-di­men­sion­al man­i­folds in \( d \)-di­men­sion­al man­i­folds]. Ph.D. thesis, Uni­versity of Kiel, 1955. Ad­vised by K.-H. Weise. phdthesis

[2] W. Haken: “The­or­ie der Nor­malflächen: Ein Iso­topiekri­teri­um für den Kre­isk­noten” [The­ory of nor­mal sur­faces: An iso­top­ic cri­terion for the cir­cu­lar knot], Acta Math. 105 : 3–​4 (1961), pp. 245–​375. MR 141106 Zbl 0100.​19402 article

[3] W. Haken: “Ein Ver­fahren zur Auf­spal­tung ein­er 3-Man­nig­faltigkeit in ir­re­duz­ib­le 3-Man­nig­faltigkeiten” [A meth­od for split­ting a 3-man­i­fold in­to ir­re­du­cible 3-man­i­folds], Math. Z. 76 : 1 (December 1961), pp. 427–​467. MR 141108 Zbl 0111.​18803 article

[4] W. Haken: “Über das Homöomorphiep­rob­lem der 3-Man­nig­faltigkeiten, I” [On the ho­mo­morph­ism prob­lem for 3-man­i­folds, I], Math. Z. 80 : 1 (December 1962), pp. 89–​120. MR 160196 Zbl 0106.​16605 article

[5] W. Haken: “On ho­mo­topy 3-spheres,” Ill. J. Math. 10 : 1 (1966), pp. 159–​178. Re­prin­ted in Ill. J. Math. 60:1 (2016). MR 219072 Zbl 0131.​20704 article

[6] W. Haken: “Trivi­al loops in ho­mo­topy 3-spheres,” Ill. J. Math. 11 : 4 (1967), pp. 547–​554. MR 219073 Zbl 0153.​25703 article

[7] W. Haken: “Al­geb­ra­ic­ally trivi­al de­com­pos­i­tions of ho­mo­topy 3-spheres,” Ill. J. Math. 12 : 1 (1968), pp. 133–​170. MR 222902 Zbl 0171.​22302 article

[8] W. Haken: “Some res­ults on sur­faces in 3-man­i­folds,” pp. 39–​98 in Stud­ies in mod­ern to­po­logy. Edi­ted by P. J. Hilton. MAA Stud­ies in Math­em­at­ics 5. Pren­tice-Hall (Engle­wood Cliffs, NJ), 1968. MR 224071 Zbl 0194.​24902 incollection

[9] W. W. Boone, W. Haken, and V. Poénaru: “On re­curs­ively un­solv­able prob­lems in to­po­logy and their clas­si­fic­a­tion,” pp. 37–​74 in Con­tri­bu­tions to math­em­at­ic­al lo­gic (Han­nov­er, Ger­many, Au­gust 1966). Edi­ted by H. A. Schmidt, K. Schütte, and H.-J. Thiele. Stud­ies in Lo­gic and the Found­a­tions of Math­em­at­ics 50. North-Hol­land (Am­s­ter­dam), 1968. MR 263090 Zbl 0246.​57015 incollection

[10] W. Haken: “Vari­ous as­pects of the three-di­men­sion­al Poin­caré prob­lem,” pp. 140–​152 in To­po­logy of man­i­folds (Athens, GA, 11–22 Au­gust 1969). Edi­ted by J. C. Cantrell and C. H. Ed­wards. Markham (Chica­go), 1970. MR 273624 Zbl 0298.​55002 incollection

[11] W. Haken: “An ex­ist­ence the­or­em for planar maps,” J. Comb. The­ory Ser. B 14 : 2 (April 1973), pp. 180–​184. MR 314675 Zbl 0259.​05103 article

[12] W. Haken: “Con­nec­tions between to­po­lo­gic­al and group the­or­et­ic­al de­cision prob­lems,” pp. 427–​441 in Word prob­lems: De­cision prob­lems and the Burn­side prob­lem in group the­ory (Irvine, CA, Septem­ber 1969). Edi­ted by W. W. Boone, R. C. Lyn­don, and F. B. Can­nonito. Stud­ies in Lo­gic and the Found­a­tions of Math­em­at­ics 71. North-Hol­land (Am­s­ter­dam), 1973. Con­fer­ence ded­ic­ated to Hanna Neu­mann. MR 397736 Zbl 0265.​02033 incollection

[13] W. Haken: “Some spe­cial present­a­tions of ho­mo­topy 3-spheres,” pp. 97–​107 in To­po­logy con­fer­ence (Blacks­burg, VA, 22–24 March 1973). Edi­ted by H. F. Dick­man, Jr. and P. Fletch­er. Lec­ture Notes in Math­em­at­ics 375. Spring­er (Ber­lin), 1974. MR 356054 Zbl 0289.​55003 incollection

[14] K. Ap­pel and W. Haken: “The ex­ist­ence of un­avoid­able sets of geo­graph­ic­ally good con­fig­ur­a­tions,” Ill. J. Math. 20 : 2 (1976), pp. 218–​297. MR 392641 Zbl 0322.​05141 article

[15] K. Ap­pel and W. Haken: “Every planar map is four col­or­able,” Bull. Am. Math. Soc. 82 : 5 (September 1976), pp. 711–​712. MR 424602 Zbl 0331.​05106 article

[16] K. Ap­pel and W. Haken: “A proof of the four col­or the­or­em,” Dis­crete Math. 16 : 2 (October 1976), pp. 179–​180. MR 543791 Zbl 0339.​05109 article

[17] K. Ap­pel and W. Haken: “Every planar map is four col­or­able,” J. Re­cre­at. Math. 9 : 3 (1976–1977), pp. 161–​169. MR 543797 Zbl 0357.​05043 article

[18] K. Ap­pel and W. Haken: “Every planar map is four col­or­able, I: Dis­char­ging,” Ill. J. Math. 21 : 3 (1977), pp. 429–​490. A mi­crofiche sup­ple­ment to both parts was pub­lished in Ill. J. Math. 21:3 (1977). MR 543792 Zbl 0387.​05009 article

[19] K. Ap­pel, W. Haken, and J. Koch: “Every planar map is four col­or­able, II: Re­du­cib­il­ity,” Ill. J. Math. 21 : 3 (1977), pp. 491–​567. A mi­crofiche sup­ple­ment to both parts was pub­lished in Ill. J. Math. 21:3 (1977). MR 543793 Zbl 0387.​05010 article

[20] K. Ap­pel and W. Haken: “The class check lists cor­res­pond­ing to the sup­ple­ment to ‘Every planar map is four col­or­able. Part I and Part II’,” Ill. J. Math. 21 : 3 (1977), pp. C1–​C210. Mi­crofiche sup­ple­ment. Ex­tra ma­ter­i­al to ac­com­pany the sup­ple­ment pub­lished in Ill. J. Math. 21:3 (1977). MR 543794 article

[21] K. Ap­pel and W. Haken: “Mi­crofiche sup­ple­ment to ‘Every planar map is four col­or­able. Part I and Part II’,” Ill. J. Math. 21 : 3 (1977), pp. 1–​251. Mi­crofiche sup­ple­ment. Sup­ple­ment to the two part art­icle pub­lished as Ill. J. Math. 21:3 (1977) and Ill. J. Math. 21:3 (1977). A class check list was also pub­lished as Ill. J. Math. 21:3 (1977). MR 543795 article

[22] K. Ap­pel and W. Haken: “The solu­tion of the four-col­or-map prob­lem,” Sci. Amer. 237 : 4 (October 1977), pp. 108–​121. MR 543796 article

[23] W. Haken: “An at­tempt to un­der­stand the four col­or prob­lem,” J. Graph The­ory 1 : 3 (1977), pp. 193–​206. MR 543799 Zbl 0387.​05011 article

[24] K. Ap­pel and W. Haken: “The four-col­or prob­lem,” pp. 153–​180 in Math­em­at­ics today: Twelve in­form­al es­says. Edi­ted by L. A. Steen. Spring­er (Ber­lin), 1978. incollection

[25] K. Ap­pel and W. Haken: “An un­avoid­able set of con­fig­ur­a­tions in planar tri­an­gu­la­tions,” J. Comb. The­ory, Ser. B 26 : 1 (February 1979), pp. 1–​21. MR 525813 Zbl 0407.​05035 article

[26] K. Ap­pel, W. Haken, and J. May­er: “Tri­an­gu­la­tion à \( v_5 \) séparés dans le problème des quatre couleurs” [Sep­ar­ated tri­an­gu­la­tion of \( v_5 \) in the four-col­or prob­lem], J. Comb. The­ory, Ser. B 27 : 2 (October 1979), pp. 130–​150. MR 546856 Zbl 0344.​05113 article

[27] K. I. Ap­pel: “Un nou­veau type de preuve mathématique. Le théorème des quatre couleurs, II” [A new type of math­em­at­ic­al proof: The four-col­or the­or­em, II], Publ. Dép. Math., Ly­on 16 : 3–​4 (1979), pp. 81–​88. In col­lab­or­a­tion with W. Haken. MR 602656 Zbl 0455.​05031 article

[28] W. Haken: “Com­bin­at­or­i­al as­pects of some math­em­at­ic­al prob­lems,” pp. 953–​961 in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians (Hel­sinki, 15–23 Au­gust 1978), vol. 2. Edi­ted by O. Le­hto. Uni­versity of Hel­sinki, 1980. MR 562712 Zbl 0424.​05030 incollection

[29] W. Haken: “Con­tro­ver­sial ques­tions about math­em­at­ics,” Math. In­tell. 3 : 3 (September 1981), pp. 117–​120. MR 642129 Zbl 0483.​01017 article

[30] K. Ap­pel and W. Haken: “The four col­or proof suf­fices,” Math. In­tell. 8 : 1 (1986), pp. 10–​20. MR 823216 Zbl 0578.​05022 article

[31] K. Ap­pel and W. Haken: Every planar map is four col­or­able. Con­tem­por­ary Math­em­at­ics 98. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1989. With the col­lab­or­a­tion of J. Koch. MR 1025335 Zbl 0681.​05027 book

[32] W. Haken: “On ho­mo­topy 3-spheres,” Ill. J. Math. 60 : 1 (2016), pp. xi–​xxxvi. The fi­nal six pages are un­numbered. Re­print of art­icle pub­lished in Ill. J. Math. 10:1 (1966). MR 3665169 Zbl 1370.​57003 article