return

Celebratio Mathematica

G. Peter Scott

Complete Works

[1] G. P. Scott: “Ho­mo­topy links,” Abh. Math. Sem. Univ. Ham­burg 32 : 3–​4 (September 1968), pp. 186–​190. MR 236912 Zbl 0165.​57102 article

[2] G. P. Scott: Some prob­lems in to­po­logy. Ph.D. thesis, Uni­versity of War­wick, July 1968. Ad­vised by B. J. Sander­son. phdthesis

[3] G. P. Scott: “The space of homeo­morph­isms of a 2-man­i­fold,” To­po­logy 9 : 1 (February 1970), pp. 97–​109. MR 264676 Zbl 0174.​26305 article

[4] G. P. Scott: “Braid groups and the group of homeo­morph­isms of a sur­face,” Proc. Cam­bridge Philos. Soc. 68 : 3 (November 1970), pp. 605–​617. MR 268889 Zbl 0203.​56302 article

[5] G. P. Scott: “A note on piece­wise-lin­ear im­mer­sions,” Quart. J. Math. Ox­ford Ser. (2) 21 : 3 (September 1970), pp. 257–​263. MR 271953 Zbl 0204.​56203 article

[6] G. P. Scott: “A note on the ho­mo­topy type of \( PL_2 \),” Proc. Cam­bridge Philos. Soc. 69 : 2 (March 1971), pp. 257–​258. MR 271954 Zbl 0212.​28302 article

[7] G. P. Scott: “On suf­fi­ciently large 3-man­i­folds,” Quart. J. Math. Ox­ford Ser. (2) 23 : 2 (June 1972), pp. 159–​172. A cor­rec­tion to this art­icle was pub­lished in Quart. J. Math. Ox­ford Ser. 24:1 (1973). MR 383414 Zbl 0234.​57001 article

[8] D. B. A. Ep­stein and G. P. Scott: “A 3-man­i­fold which is not a product,” Proc. Cam­bridge Philos. Soc. 74 : 3 (November 1973), pp. 445–​448. MR 326736 Zbl 0277.​57001 article

[9] G. P. Scott: “Com­pact sub­man­i­folds of 3-man­i­folds,” J. Lond. Math. Soc. (2) 7 : 2 (November 1973), pp. 246–​250. MR 326737 Zbl 0266.​57001 article

[10] G. P. Scott: “Fi­nitely gen­er­ated 3-man­i­fold groups are fi­nitely presen­ted,” J. Lon­don Math. Soc. (2) 6 : 3 (May 1973), pp. 437–​440. MR 380763 Zbl 0254.​57003 article

[11] G. P. Scott: “Cor­rec­tion: ‘On suf­fi­ciently large 3-man­i­folds’,” Q. J. Math., Oxf. II. Ser. 24 : 1 (1973), pp. 527–​529. Cor­rec­tion to an art­icle pub­lished in Quart. J. Math. Ox­ford Ser. 23:2 (1972). Zbl 0272.​57003 article

[12] P. Scott: An in­tro­duc­tion to 3-man­i­folds. Lec­ture notes 11, De­part­ment of Math­em­at­ics, Uni­versity of Mary­land (Col­lege Park, MD), 1 June 1974. MR 413106 techreport

[13] G. P. Scott: “An em­bed­ding the­or­em for groups with a free sub­group of fi­nite in­dex,” Bull. Lon­don Math. Soc. 6 : 3 (November 1974), pp. 304–​306. MR 357614 Zbl 0288.​20043 article

[14] J. L. Dyer and G. P. Scott: “Peri­od­ic auto­morph­isms of free groups,” Comm. Al­gebra 3 : 3 (1975), pp. 195–​201. MR 369529 Zbl 0304.​20029 article

[15] P. Scott: “Nor­mal sub­groups in 3-man­i­fold groups,” J. Lon­don Math. Soc. (2) 13 : 1 (May 1976), pp. 5–​12. MR 402751 Zbl 0321.​57001 article

[16] P. Scott: “Fun­da­ment­al groups of non-com­pact 3-man­i­folds,” Proc. Lon­don Math. Soc. (3) 34 : 2 (1977), pp. 303–​326. MR 448333 Zbl 0341.​57001 article

[17] P. Scott: “Ends of pairs of groups,” J. Pure Ap­pl. Al­gebra 11 : 1–​3 (December 1977), pp. 179–​198. MR 487104 article

[18] P. Scott: “Sub­groups of sur­face groups are al­most geo­met­ric,” J. Lon­don Math. Soc. (2) 17 : 3 (June 1978), pp. 555–​565. A cor­rec­tion to this art­icle was pub­lished in J. Lon­don Math. Soc. 32:2 (1985). MR 494062 Zbl 0412.​57006 article

[19] P. Scott and T. Wall: “To­po­lo­gic­al meth­ods in group the­ory,” pp. 137–​203 in Ho­mo­lo­gic­al group the­ory (Durham, UK, Septem­ber 1977). Edi­ted by C. T. C. Wall. Lon­don Math­em­at­ic­al So­ci­ety Lec­ture Note Series 36. Cam­bridge Uni­versity Press, 1979. MR 564422 Zbl 0423.​20023 incollection

[20] P. Scott: “A new proof of the an­nu­lus and tor­us the­or­ems,” Am. J. Math. 102 : 2 (1980), pp. 241–​277. MR 564473 Zbl 0439.​57004 article

[21] P. Scott: “The clas­si­fic­a­tion of com­pact 3-man­i­folds,” pp. 3–​7 in Low-di­men­sion­al to­po­logy (Bangor, UK, 2–5 Ju­ly 1979). Edi­ted by R. Brown and T. L. Thick­stun. Lon­don Math­em­at­ic­al So­ci­ety Lec­ture Note Series 48. Cam­bridge Uni­versity Press, 1982. MR 662423 Zbl 0483.​57001 incollection

[22] article M. Freed­man, J. Hass, and P. Scott: “Closed geodesics on sur­faces,” Bull. Lon­don Math. Soc. 14 : 5 (1982), pp. 385–​391. MR 0671777 Zbl 0476.​53026

[23] P. Scott: “There are no fake Seifert fibre spaces with in­fin­ite \( \pi_1 \),” Ann. Math. (2) 117 : 1 (1983), pp. 35–​70. MR 683801 Zbl 0516.​57006 article

[24] article M. Freed­man, J. Hass, and P. Scott: “Least area in­com­press­ible sur­faces in 3-man­i­folds,” In­vent. Math. 71 : 3 (1983), pp. 609–​642. MR 0695910 Zbl 0482.​53045

[25] P. Scott: “The geo­met­ries of 3-man­i­folds,” Bull. Lon­don Math. Soc. 15 : 5 (September 1983), pp. 401–​487. A Rus­si­an trans­la­tion was pub­lished as a book in 1986. MR 705527 Zbl 0561.​57001 article

[26] P. Scott: “Strong an­nu­lus and tor­us the­or­ems and the en­clos­ing prop­erty of char­ac­ter­ist­ic sub­man­i­folds of 3-man­i­folds,” Quart. J. Math. Ox­ford Ser. (2) 35 : 4 (December 1984), pp. 485–​506. MR 767777 Zbl 0589.​57006 article

[27] M. Brin, K. Jo­hann­son, and P. Scott: “Totally peri­pher­al 3-man­i­folds,” Pac. J. Math. 118 : 1 (1985), pp. 37–​51. MR 783014 Zbl 0525.​57010 article

[28] J. Hass and P. Scott: “In­ter­sec­tions of curves on sur­faces,” Is­rael J. Math. 51 : 1–​2 (1985), pp. 90–​120. MR 804478 Zbl 0576.​57009 article

[29] P. Scott: “Cor­rec­tion to: ‘Sub­groups of sur­face groups are al­most geo­met­ric’,” J. Lon­don Math. Soc. (2) 32 : 2 (1985), pp. 217–​220. Cor­rec­tion to an art­icle pub­lished in J. Lon­don Math. Soc. 17:3 (1978). MR 811778 Zbl 0581.​57005 article

[30] P. Scott: “Ho­mo­topy im­plies iso­topy for some Seifert fibre spaces,” To­po­logy 24 : 3 (1985), pp. 341–​351. MR 815484 Zbl 0576.​57012 article

[31] W. H. Meeks, III and P. Scott: “Fi­nite group ac­tions on 3-man­i­folds,” In­vent. Math. 86 : 2 (1986), pp. 287–​346. MR 856847 Zbl 0626.​57006 article

[32] P. Scott: Geo­met­rii na trekh­mernykh mno­goo­braziyakh [The geo­met­ries of 3-man­i­folds]. Matem­atika. No­voe v Za­rubezh­noj 39. Mir (Mo­scow), 1986. Rus­si­an trans­la­tion of an art­icle pub­lished in Bull. Lon­don Math. Soc. 15:5 (1983). Zbl 0662.​57001 book

[33]J. Hass, H. Ru­bin­stein, and P. Scott: “Cov­er­ing spaces of 3-man­i­folds,” Bull. Am. Math. Soc., New Ser. 16 : 1 (January 1987), pp. 117–​119. MR 866028 Zbl 0624.​57016 article

[34] R. Gul­li­v­er and P. Scott: “Least area sur­faces can have ex­cess triple points,” To­po­logy 26 : 3 (1987), pp. 345–​359. MR 899054 Zbl 0636.​53011 article

[35] J. Hass and P. Scott: “The ex­ist­ence of least area sur­faces in 3-man­i­folds,” Trans. Am. Math. Soc. 310 : 1 (November 1988), pp. 87–​114. MR 965747 Zbl 0711.​53008 article

[36]J. Hass, H. Ru­bin­stein, and P. Scott: “Com­pac­ti­fy­ing cov­er­ings of closed 3-man­i­folds,” J. Dif­fer. Geom. 30 : 3 (1989), pp. 817–​832. MR 1021374 Zbl 0693.​57011 article

[37] P. Scott and T. Tuck­er: “Some ex­amples of exot­ic non­com­pact 3-man­i­folds,” Quart. J. Math. Ox­ford Ser. (2) 40 : 160 (1989), pp. 481–​499. MR 1033220 Zbl 0692.​57006 article

[38] G. P. Scott and G. A. Swarup: “Geo­met­ric fi­nite­ness of cer­tain Klein­i­an groups,” Proc. Am. Math. Soc. 109 : 3 (1990), pp. 765–​768. MR 1013981 Zbl 0699.​30040 article

[39] G. P. Scott and G. A. Swarup: “Least area tori in 3-man­i­folds,” Proc. Am. Math. Soc. 116 : 4 (December 1992), pp. 1143–​1151. MR 1131040 Zbl 0818.​57010 article

[40] J. Hass and P. Scott: “Ho­mo­topy equi­val­ence and homeo­morph­ism of 3-man­i­folds,” To­po­logy 31 : 3 (July 1992), pp. 493–​517. MR 1174254 Zbl 0771.​57007 article

[41] J. Hass and P. Scott: “Curve flows on sur­faces and in­ter­sec­tions of curves,” pp. 415–​421 in Dif­fer­en­tial geo­metry (Los Angeles, 8–28 Ju­ly 1990), Part 3: Rieman­ni­an geo­metry. Edi­ted by R. Greene and S.-T. Yau. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 54. Amer­er­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1993. MR 1216633 Zbl 0793.​53006 incollection

[42] J. Hass and P. Scott: “Ho­mo­topy and iso­topy in di­men­sion three,” Com­ment. Math. Helv. 68 : 3 (1993), pp. 341–​364. MR 1236759 Zbl 0805.​57008 article

[43] L. Har­ris and P. Scott: “Find­ing ir­re­du­cible sub­man­i­folds of 3-man­i­folds,” Bull. Lon­don Math. Soc. 25 : 6 (1993), pp. 591–​597. MR 1245087 Zbl 0814.​57011 article

[44] J. Hass and P. Scott: “Short­en­ing curves on sur­faces,” To­po­logy 33 : 1 (January 1994), pp. 25–​43. MR 1259513 Zbl 0798.​58019 article

[45] L. Har­ris and P. Scott: “Non-com­pact totally peri­pher­al 3-man­i­folds,” Pac. J. Math. 167 : 1 (1995), pp. 119–​127. MR 1318166 Zbl 0823.​57014 article

[46] L. Har­ris and P. Scott: “The unique­ness of com­pact cores for 3-man­i­folds,” Pac. J. Math. 172 : 1 (1996), pp. 139–​150. MR 1379290 Zbl 0865.​57016 article

[47] P. Scott: “The sym­metry of in­ter­sec­tion num­bers in group the­ory,” Geom. To­pol. 2 (1998), pp. 11–​29. A cor­rec­tion to this art­icle was pub­lished in Geom. To­pol. 2 (1998). MR 1608688 Zbl 0897.​20029 ArXiv math/​9712212 article

[48] P. Scott: “Cor­rec­tion to: ‘The sym­metry of in­ter­sec­tion num­bers in group the­ory’,” Geom. To­pol. 2 (1998), pp. 333–​335. Cor­rec­tion to an art­icle pub­lished in Geom. To­pol. 2 (1998). MR 1639541 Zbl 1382.​20048 article

[49] C. Adams, J. Hass, and P. Scott: “Simple closed geodesics in hy­per­bol­ic 3-man­i­folds,” Bull. Lon­don Math. Soc. 31 : 1 (January 1999), pp. 81–​86. MR 1650997 Zbl 0955.​53025 ArXiv math/​9801071 article

[50] J. Hass and P. Scott: “Con­fig­ur­a­tions of curves and geodesics on sur­faces,” pp. 201–​213 in Pro­ceed­ings of the Kirby­fest (Berke­ley, CA, 22–26 June 1998). Edi­ted by J. Hass and M. G. Schar­le­mann. Geo­metry & To­po­logy Mono­graphs 2. Geo­metry & To­po­logy Pub­lic­a­tions (Cov­entry, UK), 1999. MR 1734409 Zbl 1035.​53053 ArXiv math/​9903130 incollection

[51] P. Scott and G. A. Swarup: “Split­tings of groups and in­ter­sec­tion num­bers,” Geom. To­pol. 4 (2000), pp. 179–​218. MR 1772808 Zbl 0983.​20024 ArXiv math/​9906004 article

[52] B. Leeb and P. Scott: “A geo­met­ric char­ac­ter­ist­ic split­ting in all di­men­sions,” Com­ment. Math. Helv. 75 : 2 (2000), pp. 201–​215. MR 1774701 Zbl 0979.​53037 ArXiv math/​9801015 article

[53] G. P. Scott and G. A. Swarup: “An al­geb­ra­ic an­nu­lus the­or­em,” Pac. J. Math. 196 : 2 (2000), pp. 461–​506. MR 1800588 Zbl 0984.​20028 ArXiv math/​9608206 article

[54] P. Scott and G. A. Swarup: “Ca­non­ic­al split­tings of groups and 3-man­i­folds,” Trans. Am. Math. Soc. 353 : 12 (2001), pp. 4973–​5001. MR 1852090 Zbl 0981.​57002 ArXiv math/​0107232 article

[55] P. Scott and G. A. Swarup: “Reg­u­lar neigh­bour­hoods and ca­non­ic­al de­com­pos­i­tions for groups,” Elec­tron. Res. An­nounc. Am. Math. Soc. 8 : 3 (2002), pp. 20–​28. A much longer mono­graph with the same title was pub­lished in 2003. MR 1928498 Zbl 1057.​20032 article

[56] P. Scott and G. A. Swarup: Reg­u­lar neigh­bour­hoods and ca­non­ic­al de­com­pos­i­tions for groups. Astérisque 289. 2003. A short art­icle with the same title as this mono­graph was pub­lished in Elec­tron. Res. An­nounc. Amer. Math. Soc. 8:3 (2002). MR 2032389 Zbl 1036.​20028 ArXiv math/​0110210 book

[57] G. Niblo, M. Sageev, P. Scott, and G. A. Swarup: “Min­im­al cu­bings,” Int. J. Al­gebra Com­put. 15 : 2 (2005), pp. 343–​366. MR 2142089 Zbl 1085.​20026 ArXiv math/​0401133 article

[58] M. Boileau, K. Jo­hann­son, and P. Scott: “Low-di­men­sion­al man­i­folds,” Ober­wolfach Rep. 2 : 4 (2005), pp. 2519–​2569. Re­port 45/2005. Zbl 1110.​57300 article

[59] P. Scott and G. A. Swarup: An­nu­lus-tor­us de­com­pos­i­tions for Poin­caré du­al­ity pairs. Pre­print, February 2008. Ded­ic­ated to Terry Wall on his 70th birth­day. techreport

[60] M. Mj, P. Scott, and G. Swarup: “Split­tings and \( C \)-com­plexes,” Al­gebr. Geom. To­pol. 9 : 4 (2009), pp. 1971–​1986. MR 2550463 Zbl 1225.​20035 ArXiv 0906.​1149 article

[61] P. Scott and H. Short: “The homeo­morph­ism prob­lem for closed 3-man­i­folds,” Al­gebr. Geom. To­pol. 14 : 4 (2014), pp. 2431–​2444. MR 3331689 Zbl 1311.​57025 ArXiv 1211.​0264 article

[62] J. Hass and P. Scott: “Sim­pli­cial en­ergy and sim­pli­cial har­mon­ic maps,” Asi­an J. Math. 19 : 4 (2015), pp. 593–​636. MR 3423736 Zbl 1332.​57024 ArXiv 1206.​2574 article

[63] P. Scott and G. A. Swarup: Ca­non­ic­al de­com­pos­i­tions for Poin­caré du­al­ity pairs. Pre­print, September 2018. ArXiv math/​0703890 techreport

[64] M. Neu­mann-Coto and P. Scott: “A prop­erty of closed geodesics on hy­per­bol­ic sur­faces,” Groups Geom. Dyn 17 : 1 (2023), pp. 1–​33. MR 4563327 Zbl 1515.​53039 article