return

Celebratio Mathematica

Karen Uhlenbeck

Complete Bibliography

[1] K. K. Uh­len­beck: The cal­cu­lus of vari­ations and glob­al ana­lys­is. Ph.D. thesis, Bran­de­is Uni­versity, 1968. Ad­vised by R. S. Pal­ais. MR 2617502 phdthesis

[2] K. Uh­len­beck: “Morse the­ory on Banach man­i­folds,” Bull. Am. Math. Soc. 76 : 1 (1970), pp. 105–​106. MR 253381 Zbl 0199.​43102 article

[3] K. Uh­len­beck: “In­teg­rals with nonde­gen­er­ate crit­ic­al points,” Bull. Am. Math. Soc. 76 : 1 (1970), pp. 125–​128. MR 254873 Zbl 0198.​43403 article

[4] K. Uh­len­beck: “Har­mon­ic maps: A dir­ect meth­od in the cal­cu­lus of vari­ations,” Bull. Am. Math. Soc. 76 : 5 (1970), pp. 1082–​1087. MR 264714 Zbl 0208.​12802 article

[5] K. Uh­len­beck: “Reg­u­lar­ity the­or­ems for solu­tions of el­lipt­ic poly­no­mi­al equa­tions,” pp. 225–​231 in Glob­al ana­lys­is (Berke­ley, CA, 1–26 Ju­ly 1968). Edi­ted by S.-S. Chern and S. Smale. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 16. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence), 1970. MR 413168 Zbl 0216.​38202 incollection

[6] K. Uh­len­beck: “Ei­gen­func­tions of Laplace op­er­at­ors,” Bull. Am. Math. Soc. 78 : 6 (November 1972), pp. 1073–​1076. MR 319226 Zbl 0275.​58003 article

[7] K. Uh­len­beck: “Bounded sets and Finsler struc­tures for man­i­folds of maps,” J. Diff. Geom. 7 : 3–​4 (1972), pp. 585–​595. MR 334273 Zbl 0307.​58007 article

[8] K. Uh­len­beck: “Morse the­ory on Banach man­i­folds,” J. Funct. Anal. 10 : 4 (August 1972), pp. 430–​445. MR 377979 Zbl 0241.​58002 article

[9] K. Uh­len­beck: “A new proof of a reg­u­lar­ity the­or­em for el­lipt­ic sys­tems,” Proc. Am. Math. Soc. 37 : 1 (January 1973), pp. 315–​316. MR 315282 Zbl 0249.​35026 article

[10] K. Uh­len­beck: “The Morse in­dex the­or­em in Hil­bert space,” J. Diff. Geom. 8 : 4 (1973), pp. 555–​564. MR 350778 Zbl 0277.​58002 article

[11] K. Uh­len­beck: “Lorentz geo­metry,” pp. 235–​242 in Glob­al ana­lys­is and its ap­plic­a­tions (Trieste, Italy, 4 Ju­ly–25 Au­gust 1972), vol. 3. IAEA Pro­ceed­ings Series. In­ter­na­tion­al Atom­ic En­ergy Agency (Vi­enna), 1974. MR 443820 Zbl 0303.​53027 incollection

[12] K. Uh­len­beck: “A Morse the­ory for geodesics on a Lorentz man­i­fold,” To­po­logy 14 : 1 (March 1975), pp. 69–​90. MR 383461 Zbl 0323.​58010 article

[13] K. Uh­len­beck: “Gen­er­ic prop­er­ties of ei­gen­func­tions,” Am. J. Math. 98 : 4 (1976), pp. 1059–​1078. MR 464332 Zbl 0355.​58017 article

[14] J. Sacks and K. Uh­len­beck: “The ex­ist­ence of min­im­al im­mer­sions of two-spheres,” Bull. Am. Math. Soc. 83 : 5 (1977), pp. 1033–​1036. A re­lated art­icle with al­most the same title was pub­lished in Ann. Math. 113:1 (1981). MR 448408 Zbl 0375.​49016 article

[15] K. Uh­len­beck: “Reg­u­lar­ity for a class of non-lin­ear el­lipt­ic sys­tems,” Acta Math. 138 : 3–​4 (1977), pp. 219–​240. MR 474389 Zbl 0372.​35030 article

[16] K. K. Uh­len­beck: “Re­mov­able sin­gu­lar­it­ies in Yang–Mills fields,” Bull. Am. Math. Soc. (N.S.) 1 : 3 (May 1979), pp. 579–​581. A re­lated art­icle with the same title was pub­lished in Comm. Math. Phys. 83:1 (1982). MR 526970 Zbl 0416.​35026 article

[17] J. Sacks and K. Uh­len­beck: “The ex­ist­ence of min­im­al im­mer­sions of 2-spheres,” Ann. Math. (2) 113 : 1 (January 1981), pp. 1–​24. A re­lated art­icle with al­most the same title was pub­lished in Bull. Am. Math. Soc. 83:5 (1977). MR 604040 Zbl 0462.​58014 article

[18] K. Uh­len­beck: “Morse the­ory by per­turb­a­tion meth­ods with ap­plic­a­tions to har­mon­ic maps,” Trans. Am. Math. Soc. 267 : 2 (1981), pp. 569–​583. MR 626490 Zbl 0509.​58012 article

[19] K. K. Uh­len­beck: “Vari­ation­al prob­lems for gauge fields,” pp. 455–​464 in Sem­in­ar on dif­fer­en­tial geo­metry. Edi­ted by S.-T. Yau. An­nals of Math­em­at­ics Stud­ies 102. Prin­ceton Uni­versity Press and Uni­versity of Tokyo Press, 1982. A later art­icle with the same title was pub­lished in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians (1984). MR 645753 Zbl 0481.​58016 incollection

[20] K. K. Uh­len­beck: “Re­mov­able sin­gu­lar­it­ies in Yang–Mills fields,” Comm. Math. Phys. 83 : 1 (February 1982), pp. 11–​29. A re­lated art­icle with the same title was pub­lished in Bull. Am. Math. Soc. 1:3 (1979). MR 648355 Zbl 0491.​58032 article

[21] K. K. Uh­len­beck: “Con­nec­tions with \( L^p \) bounds on curvature,” Comm. Math. Phys. 83 : 1 (February 1982), pp. 31–​42. MR 648356 Zbl 0499.​58019 article

[22] J. Sacks and K. Uh­len­beck: “Min­im­al im­mer­sions of closed Riemann sur­faces,” Trans. Am. Math. Soc. 271 : 2 (1982), pp. 639–​652. MR 654854 Zbl 0527.​58008 article

[23] R. Schoen and K. Uh­len­beck: “A reg­u­lar­ity the­ory for har­mon­ic maps,” J. Diff. Geom. 17 : 2 (1982), pp. 307–​335. A cor­rec­tion to this art­icle was pub­lished in J. Diff. Geom. 18:2 (1983). MR 664498 Zbl 0521.​58021 article

[24] K. K. Uh­len­beck: “Equivari­ant har­mon­ic maps in­to spheres,” pp. 146–​158 in Har­mon­ic maps (New Or­leans, 15–19 Decem­ber 1980). Edi­ted by U. R. J. Knill, M. Kalka, and H. C. J. Sealey. Lec­ture Notes in Math­em­at­ics 949. Spring­er (New York), 1982. MR 673590 Zbl 0505.​58015 incollection

[25] R. Schoen and K. Uh­len­beck: “Bound­ary reg­u­lar­ity and the Di­rich­let prob­lem for har­mon­ic maps,” J. Diff. Geom. 18 : 2 (1983), pp. 253–​268. MR 710054 Zbl 0547.​58020 article

[26] R. Schoen and K. Uh­len­beck: “Cor­rec­tion to: ‘A reg­u­lar­ity the­ory for har­mon­ic maps’,” J. Diff. Geom. 18 : 2 (1983), pp. 329. Cor­rec­tion to an art­icle pub­lished in J. Diff. Geom. 17:2 (1982). MR 710058 article

[27] K. Uh­len­beck: “Con­ser­va­tion laws and their ap­plic­a­tion in glob­al dif­fer­en­tial geo­metry,” pp. 103–​115 in Emmy No­eth­er in Bryn Mawr (Bryn Mawr, PA, 17–19 March 1982). Edi­ted by B. Srinivas­an and J. Sally. Spring­er (New York), 1983. MR 713794 Zbl 0524.​53049 incollection

[28] K. K. Uh­len­beck: “Closed min­im­al sur­faces in hy­per­bol­ic 3-man­i­folds,” pp. 147–​168 in Sem­in­ar on min­im­al sub­man­i­folds. Edi­ted by E. Bom­bieri. An­nals of Math­em­at­ics Stud­ies 103. Prin­ceton Uni­versity Press, 1983. MR 795233 Zbl 0529.​53007 incollection

[29] K. K. Uh­len­beck: “Min­im­al spheres and oth­er con­form­al vari­ation­al prob­lems,” pp. 169–​176 in Sem­in­ar on min­im­al sub­man­i­folds. Edi­ted by E. Bom­bieri. An­nals of Math­em­at­ics Stud­ies 103. Prin­ceton Uni­versity Press, 1983. MR 795234 Zbl 0535.​53050 incollection

[30] R. Schoen and K. Uh­len­beck: “Reg­u­lar­ity of min­im­iz­ing har­mon­ic maps in­to the sphere,” In­vent. Math. 78 : 1 (February 1984), pp. 89–​100. MR 762354 Zbl 0555.​58011 article

[31] K. K. Uh­len­beck: “Vari­ation­al prob­lems for gauge fields,” pp. 585–​591 in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians, vol. 2. Edi­ted by Z. Ciesiel­ski and C. Olech. PWN (Warsaw), 1984. An earli­er art­icle with the same title was pub­lished in Sem­in­ar on dif­fer­en­tial geo­metry (1982). MR 804715 Zbl 0562.​53059 incollection

[32] K. K. Uh­len­beck: “Vari­ation­al prob­lems in nona­beli­an gauge the­or­ies,” pp. 443–​471 in Pro­ceed­ings of the 1981 Shang­hai sym­posi­um on dif­fer­en­tial geo­metry and dif­fer­en­tial equa­tions (Shang­hai and He­fei, China, 20 Au­gust–13 Septem­ber 1981). Edi­ted by C. Gu. Sci­ence Press, 1984. MR 825291 Zbl 0697.​58016 incollection

[33] K. K. Uh­len­beck: “The Chern classes of So­bolev con­nec­tions,” Comm. Math. Phys. 101 : 4 (December 1985), pp. 449–​457. MR 815194 Zbl 0586.​53018 article

[34] K. Uh­len­beck and S.-T. Yau: “On the ex­ist­ence of Her­mitian-Yang–Mills con­nec­tions in stable vec­tor bundles,” pp. S257–​S293 in Pro­ceed­ings of the Sym­posi­um on Fron­ti­ers of the Math­em­at­ic­al Sci­ences: 1985 (New York, Oc­to­ber 1985), published as Comm. Pure Ap­pl. Math. 39 : Supplement S1. Issue edi­ted by C. Mor­awetz. J. Wiley and Sons (New York), 1986. A note on this art­icle was pub­lished in Com­mun. Pure Ap­pl. Math. 42:5 (1989). MR 861491 Zbl 0615.​58045 incollection

[35] D. Frid and K. Ulenbek: In­stan­tony i chet­yrekh­mernye mno­goo­braziya [In­stan­tons and four-man­i­folds]. Mir (Mo­scow), 1988. Trans­lated from the Eng­lish and with a pre­face by Yu. P. So­lov’ev. Rus­si­an trans­la­tion of 1984 Eng­lish ori­gin­al. MR 955496 book

[36] K. Uh­len­beck: “Mo­ment maps in stable bundles,” AWM News­let­ter 18 : 3 (May–June 1988), pp. 2. re­marks taken from 1988 No­eth­er Lec­ture. Re­prin­ted in Com­plex­it­ies: Wo­men in math­em­at­ics (2005). article

[37] K. Uh­len­beck and S. T. Yau: “A note on our pre­vi­ous pa­per: On the ex­ist­ence of Her­mitian Yang–Mills con­nec­tions in stable vec­tor bundles,” Com­mun. Pure Ap­pl. Math. 42 : 5 (1989), pp. 703–​707. A note on an art­icle pub­lished in Com­mun. Pure Ap­pl. Math. 39:S1 (1986). MR 997570 Zbl 0678.​58041 article

[38] K. Uh­len­beck: “Har­mon­ic maps in­to Lie groups (clas­sic­al solu­tions of the chir­al mod­el),” J. Diff. Geom. 30 : 1 (1989), pp. 1–​50. Ded­ic­ated to R. F. Wil­li­ams. MR 1001271 Zbl 0677.​58020 article

[39] K. Uh­len­beck: “Com­ment­ary on ‘ana­lys­is in the large’,” pp. 357–​359 in A cen­tury of math­em­at­ics in Amer­ica, part 2. Edi­ted by P. L. Duren, R. As­key, and U. C. Merzbach. His­tory of Math­em­at­ics 2. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1989. MR 1003144 incollection

[40] L. M. Sib­n­er, R. J. Sib­n­er, and K. Uh­len­beck: “Solu­tions to Yang–Mills equa­tions that are not self-dual,” Proc. Natl. Acad. Sci. U.S.A. 86 : 22 (November 1989), pp. 8610–​8613. MR 1023811 Zbl 0731.​53031 article

[41] K. K. Uh­len­beck: Ap­plic­a­tions of non­lin­ear ana­lys­is in to­po­logy, 1990. 60 minute video­cas­sette, Amer­ic­an Math­em­at­ic­al So­ci­ety ICM Series. A plen­ary ad­dress presen­ted at the In­ter­na­tion­al Con­gress of Math­em­aticians held in Kyoto, Au­gust 1990. This was pub­lished as an art­icle in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians (1990). MR 1127164 misc

[42] D. S. Freed and K. K. Uh­len­beck: In­stan­tons and four-man­i­folds, 2nd edition. Math­em­at­ic­al Sci­ences Re­search In­sti­tute Pub­lic­a­tions 1. Spring­er (New York), 1991. MR 1081321 Zbl 0559.​57001 book

[43] K. Uh­len­beck: “Ap­plic­a­tions of non­lin­ear ana­lys­is in to­po­logy,” pp. 261–​279 in Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians (Kyoto, 21–29 Au­gust 1990), vol. 1. Edi­ted by I. Satake. Math­em­at­ic­al So­ci­ety of Ja­pan (Tokyo), 1991. A video re­cord­ing of this plen­ary ad­dress was pub­lished in 1990. MR 1159217 Zbl 0753.​53001 incollection

[44] K. Uh­len­beck: “On the con­nec­tion between har­mon­ic maps and the self-dual Yang–Mills and the sine-Gor­don equa­tions,” J. Geom. Phys. 8 : 1–​4 (March 1992), pp. 283–​316. MR 1165884 Zbl 0747.​58025 article

[45] K. Uh­len­beck: “In­stan­tons and their re­l­at­ives,” pp. 467–​477 in Math­em­at­ics in­to the twenty-first cen­tury (Provid­ence, RI, 8–12 Au­gust 1988). Edi­ted by F. E. Browder. Amer­ic­an Math­em­at­ic­al So­ci­ety Centen­ni­al Pub­lic­a­tions 2. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1992. MR 1184623 Zbl 1073.​53505 incollection

[46] Glob­al ana­lys­is in mod­ern math­em­at­ics: Pro­ceed­ings of the sym­posi­um in hon­or of Richard Pal­ais’ six­tieth birth­day (Orono, ME, 8–10 Au­gust 1991 and Waltham, MA, 12 Au­gust 1992). Edi­ted by K. Uh­len­beck. Pub­lish or Per­ish (Hou­s­ton, TX), 1993. MR 1278744 Zbl 0920.​00058 book

[47] K. Uh­len­beck: “Pre­face. Glob­al ana­lys­is: A sub­ject be­fore its time,” pp. vii–​xvii in Glob­al ana­lys­is in mod­ern math­em­at­ics: A sym­posi­um in hon­or of Richard Pal­ais’ six­tieth birth­day (Orono, ME, 8–10 Au­gust 1991 and Waltham, MA, 12 Au­gust 1992). Edi­ted by K. Uh­len­beck. Pub­lish or Per­ish (Hou­s­ton, TX), 1993. MR 1278745 incollection

[48] M. Atiyah, A. Borel, G. J. Chaitin, D. Friedan, J. Glimm, J. J. Gray, M. W. Hirsch, S. MacLane, B. B. Man­del­brot, D. Ruelle, A. Schwarz, K. Uh­len­beck, R. Thom, E. Wit­ten, and C. Zee­man: “Re­sponses to ‘The­or­et­ic­al math­em­at­ics: To­ward a cul­tur­al syn­thes­is of math­em­at­ics and the­or­et­ic­al phys­ics’, by A. Jaffe and F. Quinn,” Bull. Am. Math. Soc., New Ser. 30 : 2 (April 1994), pp. 178–​207. Zbl 0803.​01014 ArXiv math/​9404229 article

[49] G. D. Daskalo­poulos and K. K. Uh­len­beck: “An ap­plic­a­tion of trans­vers­al­ity to the to­po­logy of the mod­uli space of stable bundles,” To­po­logy 34 : 1 (January 1995), pp. 203–​215. MR 1308496 Zbl 0835.​58005 article

[50] Geo­metry and quantum field the­ory (Park City, UT, 22 June–20 Ju­ly 1991). Edi­ted by D. S. Freed and K. K. Uh­len­beck. IAS/Park City Math­em­at­ics Series 1. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1995. MR 1338390 Zbl 0819.​00004 book

[51] G. Daskalo­poulos, K. Uh­len­beck, and R. Wentworth: “Mod­uli of ex­ten­sions of holo­morph­ic bundles on Kähler man­i­folds,” Comm. Anal. Geom. 3 : 3–​4 (1995), pp. 479–​522. MR 1371207 Zbl 0852.​58014 article

[52] R. Mazzeo, D. Pol­lack, and K. Uh­len­beck: “Con­nec­ted sum con­struc­tions for con­stant scal­ar curvature met­rics,” To­pol. Meth­ods Non­lin­ear Anal. 6 : 2 (1995), pp. 207–​233. Ded­ic­ated to Louis Niren­berg on the oc­ca­sion of his 70th birth­day. MR 1399537 Zbl 0866.​58069 article

[53] K. Uh­len­beck: “Adia­bat­ic lim­its and mod­uli spaces,” No­tices Am. Math. Soc. 42 (1995), pp. 41–​42. This is one sec­tion of lar­ger art­icle, “A cel­eb­ra­tion of wo­men in math­em­at­ics”. article

[54] R. Mazzeo, D. Pol­lack, and K. Uh­len­beck: “Mod­uli spaces of sin­gu­lar Yamabe met­rics,” J. Am. Math. Soc. 9 : 2 (1996), pp. 303–​344. MR 1356375 Zbl 0849.​58012 article

[55] K. Uh­len­beck: “Com­ing to grips with suc­cess: A pro­file of Kar­en Uh­len­beck,” Math Ho­ri­zons 3 : 4 (1996). Also pu­bished in Jour­neys of wo­men in sci­ence and en­gin­eer­ing (1997). article

[56] C. Hen­ri­on: “Kar­en Uh­len­beck (1942–),” pp. 25–​46 in Wo­men in math­em­at­ics: The ad­di­tion of dif­fer­ence. In­di­ana Uni­versity Press (Bloom­ing­ton and In­di­ana­pol­is, IN), 1997. incollection

[57] K. Uh­len­beck: “Kar­en Uh­len­beck,” pp. 395–​398 in Jour­neys of wo­men in sci­ence and en­gin­eer­ing: No uni­ver­sal con­stants. Edi­ted by S. Am­brose, K. L. Dunkle, B. B. Laz­arus, I. Nair, and D. A. Harkus. Labor & So­cial Change 71. Temple Uni­versity Press (Phil­adelphia), 1997. Also pub­lished in Math Ho­ri­zons 3:4 (1996). incollection

[58] Geo­metry, to­po­logy and phys­ics: Pro­ceed­ings of the first Brazil–USA work­shop (Camp­i­nas, Brazil, 30 June–7 Ju­ly 1996). Edi­ted by B. N. Apanasov, S. B. Brad­low, W. A. Rodrig­ues, Jr., and K. K. Uh­len­beck. de Gruyter (Ber­lin), 1997. MR 1605264 Zbl 0883.​00022 book

[59] In­teg­ral sys­tems. Edi­ted by C.-L. Terng and K. Uh­len­beck. Sur­veys in Dif­fer­en­tial Geo­metry 4. In­ter­na­tion­al Press (Cam­bridge, MA), 1998. MR 1726558 Zbl 0918.​00013 book

[60] C.-L. Terng and K. Uh­len­beck: “Pois­son ac­tions and scat­ter­ing the­ory for in­teg­rable sys­tems,” pp. 315–​402 in In­teg­ral sys­tems. Edi­ted by C.-L. Terng and K. Uh­len­beck. Sur­veys in Dif­fer­en­tial Geo­metry 4. In­ter­na­tion­al Press (Bo­ston), 1998. MR 1726931 Zbl 0935.​35163 ArXiv dg-​ga/​9707004 incollection

[61] L. Taylor: “Kar­en Uh­len­beck,” pp. 261–​266 in Not­able wo­men in math­em­at­ics: A bio­graph­ic­al dic­tion­ary. Edi­ted by C. Mor­row and T. Perl. Green­wood Press (West­port, CT), 1998. incollection

[62] C.-L. Terng and K. Uh­len­beck: “In­tro­duc­tion,” pp. 5–​19 in In­teg­ral sys­tems. Edi­ted by C.-L. Terng and K. Uh­len­beck. Sur­veys in Dif­fer­en­tial Geo­metry 4. In­ter­na­tion­al Press (Cam­bridge, MA), 1998. Zbl 0938.​35182 incollection

[63] C.-L. Terng and K. Uh­len­beck: “Bäcklund trans­form­a­tions and loop group ac­tions,” Comm. Pure Ap­pl. Math. 53 : 1 (2000), pp. 1–​75. MR 1715533 Zbl 1031.​37064 article

[64] C.-L. Terng and K. Uh­len­beck: “Geo­metry of solitons,” No­tices Am. Math. Soc. 47 : 1 (2000), pp. 17–​25. cov­er art­icle. MR 1733063 Zbl 0987.​37072 article

[65] N.-H. Chang, J. Sha­tah, and K. Uh­len­beck: “Schrödinger maps,” Comm. Pure Ap­pl. Math. 53 : 5 (2000), pp. 590–​602. MR 1737504 Zbl 1028.​35134 article

[66] K. K. Uh­len­beck and J. A. Vi­aclovsky: “Reg­u­lar­ity of weak solu­tions to crit­ic­al ex­po­nent vari­ation­al equa­tions,” Math. Res. Lett. 7 : 5–​6 (2000), pp. 651–​656. MR 1809291 Zbl 0977.​58020 article

[67]Two math­em­aticians awar­ded Na­tion­al Medals of Sci­ence,” MAA FO­CUS 21 : 1 (January 2001), pp. 3. article

[68] G. Warfield: “Uh­len­beck re­ceives Na­tion­al Medal of Sci­ence,” AWM News­let­ter 31 : 1 (January–February 2001), pp. 9–​10. Re­prin­ted in Com­plex­it­ies: Wo­men in math­em­at­ics (2005). article

[69] A. Nah­mod, A. Stefan­ov, and K. Uh­len­beck: “On Schrödinger maps,” Comm. Pure Ap­pl. Math. 56 : 1 (2003), pp. 114–​151. An er­rat­um was pub­lished in Comm. Pure Ap­pl. Math. 57:6 (2004). MR 1929444 Zbl 1028.​58018 article

[70] A. Nah­mod, A. Stefan­ov, and K. Uh­len­beck: “On the well-posed­ness of the wave map prob­lem in high di­men­sions,” Comm. Anal. Geom. 11 : 1 (2003), pp. 49–​83. MR 2016196 Zbl 1085.​58022 article

[71] Lec­tures on geo­metry and to­po­logy held in hon­or of Calabi, Lawson, Siu, and Uh­len­beck (Cam­bridge, MA, 3–5 May 2002). Edi­ted by S.-T. Yau. Sur­veys in Dif­fer­en­tial Geo­metry 8. In­ter­na­tion­al Press (Somerville, MA), 2003. Zbl 1034.​53003 book

[72] A. Nah­mod, A. Stefan­ov, and K. Uh­len­beck: “Er­rat­um: ‘On Schrödinger maps’,” Comm. Pure Ap­pl. Math. 57 : 6 (2004), pp. 833–​839. Er­rat­um to art­icle pub­lished in Comm. Pure Ap­pl. Math. 56:1 (2003). MR 2038118 article

[73] C.-L. Terng and K. Uh­len­beck: “\( 1+1 \) wave maps in­to sym­met­ric spaces,” Comm. Anal. Geom. 12 : 1–​2 (2004), pp. 345–​388. MR 2074882 Zbl 1082.​37068 article

[74] C.-L. Terng and K. Uh­len­beck: “Schrödinger flows on Grass­man­ni­ans,” pp. 235–​256 in In­teg­rable sys­tems, geo­metry, and to­po­logy. Edi­ted by C.-L. Terng. AMS/IP Stud­ies in Ad­vanced Math­em­at­ics 36. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2006. MR 2222517 Zbl 1110.​37056 ArXiv math/​9901086 incollection

[75] B. Dai, C.-L. Terng, and K. Uh­len­beck: “On the space-time mono­pole equa­tion,” pp. 1–​30 in Es­says in geo­metry in memory of S. S. Chern. Edi­ted by S.-T. Yau. Sur­veys in Dif­fer­en­tial Geo­metry 10. In­ter­na­tion­al Press (Somerville, MA), 2006. MR 2408220 Zbl 1157.​53016 incollection

[76] K. Uh­len­beck: “Mo­ment maps in stable bundles,” pp. 193–​195 in Com­plex­it­ies: Wo­men in math­em­at­ics. Edi­ted by B. A. Case and A. Leg­gett. Prin­ceton Uni­versity Press, 2006. Based on a piece pub­lished in AWM News­let­ter 18:3 (1988). incollection

[77] G. Warfield: “Uh­len­beck re­ceives Na­tion­al Medal of Sci­ence,” pp. 195–​196 in Com­plex­it­ies: Wo­men in math­em­at­ics. Edi­ted by B. A. Case and A. Leg­gett. Prin­ceton Uni­versity Press, 2006. Re­prin­ted from AWM News­let­ter 31:1 (2001). incollection

[78] A. Gonçalves and K. Uh­len­beck: “Mod­uli space the­ory for con­stant mean curvature sur­faces im­mersed in space-forms,” Comm. Anal. Geom. 15 : 2 (2007), pp. 299–​305. MR 2344325 Zbl 1136.​53048 ArXiv math/​0611295 article

[79]2007 Steele Prizes,” No­tices Am. Math. Soc. 54 : 4 (April 2007), pp. 514–​518. Zbl 1142.​01310 article

[80] M. Vaji­ac and K. Uh­len­beck: “Vi­ra­s­oro ac­tions and har­mon­ic maps (after Schwarz),” J. Diff. Geom. 80 : 2 (2008), pp. 327–​341. MR 2454896 Zbl 1153.​53046 article

[81] C.-L. Terng and K. Uh­len­beck: “The \( n{\times}n \) KdV hier­archy,” J. Fix. Point The­ory A. 10 : 1 (2011), pp. 37–​61. MR 2825739 Zbl 1251.​37070 article

[82] M. Gagliardo and K. Uh­len­beck: “Geo­met­ric as­pects of the Kapustin–Wit­ten equa­tions,” J. Fix. Point The­ory Ap. 11 : 2 (2012), pp. 185–​198. MR 3000667 Zbl 1260.​53002 article

[83] Reg­u­lar­ity and evol­u­tion of non­lin­ear equa­tions: Es­says ded­ic­ated to Richard Hamilton, Le­on Si­mon, and Kar­en Uh­len­beck. Edi­ted by H.-D. Cao, R. Schoen, and S.-T. Yau. Sur­veys in Dif­fer­en­tial Geo­metry 19. In­ter­na­tion­al Press (Somerville, MA), 2015. MR 3380570 Zbl 1317.​53001 book

[84] C.-L. Terng and K. Uh­len­beck: “Tau func­tion and Vi­ra­s­oro ac­tion for the \( n{\times}n \) KdV hier­archy,” Comm. Math. Phys. 342 : 1 (2016), pp. 81–​116. MR 3455146 Zbl 1354.​37068 article

[85] C.-L. Terng and K. Uh­len­beck: “Tau func­tions and Vi­ra­s­oro ac­tions for soliton hier­arch­ies,” Comm. Math. Phys. 342 : 1 (2016), pp. 117–​150. MR 3455147 Zbl 1346.​37058 article