return

Celebratio Mathematica

Paul Baum

Complete Bibliography

[1] P. F. Baum: “Co­homo­logy of ho­mo­gen­eous spaces,” Bull. Am. Math. Soc. 69 : 4 (1963), pp. 531–​533. Based on the au­thor’s PhD thes­is (1963). MR 148804 Zbl 0152.​40503 article

[2] P. F. Baum: Co­homo­logy of ho­mo­gen­eous spaces. Ph.D. thesis, Prin­ceton Uni­versity, 1963. Ad­vised by J. C. Moore and N. Steen­rod. An art­icle based on this was pub­lished in Bull. Am. Math. Soc. 69:4 (1963). MR 2613915 phdthesis

[3] P. F. Baum and W. Browder: “The co­homo­logy of quo­tients of clas­sic­al groups,” To­po­logy 3 : 4 (June 1965), pp. 305–​336. MR 189063 Zbl 0152.​22101 article

[4] P. F. Baum: “Loc­al iso­morph­ism of com­pact con­nec­ted Lie groups,” Pac. J. Math. 22 : 2 (February 1967), pp. 197–​204. MR 213470 Zbl 0178.​02802 article

[5] P. F. Baum: “Quad­rat­ic maps and stable ho­mo­topy groups of spheres,” Illinois J. Math. 11 : 4 (1967), pp. 586–​595. MR 220285 Zbl 0166.​19102 article

[6] P. Baum and L. Smith: “The real co­homo­logy of dif­fer­en­ti­able fibre bundles,” Com­ment. Math. Helv. 42 : 1 (December 1967), pp. 171–​179. MR 221522 Zbl 0166.​19302 article

[7] P. F. Baum: “On the co­homo­logy of ho­mo­gen­eous spaces,” To­po­logy 7 : 1 (January 1968), pp. 15–​38. MR 219085 Zbl 0158.​42002 article

[8] P. Baum and J. Chee­ger: “In­fin­ites­im­al iso­met­ries and Pontry­agin num­bers,” To­po­logy 8 : 2 (April 1969), pp. 173–​193. MR 238351 Zbl 0179.​28802 article

[9] P. F. Baum and R. Bott: “On the zer­oes of mero­morph­ic vec­tor-fields,” pp. 29–​47 in Es­says on to­po­logy and re­lated top­ics: Mémoires dédiés à Georges de Rham [Es­says on to­po­logy and re­lated top­ics: Mem­oirs ded­ic­ated to Georges de Rham] (Geneva, 26–28 March 1969). Edi­ted by A. Hae­fli­ger and R. Narasim­han. Spring­er (Ber­lin), 1970. MR 261635 Zbl 0193.​52201 incollection

[10] P. F. Baum: “Vec­tor fields and Gauss–Bon­net,” Bull. Am. Math. Soc. 76 : 6 (1970), pp. 1202–​1211. Based on an in­vited ad­dress giv­en at AMS Sum­mer Meet­ing in Eu­gene, OR. MR 266255 Zbl 0203.​54102 article

[11] F. Hirzebruch: “Lec­tures on \( K \)-the­ory,” pp. 223–​238 in Al­geb­ra­ic to­po­logy: A stu­dent’s guide (Seattle, 1963). Edi­ted by J. F. Adams. Lon­don Math­em­at­ic­al So­ci­ety Lec­ture Note Series 4. Cam­bridge Uni­versity Press, 1972. Notes pre­pared by Paul Baum. Lec­ture notes of the AMS Sum­mer To­po­logy In­sti­tute. incollection

[12] P. Baum and R. Bott: “Sin­gu­lar­it­ies of holo­morph­ic fo­li­ations,” J. Diff. Geom. 7 : 3–​4 (1972), pp. 279–​342. To S. S. Chern and D. C. Spen­cer on their 60th birth­days. MR 377923 Zbl 0268.​57011 article

[13] P. Baum: Chern classes and sin­gu­lar­it­ies of com­plex fo­li­ations. Pre­print, Brown Uni­versity, 1973. techreport

[14] P. Baum: “Struc­ture of fo­li­ation sin­gu­lar­it­ies,” Ad­vances in Math. 15 : 3 (March 1975), pp. 361–​374. Ded­ic­ated to Mark Baum on his sev­en­ti­eth birth­day. MR 377125 Zbl 0296.​57007 article

[15] P. Baum: “Riemann–Roch the­or­em for sin­gu­lar vari­et­ies,” pp. 3–​16 in Dif­fer­en­tial geo­metry (Stan­ford, CA, 30 Ju­ly–17 Au­gust 1973), part 2. Edi­ted by S. S. Chern and R. Os­ser­man. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 27. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1975. MR 389907 Zbl 0344.​32021 incollection

[16] P. Baum, W. Fulton, and R. MacPh­er­son: “Riemann–Roch for sin­gu­lar vari­et­ies,” Inst. Hautes Études Sci. Publ. Math. 45 (1975), pp. 101–​145. MR 412190 Zbl 0332.​14003 article

[17] P. Baum, W. Fulton, and R. MacPh­er­son: Riemann–Roch and to­po­lo­gic­al \( K \)-the­ory for sin­gu­lar vari­et­ies. Pre­print 42, Aar­hus Uni­versity Math­em­at­ics In­sti­tute, 1977. A ver­sion of this was later pub­lished in Acta Math. 143:3–4 (1979). Zbl 0355.​14008 techreport

[18] P. Baum, W. Fulton, and G. Quart: Lef­schetz–Riemann–Roch for sin­gu­lar vari­et­ies. Pre­print 41, Aar­hus Uni­versity Math­em­at­ics In­sti­tute, 1977. A ver­sion of this was later pub­lished in Acta Math. 143:3–4 (1979). Zbl 0357.​14004 techreport

[19] P. Baum, W. Fulton, and R. MacPh­er­son: “Riemann–Roch and to­po­lo­gic­al \( K \) the­ory for sin­gu­lar vari­et­ies,” Acta Math. 143 : 3–​4 (1979), pp. 155–​192. A pre­print was pub­lished in 1977. MR 549773 Zbl 0474.​14004 article

[20] P. Baum, W. Fulton, and G. Quart: “Lef­schetz–Riemann–Roch for sin­gu­lar vari­et­ies,” Acta Math. 143 : 3–​4 (1979), pp. 193–​211. A pre­print ver­sion was pub­lished in 1977. MR 549774 Zbl 0454.​14009 article

[21] P. Baum and R. G. Douglas: “In­dex the­ory, bor­d­ism, and \( K \)-ho­mo­logy,” pp. 1–​31 in Op­er­at­or al­geb­ras and \( K \)-the­ory (San Fran­cisco, 7–8 Janu­ary 1981). Edi­ted by R. G. Douglas and C. Schochet. Con­tem­por­ary Math­em­at­ics 10. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1982. MR 658506 Zbl 0507.​55004 incollection

[22] P. Baum and R. G. Douglas: “Toep­litz op­er­at­ors and Poin­caré du­al­ity,” pp. 137–​166 in Toep­litz centen­ni­al: Toep­litz me­mori­al con­fer­ence in op­er­at­or the­ory, ded­ic­ated to the 100th an­niversary of the birth of Otto Toep­litz (Tel Aviv, 11–15 May 1981). Edi­ted by I. Go­hberg. Op­er­at­or The­ory: Ad­vances and Ap­plic­a­tions 4. Birkhäuser (Basel), 1982. MR 669904 Zbl 0517.​55001 incollection

[23] P. Baum and R. G. Douglas: “\( K \) ho­mo­logy and in­dex the­ory,” pp. 117–​173 in Op­er­at­or al­geb­ras and ap­plic­a­tions (King­ston, ON, 14 Ju­ly–2 Au­gust 1980), part 1. Edi­ted by R. V. Kadis­on. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 38. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1982. MR 679698 Zbl 0532.​55004 incollection

[24] P. Baum: “Fixed point for­mula for sin­gu­lar vari­et­ies,” pp. 3–​22 in Cur­rent trends in al­geb­ra­ic to­po­logy (Lon­don, ON, 29 June–10 Ju­ly 1981), part 2. Edi­ted by R. M. Kane. CMS Con­fer­ence Pro­ceed­ings 2. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1982. MR 686136 Zbl 0574.​14018 incollection

[25] P. Baum, J.-L. Bryl­in­ski, and R. MacPh­er­son: “Co­homo­lo­gie équivari­ante délocal­isée” [De­lo­c­al­ized equivari­ant co­homo­logy], C. R. Acad. Sci. Par­is Sér. I Math. 300 : 17 (1985), pp. 605–​608. MR 791098 Zbl 0589.​55003 article

[26] P. Baum and A. Connes: “Leaf­wise ho­mo­topy equi­val­ence and ra­tion­al Pon­trja­gin classes,” pp. 1–​14 in Fo­li­ations (Tokyo, 14–18 Ju­ly 1983). Edi­ted by I. Tamura. Ad­vanced Stud­ies in Pure Math­em­at­ics 5. North-Hol­land (Am­s­ter­dam), 1985. MR 877325 Zbl 0641.​57008 incollection

[27] P. Baum and A. Connes: “\( K \) the­ory for ac­tions of dis­crete groups,” pp. 1–​12 in Con­fer­en­cias del taller de to­po­logía al­geb­ra­ica [Con­fer­ences of the al­geb­ra­ic to­po­logy work­shop]. Edi­ted by L. As­tey and E. Micha. VI Colo­quio del De­parta­mento de Matemátic­as. CIN­VESTAV-IPN (Mex­ico City), 1986. incollection

[28] P. Baum and A. Connes: “Chern char­ac­ter for dis­crete groups,” pp. 163–​232 in A fête of to­po­logy: Pa­pers ded­ic­ated to Itiro Tamura. Edi­ted by Y. Mat­sumoto, T. Mizutani, and S. Mor­ita. Aca­dem­ic Press (Bo­ston), 1988. MR 928402 Zbl 0656.​55005 incollection

[29] P. Baum and A. Connes: “\( K \)-the­ory for dis­crete groups,” pp. 1–​20 in Op­er­at­or al­geb­ras and ap­plic­a­tions (War­wick, UK, 20–25 Ju­ly 1987), vol. 1: Struc­ture the­ory; \( K \)-the­ory, geo­metry and to­po­logy. Edi­ted by D. Evans and M. Take­saki. Lon­don Math­em­at­ic­al So­ci­ety Lec­ture Note Series 135. Cam­bridge Uni­versity Press, 1988. MR 996437 Zbl 0685.​46041 incollection

[30] P. Baum, R. G. Douglas, and M. E. Taylor: “Cycles and re­l­at­ive cycles in ana­lyt­ic \( K \)-ho­mo­logy,” J. Diff. Geom. 30 : 3 (1989), pp. 761–​804. MR 1021372 Zbl 0697.​58050 article

[31] P. Baum and J. Block: “Equivari­ant bi­cycles on sin­gu­lar spaces,” C. R. Acad. Sci. Par­is Sér. I Math. 311 : 2 (1990), pp. 115–​120. MR 1065441 Zbl 0719.​19003 article

[32] P. Baum and R. G. Douglas: “Re­l­at­ive \( K \) ho­mo­logy and \( C^* \) al­geb­ras,” \( K \)-The­ory 5 : 1 (1991), pp. 1–​46. MR 1141333 Zbl 0755.​46035 article

[33] P. Baum: “The Dir­ac op­er­at­or,” pp. 163–​167 in F. Hirzebruch, T. Ber­ger, and R. Jung: Man­i­folds and mod­u­lar forms, 2nd edition. As­pects of Math­em­at­ics 20. Vieweg (Wies­baden), 1992. Ap­pendix II. incollection

[34] P. Baum and J. Block: “Ex­cess in­ter­sec­tion in equivari­ant bivari­ant \( K \)-the­ory,” C. R. Acad. Sci. Par­is Sér. I Math. 314 : 5 (1992), pp. 387–​392. With abridged French ver­sion. MR 1153721 Zbl 0762.​19008 article

[35] P. Baum, N. Hig­son, and R. Ply­men: “Equivari­ant ho­mo­logy for \( \mathrm{SL}(2) \) of a \( p \)-ad­ic field,” pp. 1–​18 in In­dex the­ory and op­er­at­or al­geb­ras (Boulder, CO, 6–10 Au­gust 1991). Edi­ted by J. Fox and P. Haskell. Con­tem­por­ary Math­em­at­ics 148. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1993. MR 1228497 Zbl 0844.​46043 incollection

[36] P. Baum, A. Connes, and N. Hig­son: “Clas­si­fy­ing space for prop­er ac­tions and \( K \)-the­ory of group \( C^* \)-al­geb­ras,” pp. 241–​291 in \( C^* \)-al­geb­ras: 1943–1993 (San Ant­o­nio, TX, 13–14 Janu­ary 1993). Edi­ted by R. S. Dor­an. Con­tem­por­ary Math­em­at­ics 167. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 1994. MR 1292018 Zbl 0830.​46061 incollection

[37] P. Baum, N. Hig­son, and R. Ply­men: Cosheaf ho­mo­logy and \( K \) the­ory for \( p \)-ad­ic groups. Pre­print, Pennsylvania State Uni­versity, 1995. techreport

[38] P. Baum: “Work­ing with Bott (rock­ing and rolling with Raoul),” pp. xxii–​xxiii in Raoul Bott: Col­lec­ted pa­pers, vol. 3: Fo­li­ations. Edi­ted by R. MacPh­er­son. Con­tem­por­ary Math­em­aticians. Birkhäuser (Bo­ston), 1995. MR 1321887 incollection

[39] P. Baum, N. Hig­son, and R. Ply­men: “A proof of the Baum–Connes con­jec­ture for \( p \)-ad­ic \( \mathrm{GL}(n) \),” C. R. Acad. Sci. Par­is Sér. I Math. 325 : 2 (July 1997), pp. 171–​176. MR 1467072 Zbl 0918.​46061 article

[40] P. F. Baum, N. Hig­son, and R. J. Ply­men: “Rep­res­ent­a­tion the­ory of \( p \)-ad­ic groups: A view from op­er­at­or al­geb­ras,” pp. 111–​149 in The math­em­at­ic­al leg­acy of Har­ish-Chandra: A cel­eb­ra­tion of rep­res­ent­a­tion the­ory and har­mon­ic ana­lys­is (Bal­timore, MD, 9–10 Janu­ary 1998). Edi­ted by R. Dor­an and V. Varada­ra­jan. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 68. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2000. MR 1767895 Zbl 0982.​19006 incollection

[41] P. Baum and A. Connes: “Geo­met­ric \( K \)-the­ory for Lie groups and fo­li­ations,” En­sei­gn. Math. (2) 46 : 1–​2 (2000), pp. 3–​42. MR 1769535 Zbl 0985.​46042 article

[42] P. Baum, S. Mil­ling­ton, and R. Ply­men: “A proof of the Baum–Connes con­jec­ture for re­duct­ive ad­el­ic groups,” C. R. Acad. Sci. Par­is Sér. I Math. 332 : 3 (February 2001), pp. 195–​200. MR 1817360 Zbl 1105.​19300 article

[43] P. Baum and V. Nis­tor: “Peri­od­ic cyc­lic ho­mo­logy of Iwahori–Hecke al­geb­ras,” C. R. Acad. Sci. Par­is Sér. I Math. 332 : 9 (May 2001), pp. 783–​788. MR 1836086 Zbl 1013.​16003 article

[44] P. Baum and P. Schneider: “Equivari­ant-bivari­ant Chern char­ac­ter for profin­ite groups,” \( K \)-The­ory 25 : 4 (2002), pp. 313–​353. MR 1914452 Zbl 0997.​55010 article

[45] P. Baum and V. Nis­tor: “Peri­od­ic cyc­lic ho­mo­logy of Iwahori–Hecke al­geb­ras,” \( K \)-The­ory 27 : 4 (December 2002), pp. 329–​357. MR 1962907 Zbl 1056.​16005 article

[46] P. Baum, S. Mil­ling­ton, and R. Ply­men: “Loc­al-glob­al prin­ciple for the Baum–Connes con­jec­ture with coef­fi­cients,” \( K \)-The­ory 28 : 1 (2003), pp. 1–​18. MR 1988816 Zbl 1034.​46073 article

[47] P. Baum and J. Brodzki: Equivari­ant \( KK \)-the­ory and non­com­mut­at­ive in­dex the­ory, 2004. Part VI of e-book “Lec­ture notes on non­com­mut­at­ive geo­metry and quantum groups” (European Math­em­at­ic­al So­ci­ety, ed. Pio­tr M. Ha­jac). misc

[48] P. Baum and R. Mey­er: The Baum–Connes con­jec­ture, loc­al­iz­a­tion of cat­egor­ies and quantum groups, 2004. Part VIII of e-book “Lec­ture notes on non­com­mut­at­ive geo­metry and quantum groups” (European Math­em­at­ic­al So­ci­ety, ed. Pio­tr M. Ha­jac). misc

[49] P. Baum and H. Mo­scov­ici: Fo­li­ations, \( C^* \)-al­geb­ras and in­dex the­ory, 2004. Part II of e-book “Lec­ture notes on non­com­mut­at­ive geo­metry and quantum groups” (European Math­em­at­ic­al So­ci­ety, ed. Pio­tr M. Ha­jac). misc

[50] P. Baum and M. Ka­roubi: “On the Baum–Connes con­jec­ture in the real case,” Q. J. Math. 55 : 3 (September 2004), pp. 231–​235. MR 2082090 Zbl 1064.​19003 ArXiv math/​0509495 article

[51] P. Baum: “On the in­dex of equivari­ant el­lipt­ic op­er­at­ors,” pp. 41–​49 in Op­er­at­or al­geb­ras, quant­iz­a­tion, and non­com­mut­at­ive geo­metry: A centen­ni­al cel­eb­ra­tion hon­or­ing John von Neu­mann and Mar­shall H. Stone. Edi­ted by R. Dor­an and R. V. Kadis­on. Con­tem­por­ary Math­em­at­ics 365. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2004. MR 2106816 Zbl 1081.​46047 incollection

[52] P. F. Baum, P. M. Ha­jac, R. Mat­thes, and W. Szymański: “The \( K \)-the­ory of Hee­gaard-type quantum 3-spheres,” \( K \)-The­ory 35 : 1–​2 (2005), pp. 159–​186. Ded­ic­ated to the memory of Olaf Richter. An er­rat­um to this was pub­lished in K-The­ory 37:1–2 (2006). MR 2240219 Zbl 1111.​46051 article

[53] P. F. Baum, P. M. Ha­jac, R. Mat­thes, and W. Szymański: “Er­rat­um: ‘The \( K \)-the­ory of Hee­gaard-type quantum 3-spheres’,” \( K \)-The­ory 37 : 1–​2 (2006), pp. 211. Er­rat­um to an art­icle pub­lished in K-The­ory 35:1–2 (2005). MR 2274673 Zbl 1210.​46054 article

[54] A.-M. Au­bert, P. Baum, and R. Ply­men: “The Hecke al­gebra of a re­duct­ive \( p \)-ad­ic group: A geo­met­ric con­jec­ture,” pp. 1–​34 in Non­com­mut­at­ive geo­metry and num­ber the­ory: Where arith­met­ic meets geo­metry and phys­ics (Bonn, Ger­many, Au­gust 2003 and June 2004). Edi­ted by C. Con­sani and M. Mar­colli. As­pects of Math­em­at­ics 37. Vieweg (Wies­baden, Ger­many), 2006. MR 2327297 Zbl 1120.​14001 incollection

[55] P. Baum, P. M. Ha­jac, R. Mat­thes, and W. Szy­manski: Non-com­mut­at­ive geo­metry ap­proach to prin­cip­al and as­so­ci­ated bundles. Pre­print, 2007. ArXiv math/​0701033v2 techreport

[56] P. Baum, N. Hig­son, and T. Schick: “On the equi­val­ence of geo­met­ric and ana­lyt­ic \( K \)-ho­mo­logy,” pp. 1–​24 in Spe­cial is­sue: In hon­or of Robert D. MacPh­er­son, Part 3, published as Pure Ap­pl. Math. Q. 3 : 1. In­ter­na­tion­al Press (Som­merville, MA), 2007. MR 2330153 Zbl 1146.​19004 incollection

[57] A.-M. Au­bert, P. Baum, and R. Ply­men: “Geo­met­ric struc­ture in the rep­res­ent­a­tion the­ory of \( p \)-ad­ic groups,” C. R. Math. Acad. Sci. Par­is 345 : 10 (2007), pp. 573–​578. Part II was pub­lished in Har­mon­ic ana­lys­is on re­duct­ive, \( p \)-ad­ic groups (2011), but with “re­duct­ive” in the title. MR 2374467 Zbl 1128.​22009 article

[58] P. Baum: “The ex­ten­ded quo­tient,” pp. 23–​26 in Guido’s Book of Con­jec­tures: A gift to Guido Mis­lin on the oc­ca­sion of his re­tire­ment from ETHZ, June 2006. Edi­ted by I. Chat­terji. Mono­graph­ies de L’En­sei­gne­ment Mathématique 40. En­sei­gne­ment Mathématique (Geneva), 2008. incollection

[59] P. Baum: “Dir­ac op­er­at­or and \( K \)-the­ory for dis­crete groups,” pp. 97–​107 in A cel­eb­ra­tion of the math­em­at­ic­al leg­acy of Raoul Bott (Montreal, 9–13 June 2008). Edi­ted by P. R. Ko­ti­uga. CRM Pro­ceed­ings & Lec­ture Notes 50. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2010. MR 2648889 Zbl 1201.​19001 incollection

[60] P. Baum: “\( K \)-ho­mo­logy and D-branes,” pp. 81–​94 in Su­per­strings, geo­metry, to­po­logy, and \( C^* \)-al­geb­ras (Fort Worth, TX, 18–22 May 2009). Edi­ted by R. S. Dor­an, G. Fried­man, and J. Rosen­berg. Pro­ceed­ings of Sym­po­sia in Pure Math­em­at­ics 81. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2010. MR 2681759 Zbl 1210.​81079 incollection

[61] P. Baum, N. Hig­son, and T. Schick: “A geo­met­ric de­scrip­tion of equivari­ant \( K \)-ho­mo­logy for prop­er ac­tions,” pp. 1–​22 in Quanta of maths: Pro­ceed­ings of meet­ing in hon­or of Alain Connes’ 60th birth­day. Edi­ted by E. Blan­chard, D. Ell­wood, M. Khalkhali, M. Mar­colli, H. Mo­scov­ici, and S. Popa. Clay Math­em­at­ics Pro­ceed­ings 11. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2010. MR 2732043 Zbl 1216.​19006 ArXiv 0907.​2066 incollection

[62] P. Baum, H. Oy­ono-Oy­ono, T. Schick, and M. Wal­ter: “Equivari­ant geo­met­ric \( K \)-ho­mo­logy for com­pact Lie group ac­tions,” Abh. Math. Semin. Univ. Ham­bg. 80 : 2 (2010), pp. 149–​173. MR 2734682 Zbl 1242.​19006 article

[63] P. F. Baum, G. Cortiñas, R. Mey­er, R. Sánchez-Gar­cía, M. Sch­licht­ing, and B. Toën: Top­ics in al­geb­ra­ic and to­po­lo­gic­al \( K \)-the­ory (Sedano, Spain, 22–27 Janu­ary 2007). Edi­ted by G. Cortiñas. Lec­ture Notes in Math­em­at­ics 2008. Spring­er (Ber­lin), 2011. MR 2761828 Zbl 1202.​19001 book

[64] P. F. Baum and R. J. Sánchez-Gar­cía: “\( K \)-the­ory for group \( C^* \)-al­geb­ras,” pp. 1–​43 in Top­ics in al­geb­ra­ic and to­po­lo­gic­al \( K \)-the­ory (Sedano, Spain, 22–27 Janu­ary 2007). Edi­ted by G. Cortiñas. Lec­ture Notes in Math­em­at­ics 2008. Spring­er (Ber­lin), 2011. MR 2762553 Zbl 1216.​19001 incollection

[65] A.-M. Au­bert, P. Baum, and R. Ply­men: “Geo­met­ric struc­ture in the prin­cip­al series of the \( p \)-ad­ic group \( \textrm{G}_2 \),” Rep­res­ent. The­ory 15 (2011), pp. 126–​169. MR 2772586 Zbl 1268.​22015 article

[66] A.-M. Au­bert, P. Baum, and R. Ply­men: “Geo­met­ric struc­ture in the rep­res­ent­a­tion the­ory of re­duct­ive \( p \)-ad­ic groups, II,” pp. 71–​90 in Har­mon­ic ana­lys­is on re­duct­ive, \( p \)-ad­ic groups (San Fran­cisco, 16 Janu­ary 2010). Edi­ted by R. S. Dor­an, P. J. Sally, Jr., and L. Spice. Con­tem­por­ary Math­em­at­ics 543. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2011. Part I was pub­lished in C. R. Math. Acad. Sci. Par­is 345:10 (2007), doesn’t in­clude “re­duct­ive” in title. MR 2798423 Zbl 1246.​22019 incollection

[67] P. Baum, A.-M. Au­bert, R. Ply­men, and M. Sol­leveld: Geo­met­ric struc­ture and the loc­al Lang­lands con­jec­ture. Pre­print, 2012. ArXiv 1211.​0180 techreport

[68] P. Baum, A. Carey, and B.-L. Wang: “\( K \)-cycles for twis­ted \( K \)-ho­mo­logy,” pp. 69–​98 in Nanjing spe­cial is­sue on K-the­ory, num­ber the­ory and geo­metry, published as J. K-The­ory 12 : 1. Issue edi­ted by X. Guo, H. Qin, and G. Tang. Cam­bridge Uni­versity Press, August 2013. MR 3126635 Zbl 1300.​19003 incollection

[69] P. F. Baum and P. M. Ha­jac: “Loc­al proof of al­geb­ra­ic char­ac­ter­iz­a­tion of free ac­tions” in Spe­cial is­sue on non­com­mut­at­ive geo­metry and quantum groups in hon­or of Marc A. Rief­fel, published as SIGMA 10. Issue edi­ted by G. El­li­ott, P. M. Ha­jac, H. Li, and J. Rosen­berg. 2014. pa­per no. 060. MR 3226990 Zbl 1295.​22010 ArXiv 1402.​3024 incollection

[70] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “Geo­met­ric struc­ture in smooth dual and loc­al Lang­lands con­jec­ture,” Jpn. J. Math. 9 : 2 (September 2014), pp. 99–​136. Ex­pos­it­ory art­icle based on the Tak­agi lec­tures. MR 3258616 Zbl 1371.​11097 article

[71] P. F. Baum and E. van Erp: “\( K \)-ho­mo­logy and in­dex the­ory on con­tact man­i­folds,” Acta Math. 213 : 1 (2014), pp. 1–​48. Ded­ic­ated to Sir Mi­chael Atiyah on the oc­ca­sion of his 85th birth­day with ad­mir­a­tion and af­fec­tion. MR 3261009 Zbl 1323.​58017 article

[72] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “On the loc­al Lang­lands cor­res­pond­ence for non-tempered rep­res­ent­a­tions,” Münster J. Math. 7 : 1 (2014), pp. 27–​50. Ded­ic­ated to Peter Schneider on the oc­ca­sion of his 60th birth­day. MR 3271238 Zbl 06382808 ArXiv 1303.​0828 article

[73] P. F. Baum, L. Dąbrowski, and P. M. Ha­jac: “Non­com­mut­at­ive Bor­suk–Ulam-type con­jec­tures,” pp. 9–​18 in From Pois­son brack­ets to uni­ver­sal quantum sym­met­ries (Warsaw, 18–22 Au­gust 2014). Edi­ted by N. Cic­coli and A. Sit­arz. Banach Cen­ter Pub­lic­a­tions 106. In­sty­tut Matematyczny PAN (Warsaw), 2015. MR 3469159 Zbl 1343.​46064 incollection

[74] P. Baum, Carey, A., and B. Wang: \( K \)-ho­mo­logy and Fred­holm op­er­at­ors I: Dir­ac op­er­at­ors. Pre­print, 2016. ArXiv 1604.​03502 techreport

[75] P. Baum, Carey, A., and B. Wang: \( K \)-ho­mo­logy and Fred­holm op­er­at­ors II: El­lipt­ic op­er­at­ors. Pre­print, 2016. ArXiv 1604.​03535 techreport

[76] P. Baum, E. Guent­ner, and R. Wil­lett: “Ex­panders, ex­act crossed products, and the Baum–Connes con­jec­ture,” Ann. K-The­ory 1 : 2 (2016), pp. 155–​208. MR 3514939 Zbl 1331.​46064 article

[77] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “Geo­met­ric struc­ture for the prin­cip­al series of a split re­duct­ive \( p \)-ad­ic group with con­nec­ted centre,” J. Non­com­mut. Geom. 10 : 2 (2016), pp. 663–​680. MR 3519048 Zbl 1347.​22013 article

[78] P. Baum, E. Guent­ner, and R. Wil­lett: “Ex­act­ness and the Kadis­on–Ka­plansky con­jec­ture,” pp. 1–​33 in Op­er­at­or al­geb­ras and their ap­plic­a­tions: A trib­ute to Richard V. Kadis­on (San Ant­o­nio, TX, 10–11 Janu­ary 2015). Edi­ted by R. S. Dor­an and E. Park. Con­tem­por­ary Math­em­at­ics 671. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2016. Ded­ic­ated to Richard Kadis­on on the oc­ca­sion of his nineti­eth birth­day with af­fec­tion and ad­mir­a­tion. MR 3546676 Zbl 1366.​46045 incollection

[79] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “The loc­al Lang­lands cor­res­pond­ence for in­ner forms of \( \mathrm{SL}_n \),” Res. Math. Sci. 3 (2016). pa­per no. 32. MR 3579297 Zbl 06663301 article

[80] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “Depth and the loc­al Lang­lands cor­res­pond­ence,” pp. 17–​41 in Arbeit­sta­gung Bonn 2013: In memory of Friedrich Hirzebruch (Bonn, Ger­many, 22–28 May 2013). Edi­ted by W. Ball­mann, C. Blohmann, G. Falt­ings, P. Teich­ner, and D. Za­gi­er. Pro­gress in Math­em­at­ics 319. Birkhäuser/Spring­er In­ter­na­tion­al (Cham, Switzer­land), 2016. MR 3618046 Zbl 06748683 incollection

[81] P. F. Baum and E. van Erp: “\( K \)-ho­mo­logy and Fred­holm op­er­at­ors, II: El­lipt­ic op­er­at­ors,” Pure Ap­pl. Math. Q. 12 : 2 (2016), pp. 225–​241. MR 3767216 article

[82] P. Baum, Carey, A., and B. Wang: On the spec­tra of fi­nite type al­geb­ras. Pre­print, 2017. ArXiv 1705.​01404 techreport

[83] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “Hecke al­geb­ras for in­ner forms of \( p \)-ad­ic spe­cial lin­ear groups,” J. Inst. Math. Jussieu 16 : 2 (2017), pp. 351–​419. MR 3615412 Zbl 06704330 article

[84] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “The prin­cip­al series of \( p \)-ad­ic groups with dis­con­nec­ted cen­ter,” Proc. Lond. Math. Soc. (3) 114 : 5 (2017), pp. 798–​854. MR 3653247 Zbl 06778792 article

[85] P. F. Baum, K. De Com­mer, and P. M. Ha­jac: “Free ac­tions of com­pact quantum groups on unit­al \( C^* \)-al­geb­ras,” Doc. Math. 22 (2017), pp. 825–​849. MR 3665403 Zbl 06810396 ArXiv 1304.​2812v1 article

[86] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “Con­jec­tures about \( p \)-ad­ic groups and their non­com­mut­at­ive geo­metry,” pp. 15–​51 in Around Lang­lands cor­res­pond­ences (Or­say, France, 17–20 June 2015). Edi­ted by F. Brumley, M. P. Gómez Apar­i­cio, and A. Minguez. Con­tem­por­ary Math­em­at­ics 691. Amer­ic­an Math­em­at­ic­al So­ci­ety (Provid­ence, RI), 2017. MR 3666049 ArXiv 1508.​02837 incollection

[87] P. F. Baum and E. van Erp: “\( K \)-ho­mo­logy and Fred­holm op­er­at­ors, I: Dir­ac op­er­at­ors,” J. Geom. Phys. 134 (2018), pp. 101–​118. MR 3886929 article

[88] A.-M. Au­bert, P. Baum, R. Ply­men, and M. Sol­leveld: “Smooth du­als of in­ner forms of \( \mathrm{ GL}_n \) and \( \mathrm{ SL}_n \),” Doc. Math. 24 (2019), pp. 373–​420. MR 3960124 article